Motivation

Hardware:

e Core counts are rising: scale-out is coming to
rival scale-up.

e Heterogeneity is increasing: applications are
adopting CPU and GPU / data-parallel regions.

» Programming parallel & heterogeneous is hard.
(Also, multi-platform/configuration is important)

Software:

e Coherence matters: processing groupings of
coherent ‘work’ is efficient.

e Irregularity matters: interesting applications are
data-dependent and/or adaptive.

e Producer-consumer matters: interesting
applications generate intermediate ‘work’.

» Identify and exploit coherence at run-time.
(Also, codify and offload best practices)

The GRAMPS Programming Model

e Applications are graphs (or pipelines):
- Independent stages connected via queues
e Thread stages:
—Task-parallel, potentially stateful
- Singleton or automatically instanced
— Explicit GrReserve/GrCommit On queues
— Potentially implemented in custom hardware
e Shader stages:
—Data-parallel, independent stateless instances
— Automatically instanced

— Automatic pre-reserve/post-commit of input
and fixed outputs

— Run-time coalesced GrPush for variable /
conditional output.

e Queue Sets:

— A single logical queue with independently
indexed subqueues

— Parallelism with mutual exclusion: sequential
per-subqueue, but many subqueues at once

— Examples: Screen-space subdivision, per-key
reductions in MapReduce

GRAMPS: A Programming Model for
Heterogenous, Commodity, Many-Core Systems

Jeremy Sugerman (with Kayvon Fatahalian, Solomon Boulos, David Lo, Daniel Sanchez, Richard Yoo,
Kurt Akeley, Christos Kozyrakis, Pat Hanrahan)

Example GRAMPS Applications

Rasterization
Pipeline

MapReduce

[rortion jmmp %' |ommp|comoie

Mergesort
(Cilk-like)

SRAD
(CUDA)

Sphere Physics

Two simulated future rendering platforms:

\ . \
Rasterizer

CPU-Like: 8 Fat Cores, Rast

One current (x86) general purpose platform:

Ray Tracer

FM Radio [50ures Jm(5)m

(Streamlt)

barrier

Micro Core Scheduler]

Rasterizer

GPU-Like: 1 Fat Core, 4 Micro Cores, Rast, Sched

7

[@’

Core 0

[oj[7]

[@\ [o)(m]

Core 2 Core 3

L

Core i7 (Nehalem) Processor 0)

[@’

Core 0

(][]

[@’ k)

Core 2 Core 3

.

Core i7 (Nehalem) Processor 1)

Native: 2 Quad-Core Core i7’s

Results and Analysis

Scheduling Mantra: “Maintain high machine
utilization while keeping working sets small”:

Simple proves effective:
eApp-specified queue capacities
eStatic stage priorities
eLimited preemption points

Study 1: Rendering (CPU-Like, GPU-Like):

¢3 scenes X { Rasterization, Ray Tracer, Hybrid }
¢95+9% Utilization for all but fairy-rast (~80%).
eSmall queues (working sets):

< 600KB CPU-like, < 1.5MB GPU-like

Study 2: General Purpose (Native):

16

ray-0

141 i ray-1
spheres
Ir-red
Ir-com
hist-red

- hist-com

pca

msort

srad

gaussian

fm

tde

12

I | | I
8 10 12 14 16
Threads

ePlenty of parallelism, good scalability

e\Working sets are no worse (often better) than
task-stealing

eMinimal scheduling overheads
NG EENEES

1. Sugerman J., Fatahalian K., Boulos S., Akeley
K., and Hanrahan P. "GRAMPS: A Programming
Model for Graphics Pipelines”, ACM TOG,
January 2009

2. Kozyrakis C., Lo D., Sanchez D., Sugerman J.,
Yoo R., "Comparing Parallel Programming
Models using GRAMPS”, submitted for
publication, 2010

