Motivation

Hardware:

e Core counts are rising: scale-out is coming to
rival scale-up.

e Heterogeneity is increasing: applications are
adopting CPU and GPU / data-parallel regions.

» Programming parallel & heterogeneous is hard.
(Also, multi-platform/configuration is important)

Software:

e Coherence matters: processing groupings of
coherent ‘work’ is efficient.

e Irregularity matters: interesting applications are
data-dependent and/or adaptive.

e Producer-consumer matters: interesting
applications generate intermediate ‘work’.

» Identify and exploit coherence at run-time.
(Also, codify and offload best practices)

The GRAMPS Programming Model

e Applications are graphs (or pipelines):
- Independent stages connected via queues
e Thread stages:
—Task-parallel, potentially stateful
- Singleton or automatically instanced
— Explicit GrReserve/GrCommit On queues
— Potentially implemented in custom hardware
e Shader stages:
—Data-parallel, independent stateless instances
— Automatically instanced

— Automatic pre-reserve/post-commit of input
and fixed outputs

— Run-time coalesced GrPush for variable /
conditional output.

e Queue Sets:

— A single logical queue with independently
indexed subqueues

— Parallelism with mutual exclusion: sequential
per-subqueue, but many subqueues at once

— Examples: Screen-space subdivision, per-key
reductions in MapReduce
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Example GRAMPS Applications
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Two simulated future rendering platforms:
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One current (x86) general purpose platform:
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Results and Analysis

Scheduling Mantra: “Maintain high machine
utilization while keeping working sets small”:

Simple proves effective:
eApp-specified queue capacities
eStatic stage priorities
eLimited preemption points

Study 1: Rendering (CPU-Like, GPU-Like):

¢3 scenes X { Rasterization, Ray Tracer, Hybrid }
¢95+9% Utilization for all but fairy-rast (~80%).
eSmall queues (working sets):

< 600KB CPU-like, < 1.5MB GPU-like

Study 2: General Purpose (Native):
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ePlenty of parallelism, good scalability

e\Working sets are no worse (often better) than
task-stealing

eMinimal scheduling overheads
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