
GRAMPS Beyond Rendering

Jeremy Sugerman
11 December 2009

PPL Retreat



2

The PPL Vision: GRAMPSThe PPL Vision: GRAMPS

Domain Embedding Language (Scala)

Virtual 
Worlds

Personal 
Robotics

Data
informatics

Scientific
Engineering

Physics
(Liszt)

Scripting Probabilistic
Machine 
Learning
(OptiML)

Rendering

Common Parallel Runtime (Delite, Sequoia)

Domain specific 
optimization

Locality aware 
scheduling

Applications

Domain
Specific

Languages

Heterogeneous
Hardware

DSL
Infrastructure

Task & data 
parallelism

Hardware Architecture

OOO CoresOOO Cores SIMD CoresSIMD Cores Threaded CoresThreaded Cores

Programmable
Hierarchies

Programmable
Hierarchies

Scalable 
Coherence

Scalable 
Coherence

Isolation & 
Atomicity

Isolation & 
Atomicity

Pervasive 
Monitoring

Pervasive 
Monitoring



3

Introduction

• Past: GRAMPS for building renderers

• This Talk: GRAMPS in two new domains: 
map-reduce and rigid body physics

• Brief mention of other GRAMPS projects



4

GRAMPS Review (1)

• Programming model / API / run-time for 
heterogeneous many-core machines

• Applications are:
– Graphs of multiple stages (cycles allowed)
– Connected via queues

• Interesting workloads are irregular



5

GRAMPS Review (2)

• Shaders: data-parallel, plus push
• Threads/Fixed-function: stateful / tasks

F
ram

ebuffer

Rast
Fragment

Shade
Blend

Example Rasterization Pipeline



6

GRAMPS Review (3)

• Queue set:
– single logical queue, independent subqueues

• Synchronization and parallel consumption
• Binning, screen-space subdivision, etc.

F
ram

ebuffer

Rast
Fragment

Shade
Blend



7

Map-Reduce

• Popular parallel idiom:

• Used at both cluster and multi-core scale
• Analytics, indexing, machine learning, …

Map:
Foreach(input) {

Do something

Emit(key, &val)

}

Reduce:
Foreach(key) {

Process values

EmitFinalResult()

}



8

Map-Reduce: Combine

• Reduce often has high overhead:
– Buffering of intermediate pairs (storage, stall)

– Load imbalance across keys
– Serialization within a key

• In practice, Reduce is often associative 
and commutative (and simple).

• Combine phase enables incremental, 
parallel reduction



Preparing GRAMPS 
for Map-Reduce



10

Queue Sets, Instanced Threads

• Make queue sets more dynamic
– Create subqueues on demand

– Sparsely indexed ‘keyed’ subqueues
– ANY_SUBQUEUE flag for Reserve

Make-Grid(obj):
For (cells in o.bbox) {

key = linearize(cell)

PushKey(out, key, &o)

}

Collide(subqueue):
For (each o1, o2 pair)

if (o1 overlaps o2)

...



11

Fan-in Shaders

• Use shaders for parallel partial reductions
– Input: One packet, Output: One element

– Can operate in-place or as a filter
– Run-time coalesces mostly empty packets 

Sum(packet):
For (i < packet.numEl)

sum += packet.v[i]

packet.v[0] = sum

packet.numEl = 1

Histogram(pixels):
For (i < pixels.numEl){

c = .3r + .6g + .1b

PushKey(out,c/256,1)

}



12

Fan-in + In-place is a builtin

• Alternatives:
– Regular shader accumulating with atomics

– GPGPU multi-pass shader reduction
– Manually replicated thread stages

– Fan-in with same queue as input and output

• Reality: Messy, micro-managed, slow
– Run-time should hide complexity, not export it



13

• Three Apps (based on Phoenix):
– Histogram, Linear Regression, PCA

• Run-time Provides:
– API, GRAMPS bindings, elems per packet

GRAMPS Map-Reduce
O

utput
Input Params

Produce Map
Reduce

(instanced)
Combine
(in-place)

Splits Pairs:
Key0: vals[]
Key1: vals[]
…

Pairs:
Key0: vals[]
Key1: vals[]
…



14

Map-Reduce App Results

4700 KB2300 KB97.2%Histogram-512

20 KB10 KB96.2%(combine)

205 KB100 KB65.5%LR-32768

1.5 KB1 KB97.0%(combine)

1 KB.5 KB99.2%PCA-128

Footprint

(Peak)

Footprint

(Avg.)

Occupancy

(CPU-Like)



15

Reduce vs Combine: Histogram
Reduce Combine



16

Two Pass: PCA (GPU-Like)



17

Sphere Physics



18

1. Split Spheres into chunks of N
2. Emit(cell, sphereNum) for each sphere
3. Emit(s1, s2) for each intersection in cell
4. For each sphere, resolve and update

GRAMPS: Sphere Physics
Params

Split
Make
Grid

Resolve
Collide

Cell

Spheres



19

256 Spheres (CPU-Like)



20

Other People’s Work

• Improved sim: model ILP and caches
• Micropolygon rasterization, fixed functions

• x86 many-core:



21

Thank You

• Questions?



Backup Slides



23

Optimizations for Map-Reduce

• Aggressive shader instancing
• Per-subqueue push coalescing
• Per-core scoreboard



24

GRAMPS Map-Reduce Apps

Based on Phoenix map-reduce apps:
• Histogram: Quantize input image into 256 

buckets
• Linear Regression: For a set of (x,y) pairs, 

compute average x, x², y, y², and xy
• PCA: For a matrix M, compute the mean 

of each row and the covariance of all pairs 
of rows



25

Histogram 512x512



26

Histogram 512x512 (Combine)



27

Histogram 512x512 (GPU)



28

Linear Regression 32768



29

PCA 128x128 (CPU)



30

Sphere Physics

A (simplified) proxy for rigid body physics:
Generate N spheres, initial velocity

while(true) {

• Find all pairs of intersecting 
spheres

• Compute ∆v to resolve collision 
(conserve energy, momentum)

• Compute updated result velocity and 
position

}



31

Future Work

• Tuning:
– Push, combine coalesce efficiency

– Map-Reduce chunk sizes for split, reduce

• Extensions to enable more shader usage 
in Sphere Physics?

• Flesh out how/where to apply application 
enhancements, optimizations


