
Doing More With GRAMPS

Jeremy Sugerman
10 December 2009

GCafe



2

Introduction

• Past: GRAMPS for building renderers

• This Talk: GRAMPS in two new domains: 
map-reduce and rigid body physics



3

GRAMPS Review (1)

• Programming model / API / run-time for 
heterogeneous many-core machines

• Applications are:
– Graphs of multiple stages (cycles allowed)
– Connected via queues

• Interesting workloads are irregular



4

GRAMPS Review (2)

• Shaders: data-parallel, plus push
• Threads/Fixed-function: stateful / tasks

F
ram

ebuffer

Rast
Fragment

Shade
Blend

Example Rasterization Pipeline



5

GRAMPS Review (3)

• Queue set:
– single logical queue, independent subqueues

• Synchronization and parallel consumption
• Binning, screen-space subdivision, etc.

F
ram

ebuffer

Rast
Fragment

Shade
Blend



6

Map-Reduce

• Popular parallel idiom:

• Used at both cluster and multi-core scale
• Analytics, indexing, machine learning, …

Map:
Foreach(input) {

Do something

Emit(key, &val)

}

Reduce:
Foreach(key) {

Process values

EmitFinalResult()

}



7

Map-Reduce: Combine

• Reduce often has high overhead:
– Buffering of intermediate pairs (storage, stall)

– Load imbalance across keys
– Serialization within a key

• In practice, Reduce is often associative 
and commutative (and simple).

• Combine phase enables incremental, 
parallel reduction



8

Map-Reduce in GRAMPS

• A few API extensions
• A few new optimizations

O
utput
Input Params

Produce Map ReduceCombine

Splits Pairs:
Key0: vals[]
Key1: vals[]
…

Pairs:
Key0: vals[]
Key1: vals[]
…



9

Extension: Queue Sets

• Make queue sets more dynamic
– Create subqueues on demand

– Sparsely indexed ‘keyed’ subqueues
– ANY_SUBQUEUE flag for Reserve

Make-Grid(obj):
For (cells in o.bbox) {

key = linearize(cell)

PushKey(out, key, &o)

}

Collide():
While (Reserve(input, ANY))

For (each o1, o2 pair)

if (o1 overlaps o2)

...



10

Extension: Instanced Threads

• Automatic instancing of thread stages
– One to one with input subqueues

– Only when processing is independent

Make-Grid(obj):
For (cells in o.bbox) {

key = linearize(cell)

PushKey(out, key, &o)

}

Collide(subqueue):
For (each o1, o2 pair)

if (o1 overlaps o2)

...



11

Extension: Fan-in Shaders

• Enable shader parallel partial reductions
– Input: One packet, Output: One element

– Can operate in-place or as a filter
– Run-time coalesces mostly empty packets 

Sum(packet):
For (i < packet.numEl)

sum += packet.v[i]

packet.v[0] = sum

packet.numEl = 1

Histogram(pixels):
For (i < pixels.numEl){

c = .3r + .6g + .1b

PushKey(out,c/256,1)

}



12

Digression: Combine is a builtin

• Alternatives:
– Regular shader accumulating with atomics

– GPGPU multi-pass shader reduction
– Manually replicated thread stages

– Fan-in with same queue as input and output

• Reality: Messy, micro-managed, slow
– Run-time should hide complexity, not export it



13

Optimizations

• Aggressive shader instancing
• Per-subqueue push coalescing
• Per-core scoreboard



14

• App Provides:
– Produce, Guts of: map, combine, reduce

• Run-time Provides:
– GRAMPS bindings, elems per packet

GRAMPS Map-Reduce
O

utput
Input Params

Produce Map
Reduce

(instanced)
Combine
(in-place)

Splits Pairs:
Key0: vals[]
Key1: vals[]
…

Pairs:
Key0: vals[]
Key1: vals[]
…



15

GRAMPS Map-Reduce Apps

Based on Phoenix map-reduce apps:
• Histogram: Quantize input image into 256 

buckets
• Linear Regression: For a set of (x,y) pairs, 

compute average x, x², y, y², and xy
• PCA: For a matrix M, compute the mean 

of each row and the covariance of all pairs 
of rows



16

Map-Reduce App Results

4700 KB2300 KB97.2%Histogram-512

20 KB10 KB96.2%(combine)

205 KB100 KB65.5%LR-32768

1.5 KB1 KB97.0%(combine)

1 KB.5 KB99.2%PCA-128

Footprint

(Peak)

Footprint

(Avg.)

Occupancy

(CPU-Like)



17

Histogram 512x512



18

Histogram 512x512 (Combine)



19

Histogram 512x512 (GPU)



20

PCA 128x128 (CPU)



21

PCA 128x128 (GPU)



22

Sphere Physics



23

Sphere Physics

A (simplified) proxy for rigid body physics:
Generate N spheres, initial velocity

while(true) {

• Find all pairs of intersecting 
spheres

• Compute ∆v to resolve collision 
(conserve energy, momentum)

• Compute updated result velocity and 
position

}



24

1. Split Spheres into chunks of N
2. Emit(cell, sphereNum) for each sphere
3. Emit(s1, s2) for each intersection in cell
4. For each sphere, resolve and update

GRAMPS: Sphere Physics
Params

Split
Make
Grid

Resolve
Collide

Cell

Spheres



25

CPU-Like: 256 Spheres



26

Future Work

• Tuning:
– Push, combine coalesce efficiency

– Map-Reduce chunk sizes for split, reduce

• Extensions to enable more shader usage 
in Sphere Physics?

• Flesh out how/where to apply application 
enhancements, optimizations



27

Other People’s Work

• Improved sim: model ILP and caches
• Micropolygon rasterization, fixed functions

• x86 many-core:



28

Thank You

• Questions?


