


Input
Assembler

= Central to the rise of 3D hardware and software.

Output
Merger

= A stable and universal abstraction

Shaped the evolution of the field...

= ... while leaving enormous room for innovation.



Direct3D 11 )le Shading

Input Vertex i Tessellator Output
Assembler Shader Merger




= Continued drive for algorithmic innovation and advanced
rendering techniques

= First class programming models for compute:
— OpenCL, compute shaders, vendor specific, ...

= New / different hardware implementations:
— E.g., Larrabee, CPU-GPU combinations / hybrids
— Even NVIDIA and AMD GPUs are very different



ldea: Evolve the pipeline itself from
preset configurations to a programmable
entity



= Programming model and run-time for parallel hardware
= Graphs of stages and queues

= GRAMPS handles scheduling, parallelism, data-flow

Example: Simple GRAMPS Graph

-




ot | (0 [

= Structure/setup is (application) software

— Customized or completely novel renderers
= Reuses current hardware: FIFOs, shader cores, rast, ...
= Analogous to the transition to programmable shading

— Proliferation of new use cases and parameters

— Not (unthinkably) radical



Design the execution graph:

e = (= [ =

Design the stages:
— Shaders

— Threads (and Fixed Function stages)

Instantiate and launch.



e

= Queues operate at a “packet” granularity

— “Large bundles of coherent work”

= GRAMPS can optionally enforce ordering

— Required for some workloads, adds overhead



} @ - -

= Shaders: Like pixel (or compute) shaders, stateless

— Automatic instancing, pre-reserve/post-commit
= “Collection” packets: shared header and N elements

= New: “Push” operation to coalesce variable outputs

10



w2 =3

= Threads: Like POSIX threads, stateful

— Explicit reserve/commit on queues

= Fixed Function: Effectively non-programmable Threads

11



e B

= Queue sets enable binning-style algorithms

= One logical queue with multiple lanes (or bins)
— One consumer at a time per lane

— Many lanes with data allows many parallel consumers

12



Quick Comparison to “Streaming”

= Streaming: “squeeze out every FLOP”
— Goals: throughput, bulk transfer, arithmetic intensity
— Intensive static analysis, program transformation
— Bound space, data access, execution time
= GRAMPS: “Interesting applications are irregular”
— Goals: throughput, dynamic, data-dependent code
— Aggregate work at run-time, heterogeneous hardware

— Streaming apps are GRAMPS apps

13



Broad application scope: preferable to roll-your-own

Multi-platform: suits many hardware configurations
High performance: competitive with roll-your-own
Tunable: expert users can optimize their apps

Optimized Implementations: inform, and are informed by,
hardware

14



Rasterization Pipeline (with ray tracing extension)

Ray Tracing Graph

er = sampr - ()= (D

[ ]=Thread
B = shader

OO = Queue

= Stage Output

B - Fixed-Func |::> = Push Output

_J

Ray Tracing Extension

- -



Rasterizer

GPU-Like: 1 Fat Core, 4 Micro Cores, Rast, Sched

16



= Priority #1: Show scale out parallelism

— Can GRAMPS exploit the application parallelism and fill
the machine?

= Priority #2: Show ‘reasonable’ bandwidth / storage
requirements for queueing

— What is the worst case total footprint of all queues?

— A scheduling problem: trade-off with possible parallelism

17



Very simple static prototype scheduler (both platforms):

= Static stage priorities:

]2 -
(Lowest)
-Gl

(Highest)
= Limited pre-emption points

= No dynamic weighting of current queue depths

18



High Performance — Results

= Three scenes x { Rasterization, Ray Tracer, Hybrid }
= Parallelism is 95+% for all but rasterized fairy (~80%).
= Queues are small: < 600KB CPU-like, < 1.5MB GPU-like

= Order costs footprint

19



—

.Tuhability — Understanding Performance

*GRAMPSVviz:

= Also: raw counters, statistics, text log of run-time activity

20



= Execution Graph topology / design:

Sort-Middle

Sort-Last

--

= Sizing critical queues:

g




= After a long era of stabllity, the Graphics Pipeline is
undergoing rapid change.

= GRAMPS enables software-defined custom pipelines.
— The Graphics Pipeline becomes an app
— Prototypes show plausible performance, resource needs
— Handles heterogeneous parallelism well

— Applicable beyond rendering and beyond GPUs

22



= Qur funding agencies:

Stanford Pervasive Parallelism Lab
Department of the Army Research
Intel Corporation

Rambus Stanford Graduate Fellowship
Intel PhD Fellowship

NSF Graduate Research Fellowship

= http://graphics.stanford.edu/papers/gramps-tog/

23



