


Input
Assembler

= Central to the rise of 3D hardware and software.

Output
Merger

= A stable and universal abstraction

Shaped the evolution of the field...

= ... while leaving enormous room for innovation.
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= Continued drive for algorithmic innovation and advanced
rendering techniques

= First class programming models for compute:
— OpenCL, compute shaders, vendor specific, ...

= New / different hardware implementations:
— E.g., Larrabee, CPU-GPU combinations / hybrids
— Even NVIDIA and AMD GPUs are very different



ldea: Evolve the pipeline itself from
preset configurations to a programmable
entity



= Programming model and run-time for parallel hardware
= Graphs of stages and queues

= GRAMPS handles scheduling, parallelism, data-flow

Example: Simple GRAMPS Graph
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= Structure/setup is (application) software

— Customized or completely novel renderers
= Reuses current hardware: FIFOs, shader cores, rast, ...
= Analogous to the transition to programmable shading

— Proliferation of new use cases and parameters

— Not (unthinkably) radical



Design the execution graph:

e = (= [ =

Design the stages:
— Shaders

— Threads (and Fixed Function stages)

Instantiate and launch.
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= Queues operate at a “packet” granularity

— “Large bundles of coherent work”

= GRAMPS can optionally enforce ordering

— Required for some workloads, adds overhead
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= Shaders: Like pixel (or compute) shaders, stateless

— Automatic instancing, pre-reserve/post-commit
= “Collection” packets: shared header and N elements

= New: “Push” operation to coalesce variable outputs
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= Threads: Like POSIX threads, stateful

— Explicit reserve/commit on queues

= Fixed Function: Effectively non-programmable Threads
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= Queue sets enable binning-style algorithms

= One logical queue with multiple lanes (or bins)
— One consumer at a time per lane

— Many lanes with data allows many parallel consumers
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Quick Comparison to “Streaming”

= Streaming: “squeeze out every FLOP”
— Goals: throughput, bulk transfer, arithmetic intensity
— Intensive static analysis, program transformation
— Bound space, data access, execution time
= GRAMPS: “Interesting applications are irregular”
— Goals: throughput, dynamic, data-dependent code
— Aggregate work at run-time, heterogeneous hardware

— Streaming apps are GRAMPS apps
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Broad application scope: preferable to roll-your-own

Multi-platform: suits many hardware configurations
High performance: competitive with roll-your-own
Tunable: expert users can optimize their apps

Optimized Implementations: inform, and are informed by,
hardware
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Rasterization Pipeline (with ray tracing extension)

Ray Tracing Graph

er = sampr - ()= (D

[ ]=Thread
B = shader

OO = Queue

= Stage Output

B - Fixed-Func |::> = Push Output
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Ray Tracing Extension
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Rasterizer

GPU-Like: 1 Fat Core, 4 Micro Cores, Rast, Sched
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= Priority #1: Show scale out parallelism

— Can GRAMPS exploit the application parallelism and fill
the machine?

= Priority #2: Show ‘reasonable’ bandwidth / storage
requirements for queueing

— What is the worst case total footprint of all queues?

— A scheduling problem: trade-off with possible parallelism
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Very simple static prototype scheduler (both platforms):

= Static stage priorities:

]2 -
(Lowest)
-Gl

(Highest)
= Limited pre-emption points

= No dynamic weighting of current queue depths
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High Performance — Results

= Three scenes x { Rasterization, Ray Tracer, Hybrid }
= Parallelism is 95+% for all but rasterized fairy (~80%).
= Queues are small: < 600KB CPU-like, < 1.5MB GPU-like

= Order costs footprint
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—

.Tuhability — Understanding Performance

*GRAMPSVviz:

= Also: raw counters, statistics, text log of run-time activity
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= Execution Graph topology / design:

Sort-Middle

Sort-Last

--

= Sizing critical queues:
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= After a long era of stabllity, the Graphics Pipeline is
undergoing rapid change.

= GRAMPS enables software-defined custom pipelines.
— The Graphics Pipeline becomes an app
— Prototypes show plausible performance, resource needs
— Handles heterogeneous parallelism well

— Applicable beyond rendering and beyond GPUs
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= Qur funding agencies:

Stanford Pervasive Parallelism Lab
Department of the Army Research
Intel Corporation

Rambus Stanford Graduate Fellowship
Intel PhD Fellowship

NSF Graduate Research Fellowship

= http://graphics.stanford.edu/papers/gramps-tog/
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