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“The Graphics Pipeline”

� Central to the rise of 3D hardware and software.

� A stable and universal abstraction

� Shaped the evolution of the field…

� … while leaving enormous room for innovation.
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The Graphics Pipeline is evolving
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“GPU” is evolving, too

� Continued drive for algorithmic innovation and advanced 
rendering techniques

� First class programming models for compute:

– OpenCL, compute shaders, vendor specific, …

� New / different hardware implementations:

– E.g., Larrabee, CPU-GPU combinations / hybrids

– Even NVIDIA and AMD GPUs are very different
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From fixed to programmable (again)

Idea: Evolve the pipeline itself from 
preset configurations to a programmable 
entity
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� Programming model and run-time for parallel hardware

� Graphs of stages and queues

� GRAMPS handles scheduling, parallelism, data-flow
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The Graphics Pipeline becomes an app!

� Structure/setup is (application) software

– Customized or completely novel renderers

� Reuses current hardware: FIFOs, shader cores, rast, …

� Analogous to the transition to programmable shading

– Proliferation of new use cases and parameters

– Not (unthinkably) radical
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Writing a GRAMPS application

Design the execution graph:

Design the stages:

– Shaders

– Threads (and Fixed Function stages)

Instantiate and launch.
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More Detail – Queues

� Queues operate at a “packet” granularity

– “Large bundles of coherent work”

� GRAMPS can optionally enforce ordering

– Required for some workloads, adds overhead
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More Detail – Shaders

� Shaders: Like pixel (or compute) shaders, stateless

– Automatic instancing, pre-reserve/post-commit

� “Collection” packets: shared header and N elements

� New: “Push” operation to coalesce variable outputs

Vertex
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More Detail – Thread/Fixed Function

� Threads: Like POSIX threads, stateful

– Explicit reserve/commit on queues

� Fixed Function: Effectively non-programmable Threads

Rast
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More Detail – Queue Sets

� Queue sets enable binning-style algorithms

� One logical queue with multiple lanes (or bins)

– One consumer at a time per lane

– Many lanes with data allows many parallel consumers
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Quick Comparison to “Streaming”

� Streaming: “squeeze out every FLOP”

– Goals: throughput, bulk transfer, arithmetic intensity

– Intensive static analysis, program transformation

– Bound space, data access, execution time

� GRAMPS: “interesting applications are irregular”

– Goals: throughput, dynamic, data-dependent code

– Aggregate work at run-time, heterogeneous hardware

– Streaming apps are GRAMPS apps
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Evaluation: Design Goals

� Broad application scope: preferable to roll-your-own

� Multi-platform: suits many hardware configurations

� High performance: competitive with roll-your-own

� Tunable: expert users can optimize their apps

� Optimized Implementations: inform, and are informed by, 
hardware
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Broad Application Scope

Ray Tracing Graph

= Thread = Queue

= Shader = Stage Output

= Fixed-Func = Push Output

Rasterization Pipeline (with ray tracing extension)

Ray Tracing Extension
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Multi-Platform: Two (Simulated) Machines

CPU-Like : 8 Fat Cores, Rast

GPU-Like : 1 Fat Core, 4 Micro Cores, Rast, Sched
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High Performance – Metrics

� Priority #1: Show scale out parallelism

– Can GRAMPS exploit the application parallelism and fill 
the machine?

� Priority #2: Show ‘reasonable’ bandwidth / storage 
requirements for queueing

– What is the worst case total footprint of all queues?

– A scheduling problem: trade-off with possible parallelism
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High Performance – Scheduling

Very simple static prototype scheduler (both platforms):

� Static stage priorities:

� Limited pre-emption points

� No dynamic weighting of current queue depths
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High Performance – Results

� Three scenes x { Rasterization, Ray Tracer, Hybrid }

� Parallelism is 95+% for all but rasterized fairy (~80%).

� Queues are small: < 600KB CPU-like, < 1.5MB GPU-like

� Order costs footprint
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� Also: raw counters, statistics, text log of run-time activity

Tunability – Understanding Performance

�GRAMPSviz:
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� Execution Graph topology / design:

� Sizing critical queues:

Tunability – Lessons Learned
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Summary

� After a long era of stability, the Graphics Pipeline is 
undergoing rapid change.

� GRAMPS enables software-defined custom pipelines.

– The Graphics Pipeline becomes an app

– Prototypes show plausible performance, resource needs

– Handles heterogeneous parallelism well

– Applicable beyond rendering and beyond GPUs



23

Thank You

� Our funding agencies:

Stanford Pervasive Parallelism Lab

Department of the Army Research

Intel Corporation

Rambus Stanford Graduate Fellowship

Intel PhD Fellowship

NSF Graduate Research Fellowship

� http://graphics.stanford.edu/papers/gramps-tog/


