
1

GRAMPS: A Programming Model

For Graphics Pipelines
Jeremy Sugerman,

Kayvon Fatahalian, Solomon Boulos,
Kurt Akeley, Pat Hanrahan



2

“The Graphics Pipeline”

� Central to the rise of 3D hardware and software.

� A stable and universal abstraction

� Shaped the evolution of the field…

� … while leaving enormous room for innovation.

Input
Assembler

Vertex
Shader

Rast
Output
Merger

Pixel
Shader



3

Rast Output
Merger

Pixel
Shader

Fixed Function

The Graphics Pipeline is evolving

Programmable Shading

Input
Assembler

Vertex
Shader

Direct3D 10Direct3D 11

Pixel
Shader

Vertex
Shader

Hull
Shader

Domain
Shader

Tessellator

Geometry
Shader

Stream
Output



4

“GPU” is evolving, too

� Continued drive for algorithmic innovation and advanced 
rendering techniques

� First class programming models for compute:

– OpenCL, compute shaders, vendor specific, …

� New / different hardware implementations:

– E.g., Larrabee, CPU-GPU combinations / hybrids

– Even NVIDIA and AMD GPUs are very different



5

From fixed to programmable (again)

Idea: Evolve the pipeline itself from 
preset configurations to a programmable 
entity



6

� Programming model and run-time for parallel hardware

� Graphs of stages and queues

� GRAMPS handles scheduling, parallelism, data-flow

GRAMPS

Example: Simple GRAMPS Graph

ShaderThread
Fixed

Function



7

The Graphics Pipeline becomes an app!

� Structure/setup is (application) software

– Customized or completely novel renderers

� Reuses current hardware: FIFOs, shader cores, rast, …

� Analogous to the transition to programmable shading

– Proliferation of new use cases and parameters

– Not (unthinkably) radical

F
ra

m
e 

B
uf

fe
r

VertexInput PixelRast Merge



8

Writing a GRAMPS application

Design the execution graph:

Design the stages:

– Shaders

– Threads (and Fixed Function stages)

Instantiate and launch.

VertexInput Pixel MergeRast

F
ra

m
e 

B
uf

fe
r

Merge



9

F
ra

m
e 

B
uf

fe
r

VertexInput Pixel MergeRast

More Detail – Queues

� Queues operate at a “packet” granularity

– “Large bundles of coherent work”

� GRAMPS can optionally enforce ordering

– Required for some workloads, adds overhead



10

F
ra

m
e 

B
uf

fe
r

RastVertex PixelInput Merge

More Detail – Shaders

� Shaders: Like pixel (or compute) shaders, stateless

– Automatic instancing, pre-reserve/post-commit

� “Collection” packets: shared header and N elements

� New: “Push” operation to coalesce variable outputs

Vertex



11

F
ra

m
e 

B
uf

fe
r

RastVertex PixelInput Merge

More Detail – Thread/Fixed Function

� Threads: Like POSIX threads, stateful

– Explicit reserve/commit on queues

� Fixed Function: Effectively non-programmable Threads

Rast



12

More Detail – Queue Sets

� Queue sets enable binning-style algorithms

� One logical queue with multiple lanes (or bins)

– One consumer at a time per lane

– Many lanes with data allows many parallel consumers

VertexInput Rast

F
ra

m
e 

B
uf

fe
r

Pixel MergeMerge

F
ra

m
e 

B
uf

fe
r

Pixel



13

Quick Comparison to “Streaming”

� Streaming: “squeeze out every FLOP”

– Goals: throughput, bulk transfer, arithmetic intensity

– Intensive static analysis, program transformation

– Bound space, data access, execution time

� GRAMPS: “interesting applications are irregular”

– Goals: throughput, dynamic, data-dependent code

– Aggregate work at run-time, heterogeneous hardware

– Streaming apps are GRAMPS apps



14

Evaluation: Design Goals

� Broad application scope: preferable to roll-your-own

� Multi-platform: suits many hardware configurations

� High performance: competitive with roll-your-own

� Tunable: expert users can optimize their apps

� Optimized Implementations: inform, and are informed by, 
hardware



15

Broad Application Scope

Ray Tracing Graph

= Thread = Queue

= Shader = Stage Output

= Fixed-Func = Push Output

Rasterization Pipeline (with ray tracing extension)

Ray Tracing Extension

F
ra

m
e 

B
uf

fe
r

PSRastRO

V
er

te
x 

B
uf

fe
rs

VSNIAN

VS1IA1 OM

Trace PS2

Tiler Sampler Camera Intersect

Shade
Shadow
Intersect

Blend

F
ra

m
e 

B
uf

fe
r



16

Multi-Platform: Two (Simulated) Machines

CPU-Like : 8 Fat Cores, Rast

GPU-Like : 1 Fat Core, 4 Micro Cores, Rast, Sched



17

High Performance – Metrics

� Priority #1: Show scale out parallelism

– Can GRAMPS exploit the application parallelism and fill 
the machine?

� Priority #2: Show ‘reasonable’ bandwidth / storage 
requirements for queueing

– What is the worst case total footprint of all queues?

– A scheduling problem: trade-off with possible parallelism



18

High Performance – Scheduling

Very simple static prototype scheduler (both platforms):

� Static stage priorities:

� Limited pre-emption points

� No dynamic weighting of current queue depths

(Lowest)

(Highest)

1 2 3 4

5 6 7

F
ra

m
e 

B
uf

fe
r



19

High Performance – Results

� Three scenes x { Rasterization, Ray Tracer, Hybrid }

� Parallelism is 95+% for all but rasterized fairy (~80%).

� Queues are small: < 600KB CPU-like, < 1.5MB GPU-like

� Order costs footprint



20

� Also: raw counters, statistics, text log of run-time activity

Tunability – Understanding Performance

�GRAMPSviz:



21

Tiler Sampler Camera Intersect

Shade
Shadow
Intersect

Blend

F
ra

m
e 

B
uf

fe
r

� Execution Graph topology / design:

� Sizing critical queues:

Tunability – Lessons Learned

PSRast

F
ra

m
e 

B
uf

fe
r

PS + OMRast

F
ra

m
e 

B
uf

fe
r

Sort-Middle Sort-Last

OM



22

Summary

� After a long era of stability, the Graphics Pipeline is 
undergoing rapid change.

� GRAMPS enables software-defined custom pipelines.

– The Graphics Pipeline becomes an app

– Prototypes show plausible performance, resource needs

– Handles heterogeneous parallelism well

– Applicable beyond rendering and beyond GPUs



23

Thank You

� Our funding agencies:

Stanford Pervasive Parallelism Lab

Department of the Army Research

Intel Corporation

Rambus Stanford Graduate Fellowship

Intel PhD Fellowship

NSF Graduate Research Fellowship

� http://graphics.stanford.edu/papers/gramps-tog/


