
Extending GRAMPS Shaders

Jeremy Sugerman
June 2, 2009

FLASHG

2

Agenda
 GRAMPS Reminder (quick!)
 Reductions
 Reductions and more with GRAMPS Shaders

3

GRAMPS Reminder

Ray Tracer

Ray
Queue

Ray Hit
Queue Fragment

Queue

Camera Intersect

Shade FB Blend

= Thread Stage
= Shader Stage

= Queue
= Stage Output
= Push Output

Intermediate
Tuples

Map

O
utput

Produce
Combine
(Optional) Reduce Sort

 Initial
Tuples

Intermediate
Tuples

Final
Tuples

Map-Reduce

4

GRAMPS Shaders
 Facilitate data parallelism
 Benefits:
 auto-instancing, queue management, implicit

parallelism, mapping to ‘shader cores’
 Constraints:
 1 input queue, 1 input element and 1 output

element per queue (plus push).

Effectively limits kernels to “map”-like usage.

5

Reductions
 Central to Map-Reduce (duh), many parallel apps
 Strict form: sequential, requires arbitrary buffering

– E.g., compute median, depth order transparency

 Associativity, commutativity enable parallel
incremental reductions
– In practice, many of the reductions actually used

(all Brook / GPGPU, most Map-Reduce)

6

Logarithmic Parallel Reduction

1 5 3 2 1 7 3 5

6 5 8 8

11 16

27

7

Simple GRAMPS Reduction

Barrier / Sum

Generate:
0 .. MAX

Sum(Input)
(Reduce)

Validate /
Consume

 Data

 Strict reduction
 All stages are threads, no shaders

8

Strict Reduction Program
sumThreadMain(GrEnv *env) {
 sum = 0;
 /* Block for entire input */
 GrReserve(inputQ, -1);
 for (i = 0 to numPackets) {
 sum += input[i];
 }
 GrCommit(inputQ, numPackets);

 /* Write sum to buffer or outputQ */
}

9

Incremental/Partial Reduction
sumThreadMain(GrEnv *env) {
 sum = 0;
 /* Consume one packet at a time */
 while (GrReserve(inputQ, 1) != NOMORE) {
 sum += input[i];
 GrCommit(inputQ, 1);
 }

 /* Write sum to buffer or outputQ */
}

Note: Still single threaded!

10

Shaders for Partial Reduction?
 Appeal:

– Stream, GPU languages offer support
– Take advantage of shader cores
– Remove programmer boiler plate
– Automatic parallelism and instancing

 Obstacles:
– Location for partial / incremental result
– Multiple input elements (spanning packets)
– Detecting termination
– Proliferation of stage / program types.

11

Shader Enhancements
 Stage / kernel takes N inputs per invocation

➔ Must handle < N being available (for N > 1)
 Invocation reduces all input to a single output

– Stored as an output key?
 GRAMPS can (will) merge input across packets

➔ No guarantees on shared packet headers!

➢Not a completely new type of shader
➢General filtering, not just GPGPU reduce

12

GRAMPS Shader Reduction

Barrier

Generate:
0 .. MAX

Sum(Input)
(Reduce)

Validate /
Consume

 Data

 Combination of N:1 shader and graph cycle (in-
place).

 Input “Queue” to validate only gets NOMORE

13

Scheduling Reduction Shaders
 Highly correlated with graph cycles.

– Given reduction, preempt upstream under
footprint.

 Free space in input gates possible parallelism
– 1/Nth free is the most that can be used.
– One free entry is the minimum required for

forward progress.
 Logarithmic versus linear reduction is entirely a

scheduler / GRAMPS decision.

14

Other Thoughts
 (As mentioned) Enables filtering. What else?
 How interesting are graphs without loops?

 Are there other alternatives? Would a separate
“reduce” / “combine” stage be better?

 Questions?

