GRAMPS: A Programming Model for Graphics
Pipelines and Heterogeneous Parallelism

Jeremy Sugerman
March 5, 2009
EEC277

History

= GRAMPS grew from, among other things, our GPGPU
and Cell processor work, especially ray tracing.

= We took a step back to pose the question of what we
would like to see when “GPU” and “CPU” cores both
became normal entities on a multi-core processor.

= GRAMPS 1.0 Collaborators: Kayvon Fatahalian,
Solomon Boulos, Kurt Akeley, Pat Hanrahan

= Published in TOG, January 2009.

Background

= Context: Commodity, heterogeneous, many-core

— “Commodity”: CPUs and GPUs. Modern out of
order CPUs, Niagara and Larrabee-like simple
cores, GPU-like shader cores.

— “Heterogeneous”: Above, plus fixed function
— “Many-core”: Scale out is a central necessity

Problem: How the heck do people harness such
complex systems?

Status Quo: C run-time, GPU pipeline, GPGPU, ...

Our Focus

= Bottom up

— Emphasize simple/transparent building blocks
that can be run well.

— Eliminate the rote, encourage good practices
— Expect an informed developer, not a casual one

» Design an environment for systems-savvy developers
that lets them efficient develop programs that
efficiently map onto commodity, heterogeneous,
many-core platforms.

This Talk

What is GRAMPS?
Case Study: Rendering
Lessons Learned

B W

(Bonus: Current Thoughts, Efforts)

GRAMPS: Quick Introduction

= Applications are graphs of stages and queues
" Producer-consumer inter-stage parallelism
" Thread and data intra-stage parallelism

= GRAMPS (“the system”) handles scheduling,
instancing, data-flow, synchronization

GRAMPS: Examples

Frame Buffer

[Rasterize F:m:»{ Shade Fm:»[FB Blend Jﬁ

Raster Graphics

()= Thread Stage crTm= Queue

QEZTJ . (= Shader Stage = = Stage Output

= Fixed-f St
[Camera].:DI-[Intersect] L Thedune Stage
Ray Hit
Ray Tracer @Queue Fragment
) § Queue g
Shade @{ FB Blend 2
£

Evolving a GPU Pipeline

= “Graphics Pipeline” becomes an app!

— Policy (topology) in app, execution in GRAMPS/hw
" Analogous to fixed — programmable shading

— Pipeline undergoing massive shake up

— Diversity of new parameters and use cases

"= Not (unthinkably) radical even just for ‘graphics’
— More flexible, not as portable
— No domain specific knowledge

Evolving Streaming (1)

= Sounds like streaming:
Execution graphs, kernels, data-parallelism

= Streaming: “squeeze out every FLOP”
— Goals: bulk transfer, arithmetic intensity
— Intensive static analysis, custom chips (mostly)
— Bounded space, data access, execution time

Evolving Streaming (2)

= GRAMPS: “interesting apps are irregular”
— Goals: Dynamic, data-dependent code
— Aggregate work at run-time
— Heterogeneous commodity platforms

= Streaming techniques fit naturally when applicable

— Predictable subgraphs can be statically
transformed and schedule.

10

Digression: Parallelism

Parallelism How-To

= Break work into separable pieces (dynamically or
statically)

— Optimize each piece (intra-)
— Optimize the interaction between pieces (inter-)
= Ex: Threaded web server, shader, GPU pipeline

= Terminology: | use “kernel” to mean any kind of
independent piece / thread / program.

" Terminology: | think of parallel programs as graphs
of their kernels / kernel instances.

12

Intra-Kernel Organization, Parallelism

Theoretically it is a continuum.
In practice there are sweet spots.
— Goal: span the space with a minimal basis

Thread/Task (divide) and Data (conquer)

Two?! What about the zero-one-infinity rule?

— Applies to type compatible entities / concepts
— Reminder: trying to span a complex space

13

Inter-kernel Connectivity

* |nput dependencies / barriers
— Often simplified to a DAG, built on the fly
— Input data / communication only at instance creation
— Instances are ephemeral, data is long-lived

* Producer-consumer / pipelines
— Topology often effective static with dynamic instancing
— Input data / communication happens ongoing
— Instances may be long lived and stateful

— Data is ephemeral and prohibitive to spill (bandwidth or
raw size)

14

Here endeth the digression

GRAMPS Design

Criteria, Principles, Goals

= Broad Application Scope: preferable to roll-your-own
= Multi-platform: suits a variety of many-core configs

= High Application Performance: competitive with roll-
your-own

= Tunable: expert users can optimize their apps

= Optimized Implementations: is informed by, and
informs, hardware

17

GRAMPS Design: Setup

= Build Execution Graph

= Define programs, stages, inputs, outputs, buffers

= GRAMPS supports graphs with cycles
— This admits pathological cases.
— It is worth it to enable the well behaved uses
— Reminder: target systems-savvy developers
— Failure/overflow handling? (See Shaders)

18

GRAMPS Design: Queues

= GRAMPS can optionally enforce ordering
— Basic requirement for some workloads

— Brings complexity and storage overheads

= Queues operate at a “packet” granularity
— “Large bundles of coherent work”

— A packet size of 1 is always possible, just a bad
common case.

— Packet layout is largely up to the application

19

GRAMPS Design: Stages

Two™* kinds of stages (or kernels)
= Shader (think: pixel shader plus push-to-queue)
* Thread (think: POSIX thread)

= Fixed Function (think: Thread that happens to be
implemented in hardware)

x What about other data-parallel primitives: scan,
reduce, etc.?

20

GRAMPS Design: Shaders

= Operate on ‘elements’ in a Collection packet
= |nstanced automatically, non-preemptible

= Fixed inputs, outputs preallocated before launch
= Variable outputs are coalesced by GRAMPS
— Worst case, this can stall or deadlock/overflow
— It’s worth it.

— Alternatives: return failure to the shader (bad),
return failure to a thread stage or host (plausible)

21

GRAMPS Design: Threads

= Operate on Opaque packets
= No* (limited) automatic instancing
" Pre-emptible, expected to be stateful and long-lived

= Manipulate queues in-place via reserve/commit

22

GRAMPS Design: Queue sets

= Queue sets enable binning-style algorithms
= A queue with multiple lanes (or bins)
= One consumer at a time per lane
— Many lanes with data allows many consumers
" Lanes can be created at setup or dynamically

" Bonus: A well-defined way to instance Thread stages
safely

23

Queue Set Example

Checkboarded / tiled sort-last renderer:

Fragment Sample
Queue Queue Set

e -

‘ Frame Buffer

= Rasterizer tags pixels based on screen space tile.
= Pixel shading is completely data-parallel.

= Blend / output merging is screen space subdivided
and serialized within each tile.

24

Case Study: Rendering

Reminder of Principles/Goals

Broad Application Scope
Multi-Platform

High Application Performance
Tunable

Optimized Implementations

26

Broad Application Scope

Direct3D Pipeline (with Ray-tracing Extension)

Input Vertex Primitive Primitive Fragment Sample
Queue 1 Queue 1 Queue Queue Queue Set g
=
A, Ps P om J=
< T :
p 5 Ray &
— Input Vertex Primitive Queuge
Queue N Queue N Trace @M
_)
" .
Ray-tracing Extension
Ray-tracing Graph
Tile Sample Ray (CJ=Thread Stage D= Queue
Queue Queue Queue (CJ)=Shader Stage = = Stage Output
()= Fixed-func =) = Push Output

Ray Hit Fragment
Queue

Frame Buffer

27

Multi-Platform: CPU-like & GPU-like

8

Eﬂ

Fat Core 0

TO

B

ra

(e
7

n
(1]
-
0
g
o
=

HH
HI
L B

EE
HH

Fat Core 5

E ﬂ ﬂ ﬂ
. Fat Core 2 Fat Core3
r '

Fat Core 6 Fat Core 7

Rasterizer

CPU-Like: 8 Fat Cores, Rast

\

g ™

Micro Core 0

\,

7 ™

Micro Core 1

Fat Core 0

|

& '

[Micro Core 2

“

f B

Micro Core 3

!_ Micro Core Scheduler]

Rasterizer

GPU-Like: 1 Fat Core, 4 Micro Cores, Rast, Sched

28

High Application Performance

" Priority #1: Show scale out parallelism (GRAMPS can
fill the machine, capture the exposed parallelism, ...)

= Priority #2: Show ‘reasonable’ bandwidth / storage
capacity required for the queues

= Discussion: Justify that the scheduling overheads are
not unreasonable (migration costs, contention and
compute for scheduling)

X Currently static scheduling priorities
x No serious modeling of texture or bandwidth

29

Renderer Performance Data

= Queues are small (< 600 KB CPU, < 1.5 MB GPU)
= Parallelism is good (at least 80%, all but one 95+%)

CPU-like Configuration GPU-like Configuration
Fat Core Peak Queue Fat Core Micro Core Peak Queue
Occup (%) Size (KB) Occup (%) Occup (%) Size (KB)
Teapot D3D 87.8 510 13.0 95.9 1,329
Ext. D3D 90.2 582 0.5 98.8 1,264
Ray Tracer 99.8 156 3.2 99.9 392
Courtyard D3D 88.5 544 92 95.0 1,301
Ext. D3D 94.2 586 0.2 99.8 1,272
Ray Tracer 99.9 176 1.2 99.9 456
Fairy D3D 77.2 561 20.5 81.5 1,423
Ext. D3D 92.0 605 0.8 99.8 1,195
Ray Tracer 100.0 205 0.8 99.9 537

Table 2: Simulation results: Core thread slot occupancy and peak memory footprint of all graph queues.

30

Tunability

= Tools:
— Raw counters, statistics, logs

— Grampsviz

= Knobs:
— Graph topology: e.g., sort-last vs. sort-middle
— Queue watermarks: e.g., 10x impact on ray tracing
— Packet sizes: Match SIMD widths, data sharing

31

Tunability: GRAMPSViz

Producoble

m
nEL A RR
PETTTIIE

32

Optimized Implementations

= Model for impedance matching heterogeneity

= Room to optimize parallel queues

= Room to optimize hardware thread scheduling
— Shader core or threaded CPU core

33

Conclusion, Lessons Learned

Summary |l: Design Principles

= Make application details opaque to the system
= App: policy (control), system: execution (data)

= Push back against every feature, variant, and special
case.

* Only include features which can be run well*

= *Admit some pathological cases when they enable
natural expressiveness of desirable cases

35

Summary Il: Key Traits

Focus on inter-stage connectivity
— But facilitate standard intra-stage parallelism

Producer-consumer >> only dependencies / barriers

Queues impedance match many boundaries

— Asynchronous (independent) execution

— Fixed function units, fat — micro core dataflow
Threads and Shaders (and only those two)

36

Summatry lll: Critical Details

= Order is powerful and useful, but optional

" Queue sets: finer grained synchronization and thread
instancing with out violating the model

= User specified queue depth watermarks as
scheduling hints

" Grampsviz and the right (user meaningful) statistics

37

That’s All

= Thank you, any questions?

= TOG Paper:
http://graphics.stanford.edu/papers/gramps-tog/

" Funding agencies:
Stanford PPL, Department of the Army Research, Intel
Rambus SGF, Intel PhD Fellowship, NSF Fellowship

38

Bonus Material

Broad Application Scope

Two new apps!

= Cloth Simulation (Collision detection, particle
systems)

= A MapReduce App (Enables many things)

40

Application Scope: Cloth Sim

Bro
()

ad

ide

9’ %
Narrow {7 Fast
Collide Recollide

(U= Thread Stage o= Queue
()= Shader Stage mmp = Stage Output

= Update is not producer-consumer! =) = Push Output

"= Broad Phase will actually be either a (weird) shader
or multiple thread instances.

= Fast Recollide details are TBD.

41

Application Scope: MapReduce
),)

Initial Intermediate Intermediate Final
Tuples Tuples Tuples Tuples

H

Combine |
Producel:DI' Map (Optional){. Reduce { :» Sort

(U= Thread Stage o= Queue
()= Shader Stage mmp = Stage Output
=) = Push Output

= Dynamically instanced thread stages and queue sets.
= Combine might motivate a formal reduction shader.

42

