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History

� GRAMPS grew from, among other things, our GPGPU 

and Cell processor work, especially ray tracing.

� We took a step back to pose the question of what we 

would like to see when “GPU” and “CPU” cores both 

became normal entities on a multi-core processor.

� Kavyon, Solomon, Pat, and Kurt were heavily 

involved in the GRAMPS 1.0 work, published in TOG.

� Now, it is largely just me, though a number of PPL 

participants like to kibitz.
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Background

� Context: Commodity, heterogeneous, many-core

– “Commodity”: CPUs and GPUs.  State of the art 

out of order CPUs, Niagara and Larrabee-like 

simple cores, GPU-like shader cores.

– “Heterogeneous”: Above, plus fixed function

– “Many-core”: Scale out is a central necessity

Problem: How the heck do people harness such 

complex systems?

Ex: C run-time, GPU pipeline, GPGPU, MapReduce, …
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Our Focus

� Bottom up

– Emphasize simple/transparent building blocks 

that can be run well.

– Eliminate the rote, encourage good practices

– Expect an informed developer, not a casual one

�Design an environment for systems-savvy developers 

that lets them efficient develop programs that 

efficiently map onto commodity, heterogeneous, 

many-core platforms.
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This Talk

1. What is that environment (i.e., GRAMPS)?

2. Why/how did we design it?
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GRAMPS: Quick Introduction

� Applications are graphs of stages and queues

� Producer-consumer inter-stage parallelism

� Thread and data intra-stage parallelism

� GRAMPS (“the system”) handles scheduling, 

instancing, data-flow, synchronization
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GRAMPS: Examples

Ray Tracer

Ray

Queue

Ray Hit

Queue Fragment

Queue

Camera Intersect

Shade FB Blend

= Thread Stage

= Shader Stage

= Queue

= Stage Output

= Push Output

Intermediate

Tuples

Map

O
utput

Produce
Combine

(Optional)
Reduce Sort

Initial

Tuples

Intermediate

Tuples

Final

Tuples

Map-Reduce
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Criteria, Principles, Goals

� Broad Application Scope: preferable to roll-your-own

� Multi-platform: suits a variety of many-core configs

� High Application Performance: competitive with roll-

your-own

� Tunable: expert users can optimize their apps

� Optimized Implementations: is informed by, and 

informs, hardware



Digression: Parallelism
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Parallelism How-To

� Break work into separable pieces (dynamically or 

statically)

– Optimize each piece (intra-)

– Optimize the interaction between pieces (inter-)

� Ex: Threaded web server, shader, GPU pipeline

� Terminology: I use “kernel” to mean any kind of 

independent piece / thread / program.

� Terminology: I think of parallel programs as graphs 

of their kernels / kernel instances.
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Intra-Kernel Organization, Parallelism

� Theoretically it is a continuum.

� In practice there are sweet spots.

– Goal: span the space with a minimal basis

� Thread/Task (divide) and Data (conquer)

� Two?!  What about the zero-one-infinity rule?

– Applies to type compatible entities / concepts

– Reminder: trying to span a complex space
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Inter-kernel Connectivity

� Input dependencies / barriers

– Often simplified to a DAG, built on the fly

– Input data / communication only at instance creation

– Instances are ephemeral, data is long-lived

� Producer-consumer / pipelines

– Topology often effective static with dynamic instancing

– Input data / communication happens ongoing

– Instances may be long lived and stateful

– Data is ephemeral and prohibitive to spill (bandwidth or 

raw size)



Here endeth the digression
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GRAMPS Design: Setup

� Build Execution Graph

� Define programs, stages, inputs, outputs, buffers

� GRAMPS supports graphs with cycles

– This admits pathological cases.

– It is worth it to enable the well behaved uses

– Reminder: target systems-savvy developers
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GRAMPS Design: Queues

� GRAMPS can optionally enforce ordering

– Basic requirement for some workloads

– Brings complexity and storage overheads

� Queues operate at a “packet” granularity

– Let the system amortize work and developer 
group related objects when possible

– An effective packet size of 1 is always possible, 
just not a good common case.

– Packet layout is largely up to the application
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GRAMPS Design: Stages

Two* kinds of stages (or kernels)

� Shader (think: pixel shader plus push-to-queue)

� Thread (think: POSIX thread)

� Fixed Function (think: Thread that happens to be 

implemented in hardware)

� What about other data-parallel primitives: scan, 

reduce, etc.?
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GRAMPS Design: Shaders

� Operate on ‘elements’ in a Collection packet

� Instanced automatically, non-preemptible

� Fixed inputs, outputs preallocated before launch

� Variable outputs are coalesced by GRAMPS

– Worst case, this can stall or deadlock/overflow

– It’s worth it.

– Alternatives: return failure to the shader (bad), 

return failure to a thread stage or host (plausible)
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GRAMPS Design: Threads

� Operate on Opaque packets 

� No/limited automatic instancing

� Pre-emptible, expected to be stateful and long-lived

� Manipulate queues in-place via reserve/commit
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GRAMPS Design: Queue sets

� Queue sets enable binning-style algorithms

� A queue with multiple lanes (or bins)

� One consumer at a time per lane

– Many lanes with data allows many consumers

� Lanes can be created at setup or dynamically

� A well-defined way to instance Thread stages safely



20

Checkboarded / tiled sort-last renderer:

� Rasterizer tags pixels with their tile

� Pixel shading happens completely data-parallel

� Blend / output merging is screen space subdivided 

and serialized within each tile

GRAMPS Design: Queue Set Example

Rast PS

Sample

Queue Set

OM

Fragment

Queue
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Analysis & Metrics

� Reminder of Principles/Goals

– Broad Application Scope

– Multi-Platform

– High Application Performance

– Tunable

– Optimized Implementations
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Metrics: Broad Application Scope

� Renderers: Direct3D plus Push extension; Ray Tracer

– Hopefully a micropolygon renderer

� Cloth Simulation (Collision detection, particle 

systems)

� A MapReduce App (Enables many things)

� Convinced?  Do you have a challenge?  Obvious app?
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Application Scope: Renderers

Direct3D Pipeline (with Ray-tracing Extension)

Ray-tracing Graph

IA 
1 VS 

1 RO Rast

Trace

IA 
N

VS 
N

PS

Sample

Queue Set

Ray

Queue

Primitive

Queue

Input Vertex

Queue 1

Primitive

Queue 1

Input Vertex

Queue N

OM

PS2

Fragment

Queue

Ray Hit

Queue

Ray-tracing Extension

Primitive

Queue N

Tiler

Shade FB Blend

Sample

Queue

Tile

Queue

Ray

Queue

Ray Hit

Queue

Fragment

Queue

CameraSampler Intersect

= Thread Stage

= Shader Stage

= Fixed-func

= Queue

= Stage Output

= Push Output
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Application Scope: Cloth Sim

= Thread Stage

= Shader Stage

= Queue

= Stage Output

= Push Output

ResolutionProposed Update

Update

Mesh

Fast

Recollide

Resolve

Narrow 

Collide

Broad 

Collide

Collision Detection

BVH

Nodes

Moved

Nodes

Collisions

Candidate

Pairs
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Application Scope: MapReduce

= Thread Stage

= Shader Stage

= Queue

= Stage Output

= Push Output

Intermediate

Tuples

Map

O
utput

Produce
Combine

(Optional)
Reduce Sort

Initial

Tuples

Intermediate

Tuples

Final

Tuples
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Metrics: Multi-Platform

� Convinced?  Low hanging / credibility critical 

additional heterogeneity?
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Metrics: High App Performance

� Priority #1: Show scale out parallelism (GRAMPS can 

fill the machine, capture the exposed parallelism, …)

� Priority #2: Show ‘reasonable’ bandwidth / storage 

capacity required for the queues

� Discussion: Justify that the scheduling overheads are 

not unreasonable (migration costs, contention and 

compute for scheduling)

� What about bandwidth aware co-scheduling?

� What about a comparison against native apps?
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Metrics: Tunability

� Tools:

– Raw counters, statistics, logs

– Grampsviz

� Knobs:

– Graph topology: e.g., sort-last vs. sort-middle

– Queue watermarks: e.g., 10x impact on ray tracing

– Packet sizes: Match SIMD widths, data sharing
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Tunability: GRAMPSViz
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Metrics: Optimized Implementations

� Primarily a qualitative / discussion area

– Discipline / model for supporting fixed function

– Ideas for efficient parallel queues

– Ideas for microcore scheduling

– Perhaps primitives to facilitate software 

scheduling

� Other natural hardware vendor takeaways / 

questions?
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Summary I: Design Principles

� Make application details opaque to the system

� Push back against every feature, variant, and special 

case.

� Only include features which can be run well*

� *Admit some pathological cases when they enable 

natural expressiveness of desirable cases
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Summary II: Key Traits

� Focus on inter-stage connectivity

– But facilitate standard intra-stage parallelism

� Producer-consumer >> only dependencies / barriers

� Queues impedance match many boundaries

– Asynchronous (independent) execution

– Fixed function units, fat – micro core dataflow

� Threads and Shaders (and only those two)
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Summary III: Critical Details

� Order is powerful and useful, but optional

� Queue sets: finer grained synchronization and thread 

instancing with out violating the model

� User specified queue depth watermarks as 

scheduling hints

� Grampsviz and the right (user meaningful) statistics
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That’s All

� Thank you.

� Questions?

http://graphics.stanford.edu/papers/gramps-tog/

http://ppl.stanford.edu/internal/display/Projects/GRAMPS


