
GRAMPS Overview and

Design Decisions

Jeremy Sugerman

February 26, 2009

GCafe

2

History

� GRAMPS grew from, among other things, our GPGPU

and Cell processor work, especially ray tracing.

� We took a step back to pose the question of what we

would like to see when “GPU” and “CPU” cores both

became normal entities on a multi-core processor.

� Kavyon, Solomon, Pat, and Kurt were heavily

involved in the GRAMPS 1.0 work, published in TOG.

� Now, it is largely just me, though a number of PPL

participants like to kibitz.

3

Background

� Context: Commodity, heterogeneous, many-core

– “Commodity”: CPUs and GPUs. State of the art

out of order CPUs, Niagara and Larrabee-like

simple cores, GPU-like shader cores.

– “Heterogeneous”: Above, plus fixed function

– “Many-core”: Scale out is a central necessity

Problem: How the heck do people harness such

complex systems?

Ex: C run-time, GPU pipeline, GPGPU, MapReduce, …

4

Our Focus

� Bottom up

– Emphasize simple/transparent building blocks

that can be run well.

– Eliminate the rote, encourage good practices

– Expect an informed developer, not a casual one

�Design an environment for systems-savvy developers

that lets them efficient develop programs that

efficiently map onto commodity, heterogeneous,

many-core platforms.

5

This Talk

1. What is that environment (i.e., GRAMPS)?

2. Why/how did we design it?

6

GRAMPS: Quick Introduction

� Applications are graphs of stages and queues

� Producer-consumer inter-stage parallelism

� Thread and data intra-stage parallelism

� GRAMPS (“the system”) handles scheduling,

instancing, data-flow, synchronization

7

GRAMPS: Examples

Ray Tracer

Ray

Queue

Ray Hit

Queue Fragment

Queue

Camera Intersect

Shade FB Blend

= Thread Stage

= Shader Stage

= Queue

= Stage Output

= Push Output

Intermediate

Tuples

Map

O
utput

Produce
Combine

(Optional)
Reduce Sort

Initial

Tuples

Intermediate

Tuples

Final

Tuples

Map-Reduce

8

Criteria, Principles, Goals

� Broad Application Scope: preferable to roll-your-own

� Multi-platform: suits a variety of many-core configs

� High Application Performance: competitive with roll-

your-own

� Tunable: expert users can optimize their apps

� Optimized Implementations: is informed by, and

informs, hardware

Digression: Parallelism

10

Parallelism How-To

� Break work into separable pieces (dynamically or

statically)

– Optimize each piece (intra-)

– Optimize the interaction between pieces (inter-)

� Ex: Threaded web server, shader, GPU pipeline

� Terminology: I use “kernel” to mean any kind of

independent piece / thread / program.

� Terminology: I think of parallel programs as graphs

of their kernels / kernel instances.

11

Intra-Kernel Organization, Parallelism

� Theoretically it is a continuum.

� In practice there are sweet spots.

– Goal: span the space with a minimal basis

� Thread/Task (divide) and Data (conquer)

� Two?! What about the zero-one-infinity rule?

– Applies to type compatible entities / concepts

– Reminder: trying to span a complex space

12

Inter-kernel Connectivity

� Input dependencies / barriers

– Often simplified to a DAG, built on the fly

– Input data / communication only at instance creation

– Instances are ephemeral, data is long-lived

� Producer-consumer / pipelines

– Topology often effective static with dynamic instancing

– Input data / communication happens ongoing

– Instances may be long lived and stateful

– Data is ephemeral and prohibitive to spill (bandwidth or

raw size)

Here endeth the digression

14

GRAMPS Design: Setup

� Build Execution Graph

� Define programs, stages, inputs, outputs, buffers

� GRAMPS supports graphs with cycles

– This admits pathological cases.

– It is worth it to enable the well behaved uses

– Reminder: target systems-savvy developers

15

GRAMPS Design: Queues

� GRAMPS can optionally enforce ordering

– Basic requirement for some workloads

– Brings complexity and storage overheads

� Queues operate at a “packet” granularity

– Let the system amortize work and developer
group related objects when possible

– An effective packet size of 1 is always possible,
just not a good common case.

– Packet layout is largely up to the application

16

GRAMPS Design: Stages

Two* kinds of stages (or kernels)

� Shader (think: pixel shader plus push-to-queue)

� Thread (think: POSIX thread)

� Fixed Function (think: Thread that happens to be

implemented in hardware)

� What about other data-parallel primitives: scan,

reduce, etc.?

17

GRAMPS Design: Shaders

� Operate on ‘elements’ in a Collection packet

� Instanced automatically, non-preemptible

� Fixed inputs, outputs preallocated before launch

� Variable outputs are coalesced by GRAMPS

– Worst case, this can stall or deadlock/overflow

– It’s worth it.

– Alternatives: return failure to the shader (bad),

return failure to a thread stage or host (plausible)

18

GRAMPS Design: Threads

� Operate on Opaque packets

� No/limited automatic instancing

� Pre-emptible, expected to be stateful and long-lived

� Manipulate queues in-place via reserve/commit

19

GRAMPS Design: Queue sets

� Queue sets enable binning-style algorithms

� A queue with multiple lanes (or bins)

� One consumer at a time per lane

– Many lanes with data allows many consumers

� Lanes can be created at setup or dynamically

� A well-defined way to instance Thread stages safely

20

Checkboarded / tiled sort-last renderer:

� Rasterizer tags pixels with their tile

� Pixel shading happens completely data-parallel

� Blend / output merging is screen space subdivided

and serialized within each tile

GRAMPS Design: Queue Set Example

Rast PS

Sample

Queue Set

OM

Fragment

Queue

21

Analysis & Metrics

� Reminder of Principles/Goals

– Broad Application Scope

– Multi-Platform

– High Application Performance

– Tunable

– Optimized Implementations

22

Metrics: Broad Application Scope

� Renderers: Direct3D plus Push extension; Ray Tracer

– Hopefully a micropolygon renderer

� Cloth Simulation (Collision detection, particle

systems)

� A MapReduce App (Enables many things)

� Convinced? Do you have a challenge? Obvious app?

23

Application Scope: Renderers

Direct3D Pipeline (with Ray-tracing Extension)

Ray-tracing Graph

IA
1 VS

1 RO Rast

Trace

IA
N

VS
N

PS

Sample

Queue Set

Ray

Queue

Primitive

Queue

Input Vertex

Queue 1

Primitive

Queue 1

Input Vertex

Queue N

OM

PS2

Fragment

Queue

Ray Hit

Queue

Ray-tracing Extension

Primitive

Queue N

Tiler

Shade FB Blend

Sample

Queue

Tile

Queue

Ray

Queue

Ray Hit

Queue

Fragment

Queue

CameraSampler Intersect

= Thread Stage

= Shader Stage

= Fixed-func

= Queue

= Stage Output

= Push Output

24

Application Scope: Cloth Sim

= Thread Stage

= Shader Stage

= Queue

= Stage Output

= Push Output

ResolutionProposed Update

Update

Mesh

Fast

Recollide

Resolve

Narrow

Collide

Broad

Collide

Collision Detection

BVH

Nodes

Moved

Nodes

Collisions

Candidate

Pairs

25

Application Scope: MapReduce

= Thread Stage

= Shader Stage

= Queue

= Stage Output

= Push Output

Intermediate

Tuples

Map

O
utput

Produce
Combine

(Optional)
Reduce Sort

Initial

Tuples

Intermediate

Tuples

Final

Tuples

26

Metrics: Multi-Platform

� Convinced? Low hanging / credibility critical

additional heterogeneity?

27

Metrics: High App Performance

� Priority #1: Show scale out parallelism (GRAMPS can

fill the machine, capture the exposed parallelism, …)

� Priority #2: Show ‘reasonable’ bandwidth / storage

capacity required for the queues

� Discussion: Justify that the scheduling overheads are

not unreasonable (migration costs, contention and

compute for scheduling)

� What about bandwidth aware co-scheduling?

� What about a comparison against native apps?

28

Metrics: Tunability

� Tools:

– Raw counters, statistics, logs

– Grampsviz

� Knobs:

– Graph topology: e.g., sort-last vs. sort-middle

– Queue watermarks: e.g., 10x impact on ray tracing

– Packet sizes: Match SIMD widths, data sharing

29

Tunability: GRAMPSViz

30

Metrics: Optimized Implementations

� Primarily a qualitative / discussion area

– Discipline / model for supporting fixed function

– Ideas for efficient parallel queues

– Ideas for microcore scheduling

– Perhaps primitives to facilitate software

scheduling

� Other natural hardware vendor takeaways /

questions?

31

Summary I: Design Principles

� Make application details opaque to the system

� Push back against every feature, variant, and special

case.

� Only include features which can be run well*

� *Admit some pathological cases when they enable

natural expressiveness of desirable cases

32

Summary II: Key Traits

� Focus on inter-stage connectivity

– But facilitate standard intra-stage parallelism

� Producer-consumer >> only dependencies / barriers

� Queues impedance match many boundaries

– Asynchronous (independent) execution

– Fixed function units, fat – micro core dataflow

� Threads and Shaders (and only those two)

33

Summary III: Critical Details

� Order is powerful and useful, but optional

� Queue sets: finer grained synchronization and thread

instancing with out violating the model

� User specified queue depth watermarks as

scheduling hints

� Grampsviz and the right (user meaningful) statistics

34

That’s All

� Thank you.

� Questions?

http://graphics.stanford.edu/papers/gramps-tog/

http://ppl.stanford.edu/internal/display/Projects/GRAMPS

