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Abstract 

Fingerprint matching is challenging as the matcher has 
to minimize two competing error rates: the False Accept 
Rate and the False Reject Rate. We propose a novel, ef- 
ficient, accurate and distortion-tolerant fingerprint authen- 
tication technique based on graph representation. Using 
the fingerprint minutiae features, a labeled, and weighted 
graph of minutiae is constructed for both the query finger- 
print and the reference fingerprint. In the first phase, we 
obtain a minimum set of matched node pairs by matching 
their neighborhood structures. In the second phase, we in- 
clude more pairs in the match by comparing distances with 
respect to matched pairs obtained in first phase. An op- 
tional third phase, extending the neighborhood around each 
feature, is entered if we cannot arrive at a decision based on 
the analysis in first two phases. The proposed algorithm has 
been tested with excellent results on a large private livescan 
database obtained with optical scanners. 

1. Introduction 

The fingerprint-based authentication problem can be in- 
formally defined as a system that answers the question “Am 
I who I say I am?”. That is, given an enrolled template from 
the database and the query template what is the probability 
that the two templates are from the same finger? In contrast 
to this, we have the identifzcation problem, which can be de- 
fined as a system that answers the question “Is the subject 
enrolled in the database?” Equivalently, given a database of 
templates and the query template, does the query template 
closely resemble any of the database templates? The iden- 
tification problem can be seen as N repeat authentications, 
where N is the number of candidates in the Database. This 
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is a hard problem as fingerprint images can undergo variable 
amounts of elastic distortion, and feature extraction may in- 
troduce noise like missingtspurious minutiae. 

Matching of fingerprint images have attracted attention 
of researchers for last three decades [15]. The matching 
techniques for fingerprint authentication can be classified 
into three categories: (i) image-based; (ii) feature-based; 
and (iii) combination of the two. The image-based tech- 
niques include both optical as well as computer-based im- 
age correlation techniques. Recently, several transform- 
based techniques have also been explored. The feature- 
based techniques extract significant landmarks from a fin- 
gerprint image and these feature sets are matched to arrive 
at a decision. Hamamoto [7] describes a Gabor filter based 
matching technique. In the feature-based matching cate- 
gory, there are several techniques. The minutiae features 
Mi = ( xi, yi, ei) is a set of points and techniques for regis- 
tering two point sets have been used in [ 131. As an alternate 
representation, Jain et al. [9] use a string matching tech- 
nique. Isenor and Zaky [8] propose a graph-based finger- 
print matching algorithm. A graph is constructed by nodes 
that represent a fingerprint ridge and edges are the neighbor- 
ing or splitting ridges. A three step algorithm is employed 
to find a match between a pair of fingerprints. Fan et al. 
[3] describes a fingerprint verification algorithm based on a 
bipartite graph construction between model and query fin- 
gerprint feature clusters. The fingerprint minutiae features 
are clustered into several close clusters and 24 attributes of 
the clusters are used in a fuzzy representation of the finger- 
print. Germain et a1.[5] describe an efficient technique for 
indexing into large fingerprint databases. Recently Jain et 
al. [ 101 describe a combined matching algorithm that uses 
the Gabor filter-based and point based matching technique. 

Graphs provide powerful representation techniques in 
many areas of computer vision including object recogni- 
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tion. Hence research in graph matching techniques with 
special tuning for vision problems have received wide at- 
tention from computer vision researchers. Eshera and Fu 
[ 13 describe an image understanding system using attributed 
symbolic representation and inexact graph matching. Gold 
and Rangarajan [6] describe a graph matching algorithm 
based on graduated assignment by posing the graph match- 
ing problem as a nonlinear optimization problem. Messmer 
and Bunke [ 1 11 describe a new algorithm for error tolerant 
subgraph isomorphism detection. Their algorithm is based 
on combining the model database graphs to a common com- 
pact representation. 

In this paper, we present a novel graph-based represen- 
tation of a fingerprint called Minutiae Adjacency Graph 
(MAG) and describe a robust and accurate matching tech- 
nique for MAGs based on local structural similarity. Graphs 
provide powerful representations in many areas of com- 
puter vision including object recognition. Hence research 
in graph matching with special tuning to vision problems 
have received very wide attention from computer vision re- 
searchers. Of particular interest to us are subgraph isomor- 
phism and inexact graph matching techniques as the finger- 
print authentication problem can be cast as an inexact graph 
matching problem. By representing fingerprint features as 
graphs, we get the robustness of graph representation. Us- 
ing the fingerprint minutiae features, a labeled, dynamic 
neighborhood and weighted graph is constructed from the 
fingerprints. The algorithm allows for rotation, translation, 
partial overlap and limited elastic distortion of the images. 
The rest of the paper is organized as follows. Section 2 
describes the definitions and notations along with the rep- 
resentation of a fingerprint feature set. Our proposed algo- 
rithm is described in Section 3. The algorithm was tested 
on a large livescan fingerprint database. The results are pre- 
sented and analyzed in Section 4. Section 5 provides the 
summary and conclusions. 

2. Representation and Definitions 

Given a gray scale image of a fingerprint as shown in 
Fig. 2(a), it is assumed that we have been able to extract the 
minutia features as accurately as possible using techniques 
described in the literature [ 141. The features extracted are 
the ridge ending and ridge bifurcation points described in 
[4]. We represent a fingerprint feature set as a Minutiae Ad- 
jacency Graph (MAG) with the minutiae as the nodes, and 
straight lines connecting two minutiae satisfying a neigh- 
borhood criterion as the edges of the graph. It can be ob- 
served that 

1. In two matching fingerprints, the local neighborhood 
of two matching nodes look similar. 

2. The geometry of minutiae around large neighbor- 

hoods of two matching nodes may look dissimilar be- 
cause of noise, i.e., missing and spurious minutiae. 

3. There may not be complete overlap of exposed neigh- 
borhoods of two fingerprints. 

Because of these reasons, structural information over small 
distances tend to be more reliable than over larger distances. 
We consider neighborhoods of small distances to efficiently 
extract matching nodes. 

Throughout the discussion of our method, we use the 
terms node, vertex and minutiae interchangeably. “Match- 
ing” or “pairing” two nodes, means pairing a node of one 
graph with a node of another graph. The proposed algo- 
rithm pairs minutiae similar to how a human would go about 
matching two prints. 

0 To begin with, we examine the two feature sets to find 
a minimal set of reliable minutiae that can be paired. 
This is called as the strict matching phase. 

0 We then relax the criterion of pairing and examine if 
the pairings can be extended with respect to reliable 
matches. This is called as the extension phase. 

0 We compute separate costs for both the phases, and 
combine the costs to arrive at a decision. 

Formally, the Minutiae Adjacency Graph (MAG) is rep- 
resented by G = (V, E), with, 

0 V the set of vertices representing the set of minutiae. 

0 E the set of edges. 

0 A vertex v E V is represented by a 3-tuple v = 
(z, y, e),  where (v.2, v.y) is the z, y coordinate of 
the corresponding minutiae, and v.8 is the ridge ori- 
entation at the corresponding minutiae. 

0 An edge e E E is represented by a 5-tuple e = 
( U ,  U ,  rad, rc, +), where e.u is the originating node 
of the edge, e.v is the destination node of the edge, 
e.rad is the Euclidean distance between these nodes, 
e.rc is the ridge count between the two nodes, and 
e.+ is the angle subtended by the edge with x-axis. 

We use uv to denote an edge between nodes U and U. Note 
that (e.rad, e.+) is the polar coordinate representation of 
the edge with e.u as origin. The set of nodes, NbT(u) = 
{z : dist(u,z) 5 d,,,} is said to be the neighborhood 
ofu. The set of edges, star(u) = {uz : z E Nbr(u)} 
is said to be the star containing U. A star is shown in 
Figure 2(a). Partial MAGs with different dm,, are shown 
in Figure 2(b)-(c) to illustrate the neighborhood change as 
d,,, increases. 
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Figure 1. Fingerprint image and feature extraction. (a) Gray scale image; (b) Features of the image 
shown in (a). 

We now present some of the notations and parameters 
used in the algorithm. Two nodes of a graph are consid- 
ered neighbors if the Euclidean distance between them is 
less than or equal to d,,,. T, is the number of matching 
pairs that strict matching phase returns. drel is the fraction 
by which two matching edges are allowed to differ in their 
Euclidean distances. c d i f f  is the maximum allowed differ- 
ence in the ridge counts of two matching edges. To allow 
for missing and spurious minutiae, fm in  is the proportion 
of the total number of minutiae that are expected to be com- 
mon to both the prints. Nmin is the minimum number of 
neighbors two nodes should have to be considered in strict 
matchingphase as we need sufficient evidence in this phase. 
Cm,n is the cost of pairing node m with node n. Ne is the 
number of matching edges. Nmat is the number of matched 
node pairs. Cstrict is the cost of strict matching phase. Cezt 
is the cost of the extension phase. Cconsistency is the cost 
of consistency checking in strict matching phase. Ctotal 
is the total cost of matching two fingerprint feature sets. 
D, is the maximum orientation difference between two fin- 
gerprint images. D+ is the maximum difference of the an- 
gle subtended at the minutiae by two consecutive matching 
edges. 

ilarity between the input images. We make the following 
observations about minutiae sets of matching fingerprints: 

0 Consider a matching pair, U E VI ,  and E V2 be- 
longing to parts in fingerprints not affected by noise. 
We observe that stars around U and v look very sim- 
ilar with respect to distance, angle subtended, ridge 
counts and ridge orientation. The strict matching 
phase aims to obtain a minimum number of such 
good matches by comparing stars of all possible pairs. 

0 If ( 2 1 1 ,  q )  and (212,  v2) are two correct matches, then 
the edge ( ~ 1 ~ 2 )  should be similar to (01212). We 
check this consistency in the consistency check. 

0 We can extend existing matches of a pair ( U ,  U) by 
comparing the distance and ridge count of U, and v 
from the corresponding matching nodes obtained in 
strict matching phase. This is done in the extension 
phase. 

We allow for elastic distortion and noise by using toler- 
ances, and develop cost functions that measure similarity 
with respect to distances and angles. In subsequent discus- 
sions, for all tuples of the form ( U i ,  V i ) ,  we imply ui E VI 
andui E V2. 

3. Proposed Algorithm 
3.1. Strict matching phase 

The input to the algorithm are two fingerprints rep- 
resented by their MAGS, MAG1 = (VI ,  E l ) ,  and 
MAG2 = (V2, Ez). The desired output is a normalized 
score (say, between 0 and 100) indicating the degree of sim- 

In this phase, we pair minutiae by comparing them with 
respect to edge distances, ridge counts and inter-edge an- 
gles. That is, we compute the cost of pairing a node m 
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edge o m (phl. radt-. ridgo-oount): 

(b) (c) 
(3.2) t (-2.23.32.80.2) 

(3.11) - (2.00.47.42,3) 
(3,s) I <2.48,45.60.S) 

(a) (3.7) I (1 S6.38.82.2) 

Figure 2. MAG definitions.(a) components of MAG; (b) a partial MAG with d,,, =80; (c) a partial MAG 
with dma,=lOO. 

with node n,  Cm,n.  such that m E &, and n E V2, 
by matching the stars around them. Let SI and S2 be the 
neighborhood of m and n,  respectively. (m, n )  is con- 
sidered for a match only if min(Size(SI) ,  Size(S2))  2 
"in. The star matching algorithm returns (a) a cost of 
matching the stars, and (b) a subset A1 E S I ,  and a 
subset A2 5 S2 such that Size(A1) = Size(A2) = 
msize  2 0.5*min(Size(Al) ,  Size(A2)) .  Suppose A1 = 
( ~ 1 , 2 1 2 , .  . . ,umsire}  and& = { ~ 1 , ~ 2 , .  . . , ~ m s i z e }  then, 

ui matches vi in the stars around m and n,  respec- 
tively. 

The order of nodes visited clock- 
wise from u1 is u1, u2, . . . , ~ m 3 i t e  and, similarly, for 
211, ~ 2 , .  . . , ~ m s i r e .  We call nodes (ui ,  ui+1) consec- 
utive matching nodes. The corresponding edges with 
m are called consecutive matching edges. 

Two edges e l ,  and e2 are said to be matching or matchable 
if 
(lel.rad - e2.radl/min(el.rad, e2.rad) < drel) A 
( ( e l . r c  - e2.rcl 5 c d i f f ) .  If ( e l ,  e2) are consecu- 
tive matching edges and (f 1, f 2 )  are consecutive match- 
ing edges, and el  matches f 1 matches then the angles sub- 
tended by e l , x e 2 ,  and f l x f 2  cannot differ by more 
than D$. The orientation of two matching stars with respect 
to two matching edges cannot differ by more than D,. To 
allow for complete rotation, we can set D, = 2 * x .  

The cost of matching two edges e l ,  e2,  radial cost, can 
be described by 

dr = (1el.rad - e2.radl/(min(el.rad, e2.rad) * drel)). 
(1) 

Consider matching consecutive matching edges ( e l ,  e2) 
with ( f l ,  f 2 ) ,  and let be the angle between e l x e 2 ,  

8 2  be the angle between f lx f 2, then the angular cost is 

161 - 021 
Dd . 

d+ = 

The cost of matching two nodes m and n 

(3) 

The sum is over all matched edges. 
We outline our procedure to match two stars in presence 

of rotation, noise and elastic distortion. An edge pair of 
two stars is said to be starting edge pair if the two edges are 
matchable. For each starting edge pair, we can compute the 
best match by making one clockwise traversal of both the 
stars. Thus if the stars have 2, and y neighbors, then there 
are O(zy) starting edge pairs, and O(z) time is required to 
compute best match for each such pair. The strict matching 
phase computes cost for all possible pairs, and returns a set 
T O P  of best T, distinct pairs of matches. The cost of the 
strict matching phase is 

(4) 

We check consistency of the matched pairs of T O P  
in the consistency check phase. We consider the set of 
matches, TOP, and construct cliques Q1, and Q2 of the 
nodes {uj : i = 1 , 2  ,..., T,}, and {V i  : i = 
1 , 2 ,  . . . , T,), respectively. To allow for presence of noise, 
we do not insist on a complete match of cliques but a mini- 
mum of N ,  = f m i n  * T, matches to be consistent. So 
a pair (ui, v i )  E T O P  is consistent if at least N ,  of 
{ ( U i U j ,  ~ j ~ j )  : j = 1 , 2 , .  . . , T,} are matched by dis- 
tance and ridge count. The set TOP is said to be consistent 
if there are at least N ,  consistent matching pairs. The cost 
of a consistent matching pair ~ ~ ~ ~ ~ - ~ ~ i ~  is the average of 

Cstrict = C ( u i , v i ) E ~ ~ ~ C u i ? v ;  
Tm 
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radial costs of all matching edges. The cost of consistency, 
C c o n s i s t e n c y ,  is the sum of matching costs of all matching 
pairs divided by the number of matching pairs, N 

( 5 )  
Ccons-pair (ui 7 vi) 

N C c o n s i s t e n c y  = 

3.2. Extension phase 

This phase extends the match based on evidence col- 
lected with respect to TOP, the set of matching pairs re- 
turned by strict matching phase. In this phase, we con- 
sider the set of unmatched pairs {(U, v) : U # ui A 
v # vi, i,= 1 , 2 , . .  . ,Tm) .  We compare the edges 
{ ( ( U T U i ) ,  (v,vi)), i = 1,2, . . . ,Tm and (ui,vi) E 
TOP} .  If more than fmin fraction of these edge pairs 
match, then (U, v) is considered a possible match with cost 

We consider all the pairs in increasing order of their 
cost and get all possible distinct extendable pairs. In 
cases when a node has more than one extendable node, 
we choose the pair with the least cost. Let N e z t  = 
fmin * min(Size(Vl), S i z e ( V 2 ) )  be the expected number 
of matching nodes considering missing and spurious minu- 
tiae. Let Nmat be the set of pairs of nodes matched in the ex- 
tension phase. The extension cost denoted by C e z t  is given 
by 
eztsum = C ( C e z t ( U ,  v) :, (21, v) E “ a t ) ;  

3.3. Resolution phase 

(7) 

If the two fingerprints being matched have very few 
minutiae in common, then the default neighborhood size 
may result in small stars. Secondly, in the case of non- 
matching fingerprints, the default set of parameters may be 
sufficient to give rise to some uncorrelated matches. In both 
cases, the scores reported are neither low enough to indicate 
a mismatch, nor high enough to indicate a match. We call 
such pairs possible matching pairs. We deal with such cases 
by recomputing costs with stricter tolerances to eliminate 
random matches and quickly get evidence for a mismatch. 
If even in presence of strict tolerances we are not able to de- 
cide, it may be because we have very small stars. So we in- 
crease neighborhood distance, and recompute the cost. This 
helps to get more evidence in case of matching fingerprints. 

3.4. Parameters and Decision making 

We observe that choosing the dmaz to be a value of 100 
to 125 units results in a neighborhood of size 8-12 for most 

nodes. The other parameter values in our experiments are: 
M M  1 0.06; EL = 0.2; CL = 0.2; LS = 0.04; Tm = 
8;  drel = 0.15; f m i n  = 0.7; C & f f  = 3; D, = 0.75; c, = 
100000; N m i n  = 5 ;  and Db = 0.1. 

The combined cost for a pair of graphs is given by 
(100 - CONST * C s t r i c t  * C c o n s i s t e n c y  * C e z t )  where 
CONST is such that, the score is between 0 and 100. We 
use an empirical threshold to arrive at a YESNO decision. 

4. Performance Evaluation 

There are two types of errors in an authentication system: 
the False Accept Rate (FAR), and False Reject Rate (FRR) 
are important measures of accuracy of a matcher. The re- 
ceiver Operating Curve (ROC) [2, 121 is a graph that ex- 
presses the relation between FRR and FAR when the match- 
ing threshold T is varied. We report the system accuracy us- 
ing ROCs. It can be easily shown that, for practical choices 
of neighborhood size, our algorithm takes O(kmn) time for 
graphs with m, and n nodes where k is the time required to 
match stars having 8-12 size which is a constant. 

We extensively tested our algorithm on two databases of 
livescan images obtained by optical scanners. Optical im- 
age setl, has 50 persons, four impressions per person, thus it 
has 300 matching pairs, and 19600 mismatches. Optical im- 
age set2, has 150 persons, four impressions per finger, and 
four fingers per person. The ROCs are plotted with FRR on 
the z-axis, and FAR on the y-axis. An ideal matcher’s ROC 
overlaps with y-axis. The ROCs for the datasets are shown 
in Figure 3(a)-(b). Note that our ROCs are very close to y- 
axis. On the first data set, we also have the results plotted 
using a commercially available matcher. 

5. Conclusions 

In this paper, we have presented a graph-based represen- 
tation for fingerprints, a heuristic matching algorithm which 
allows for anomalies like missing/spurious minutiae, elastic 
distortion, rotation and translation of the input prints. Our 
algorithm is based on simple and intuitive cost functions. 
Its robustness is substantiated by experimental results on 
large databases. We are considering various parallel imple- 
mentations to speedup the algorithm. Techniques to sam- 
ple the minutiae set without performance degradation dur- 
ing matching are being evaluated. 
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