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Figure 1: Three spheres with an RTSL Ward material applied to them. All other materials, primitives and lights are also RTSL shaders. The
images were rendererd with the Manta interactive ray tracer (left) and the batch Monte Carlo renderer Galileo (right).

ABSTRACT

We present a new domain-specific programming language suitable
for extending both interactive and non-interactive ray tracing sys-
tems. This language, called “ray tracing shading language” (RTSL),
builds on the GLSL language that is a part of the OpenGL spec-
ification and familiar to GPU programmers. This language al-
lows a programmer to implement new cameras, primitives, textures,
lights, and materials that can be used in multiple rendering sys-
tems. RTSL presents a single-ray interface that is easy to program
for novice programmers. Through an advanced compiler, packet-
based SIMD-optimized code can be generated that is performance
competitive with hand-optimized code. This language and compiler
combination allows sophisticated primitives, materials and textures
to realize the performance gains possible by SIMD and ray pack-
ets without the low-level programming burden. In addition to the
packet-based Manta system, the compiler targets two additional
rendering systems to exercise this flexibility: the PBRT system and
the batch Monte Carlo renderer Galileo.

1 INTRODUCTION

Since its inception [24], ray tracing has lent itself to a modular de-
sign. There are a handful of natural modules in almost any ren-
derer, including cameras, geometric primitives, textures, materials,
and lights. Each of these modules is easily described either as a set
of equations (e.g., primitive intersection) or as a simple procedure
(e.g., solid texturing [15]). Despite nearly all renderers having these
common notions, there is no common language for describing them
as there is for materials in the Renderman Shading Language [8].

Interactive ray tracing has been made possible through improved
single-thread performance and expanding multiple core perfor-
mance. Specifically, the widespread availability of SIMD units such
as Intel’s SSE and Motorola’s Altivec has proved useful for tracing
multiple rays in parallel for nearly no additional cost [22]. The ma-
jority of these recent interactive systems, however, have only sup-

ported triangles and use very simple shading (e.g., a diffuse mate-
rial with point light shadows) . This is due to the extreme difficulty
required in efficiently and correctly writing more complicated prim-
itive intersection routines, light source descriptions, and materials.

We designed RTSL to address these issues based on our own ex-
periences with writing high performance code throughout our ren-
derers. The primary goals of RTSL are:

• Simplicity is imperative for widespread adoption. To keep
the language clean, it may be necessary to avoid the ability to
express complicated data structures such as acceleration struc-
tures. Similarly, “implement once” features like image based
textures are probably best handled outside of RTSL.

• Flexibility is required to ensure that developers do not simply
return to C++ for all their needs. In this regard, we would
like to allow for function calls, virtual method calls, etc. In
addition, developers should be able to implement a majority of
rendering components (i.e. cameras, primitives, lights, etc.).

• Portability is an important goal for any language. In partic-
ular, due to the growing nature of the ray tracing community,
we feel it is important to allow the same description to work
across renderers or even throughout the course of evolution of
a single renderer.

• Packets are hard for the majority of users to understand but
can provide performance improvements over single ray code.
Ideally, a compiler should be able to automatically generate
packet code from a single-ray description.

• SIMD extensions can provide large performance gains on re-
cent processors, but are notoriously difficult to use. Our goal
is to automatically generate high performance SSE code with-
out manual intervention. This becomes more important as the
core of a renderer is highly tuned but shaders, textures, etc.
are either not tuned or restricted to be very simple.

• Special cases can be exploited to improve the performance of
a system, and are normally implemented manually or through
C++ templates. Given an appropriate description, we hope to
generate specialized code for some of these special cases.



2 PREVIOUS WORK

The origin of flexible shading was first formalized with Shade
Trees [6]. Perlin extended this to a more complete language that
emphasized procedural textures using solid noise functions [15].
These works were the basis for the Renderman Shading Language
(RSL) [8]. A particular difference, however, is that RSL does not
support the full generality of shade trees. For example, since a
shader in RSL cannot recursively call another shader producing a
simple “mix” requires manual copying of source code.

One of the first flexible graphics architectures implemented in
the spirit of RSL was the PixelFlow shading language [12]. More
recently, graphics hardware has adopted RSL-like languages such
as Cg [11], HLSL [13], and GLSL [17]. Each of these is naturally
similar to RSL in syntax, but quite different in its object model.
For example, Cg, HLSL and GLSL are all designed around re-
cent graphics hardware and the notions of Vertex Shaders and Pix-
el/Fragment Shaders. None of these approaches fit well with the
object oriented nature of ray tracing, but their syntax is fairly natu-
ral as it is based on simple vector math.

Because of the high performance of graphics hardware, it has be-
come desirable to harness GPUs for providing interactive preview-
ing of high quality renderings. In order to be useful, the previews
need to be similar to the “final render” and yet still be interactive.
In this spirit, the LPICS system [14] uses deep framebuffers com-
bined with hardware language descriptions for Renderman shaders
and lights. The translation to Cg was done manually. The Light-
speed system provides an improved solution which automatically
transforms Renderman descriptions [16].

RSL was used as input to the Vision global illumination sys-
tem [19, 20], the BMRT ray tracer [7] took RSL descriptions to
material descriptions in a ray tracer and researchers in Saarland
have used an extended version of RSL to create efficient code for a
modern interactive ray tracer, the work closest to our own1.

The majority of these solutions have focused on material descrip-
tion. This is partially due to implementation concerns such as de-
signing a language for programming GPUs. With software based
ray tracers, these restrictions are unnecessary.

3 RTSL: A RAY TRACING SHADING LANGUAGE

GLSL is a high-level shading language that was developed by
3DLabs for programming the GPU. It was created to give develop-
ers control over the rendering process in the GPU pipeline without
exposing the details of the hardware or requiring assembly language
programming. In the same vein as GLSL, the primary goal of RTSL
is to make programming an interactive ray tracing system more ac-
cessible. Ray tracing enables a rich variety of primitives, materials
and textures to be used together. However, recent interactive ray
tracing work has been largely limited to simple shading models and
even simpler primitives, such as triangles. The lesson that can be
learned from the GPU community is that a language that allows rel-
ative novices to express complex computation will lead to dramatic
results.

RTSL is a simple language capable of describing the majority of
modules for any ray tracing based renderer. We have made every
attempt to design the language to be renderer-neutral by imagin-
ing how a compiler could target the many different systems that
we have experience. We believe this will allow for wider adoption
and utility similar to the way that GLSL allows portability between
GPU implementations from different vendors. In addition, as com-
pute power increases interactive ray tracing will be able to provide
higher visual quality, so we believe that having an identical descrip-
tion of materials for both interactive and offline systems is a must.
We have based our syntax on GLSL, but this was based on a matter
of taste and other languages may have been just as well suited.

1P. Slusallek, personal communication

3.1 GLSL overview
For the reader interested in learning more about GLSL, we refer
you to the OpenGL Orange Book [18] or the language specifica-
tion [1]. Here we will describe the main features of GLSL and in
the following section we highlight the modifications that we have
made to more readily support interactive ray tracing.

GLSL is a special-purpose, procedural, imperative programming
language that is syntactically similar to C. It uses the same operators
as C with the exception pointers (i.e., no address or dereference
operators). GLSL does allow fixed-sized arrays and structures, and
also inherits C’s increment (++) and decrement (--) operators.

GLSL has three basic types: float, int and bool. The precision
and range of the floating point and integer type are not defined by
the language. GLSL also defines first-class types that are fixed-
length vectors of the above primitive types, called vec2, vec3 and
vec4 for the float type, and ivec2,3,4 and bvec2,3,4 for int and bool,
respectively. In addition, GLSL defines matrix types for 6 different
sizes from 2x2 to 4x4, including non-square matrices. GLSL also
defines first-class operators between these matrix and vector types.

GLSL has a very powerful mechanism for selecting components
in the built-in vector primitives. Each component can be accessed
with a single letter, usually x,y,z or w2, and an also be indexed like a
C array. Letters can be combined to extract multiple components in
the same expression, such as “pos.xy”, which will produce the first
and second components in a vec2, vec3 or vec4. This can be used
as either an lvalue or rvalue in programming language parlance.

3.2 Differences between GLSL and RTSL
GLSL provides a syntax that is very convenient to concisely express
low-level computation. However, it was designed for use on a GPU:
it contains features that an interactive ray tracing system does not
need, and is missing features that are needed for such a system.
We attempted to preserve as much of the core language as possible
both to provide a transition path for GPU shader programs, and
also to capitalize on familiarity to GPU programmers by keeping
the language consistent with GLSL wherever possible.

Object model: GLSL provides the ability to write two differ-
ent functions, called a fragment program and a vertex program.
They are distinguished only by file extension on the filesystem.
With RTSL, we needed a more flexible mechanism since we wanted
to allow programs for multiple extension points, including cameras,
primitives, textures, lights, and materials. Furthermore, we wanted
to allow the creation of a single object that could fill more than one
role – such as a primitive that also acted as a material.

Consequently, we added a simple object model to the language.
This object model provides single inheritance, and multiple inter-
face inheritance (similar to Java). Built-in interfaces for the above
extension points act as a base for all of the classes in the system.
Syntactically, an object is specified by adding:
class classname : base_interface1;

to the beginning of the file. Subsequently defined functions are
inserted into the class as methods until the end of the file or a sub-
sequent class declaration. A constructor is implemented by cre-
ating a function called “constructor”. Namespaces, nested classes
and multiple object inheritance are not supported. A backend com-
piler may choose to facilitate namespaces through a different mech-
anism. Additionally, all interface functions return void and take no
arguments for flexibility and extensibility.

In addition to the class model, GLSL adds support for a refer-
ence type. Again, similar to Java, a reference is analogous to a
pointer without pointer arithmetic. References to other RTSL ob-
jects provide a powerful mechanism for combining classes without
the cut/paste reuse that is common in many GPU-based programs

2r,g,b,a and s,t,p,q are also allowed – see the GLSL specification for
details



and even other shading languages. For texturing, these references
are used to implement full shade trees [6], which is not possible
in RSL or GLSL. This feature will require the target machine and
backend renderer to support function calls or to utilize a more so-
phisticated linking phase that combines instructions from multiple
RTSL classes.

Texture sampling: GLSL provides a number of first class ob-
jects that represent textures on the GPU. Through a host-based pro-
gramming language (usually C or C++), texture images are bound
to these objects. A series of 26 builtin functions for texturing are
used to lookup values in these textures.

Instead, RTSL uses the aforementioned class and reference capa-
bility to access texture values. The code querying a texture does not
need to know whether the texture is procedural or image-based. We
anticipate that RTSL would not be used for implementing image-
base texture lookup and filtering, since the renderer may want to
utilize sophisticated storage mechanisms such as tiling or caching.
Therefore, the target renderer should provide RTSL compatible ob-
jects that provide image texture functionality. In this respect, it is
similar to the operation of a GPU: the programmer has only ba-
sic control over the precise storage and lookup of textures that are
owned by the system. RTSL would need dynamically sized arrays
to be able to accomplish more of this task, which was outside the
scope of our initial effort.

Lighting constructs: GLSL contains support for OpenGL-
style lighting. A fixed number of lights exist, each of which can
be enabled or disabled. The GLSL language exposes this function-
ality through a set of global variables that reflect the parameters for
each light source. Shader programs must explicitly compute light-
ing, and many of them assume a limited number of lights to avoid
checking that each light is enabled.

To provide more flexibility in a ray tracing system where lighting
and shadows interplay, we have adopted the illuminance loop con-
struct from RSL. The illuminance keyword operates like a for loop,
iterating over each of the light sources and executes the loop body
for those that are not occluded. A Kajiya-style path tracer may elect
to choose one light source at random rather than iterating through
all light sources. This is a portion of the Phong material illustrating
this concept:

illuminance(rt_HitPoint, rt_GeometricNormal,
rt_ShadingNormal, PI/2) {
vec3 Ln = rt_LightDirection;
result += DiffuseColor * rt_LightColor * max(0., dot(
Ln, rt_ShadingNormal));

vec3 H_lum = normalize(Ln + V);
float NDotH_lum = max(0., dot(H_lum, rt_ShadingNormal
));
float phong_term_lum = pow(NDotH_lum,
SpecularExponent);

result += phong_term_lum * SpecularColor *
rt_LightColor;

}

Listing 1: An example illuminance statement.

Similarly, the ambient keyword acts as an if statement that executes
the body of the code only if ambient lighting is necessary given the
hit position and normal. The target renderer may elect to elimi-
nate the body of this statement entirely, as in a path-tracing based
renderer. An example taken from a Lambertian shader is:

ambient(rt_HitPoint, rt_ShadingNormal)
result += DiffuseColor*rt_LightColor;

Listing 2: An example ambient statement.

First class color type: RTSL adds a first-class type called
“color” that abstractly represents color in the underlying renderer
without requiring a 3 channel color space. Most computations that
use colors can use multiplication and addition operators without
specifically requesting the rgb components. This is valuable for
interfacing with renderers that have a more sophisticated color rep-
resentation – for example, the Monte Carlo renderer Galileo has
both an rgb and spectral mode. Additionally, this could be used to
support a renderer that uses a fixed-point color rather than a floating
point color. However, the color type will always have floating point
semantics. Colors are not required to be in the range [0,1].

Built-in variables: For GLSL, the primary mechanism for
communicating data between the shader and the rest of the GPU
is a set of globally scoped variables that are either read and/or writ-
ten by the vertex program. For example, gl FragColor represents
the color that will be assigned to a pixel after the result of a frag-
ment program, so the fragment program must assign a value to
gl FragColor before returning. In computing this color, the frag-
ment program can read a number of variables that describe both the
fragment and the general state in the system, such as the coordinates
of the fragment and various transformation matrices.

RTSL adopts a similar convention, but the set of variables is
completely different than GLSL. Furthermore, since RTSL fills
multiple roles, the set of variables available to each function can
vary. For example, a shading method will read the HitPosition
ShadingNormal variables to will produce a color for the sam-
ple. A primitive intersection method will read the RayOrigin
and RayDirection and will set the new hit distance (usually
through the hit function described below). Note that exposing this
state as a variable in RTSL does not imply that the state is stored in
a variable in the target renderer. For example, Galileo always stores
the inverse ray direction (InverseRayDirection) while PBRT
only stores the ray direction requiring computation of the recipro-
cal when accessed. Manta defers the computation of the inverse
direction until it is requested, then stores it for subsequent use.

We consider this state to be one of the primary advantages of
adopting GLSL as the basis for this shading language. It allows
the set of state to be extended without breaking existing code, and
avoids requiring repetitive typing of function prototypes. Similar to
GLSL, RTSL prefixes the built-in variables with rt to avoid naming
conflicts with user code. A more detailed description of the built-in
state designed for RTSL will be presented in Section 3.4.

Variable qualifiers: GLSL follows the Renderman convention
for annotating variables with keywords to allow data to be passed
from one rendering stage to another. In addition to locally scoped
variables declared within a function, GLSL allows variables to be
declared at the global scope with the following modifiers:

• attribute: variables passed from the application to the shader
that may change per vertex.

• uniform: variables passed from the application to the shader
that may change per primitive.

• varying: variables passed from the vertex shader to the frag-
ment shader, and may change per pixel fragment.

• const: a compile-time constant.

In a non-rasterization system, most of these modifiers do not
have significance. Therefore, RTSL allows the following modifiers
for variables at class scope:

• const: a compile-time constant.
• public, private: variables specific to an instance of this class.

The renderer can decide if and how to distinguish public from
private. The constructor, or functions called from the con-
structor, are only allowed to write to these data members. A
per-ray method (such as intersect or shade) is not allowed to
modify class state.



• scratch: variables that are used to pass state within a particu-
lar object instance between multiple methods. This is concep-
tually stored per ray, but the backend may utilize stack-based
variables or a special section of the raypacket to implement it.

Additionally, a vector variable can be annotated with the unit
keyword to indicate to the compiler that the vector will always have
a length of 1.

New built-in functions and constants: Most of the functions
defined by the GLSL specification are also valuable for ray tracing.
GLSL even defines builtin functions for noise textures, reflection
and refraction. In addition to those defined by the GLSL standard,
RTSL adds the following builtin constant and functions:

• INT MIN, INT MAX, FLT MIN, and FLT MAX are sim-
ilar to the C standard library definitions for determining the
range of builtin types.

• PI is defined to support appropriate scaling for BRDF inte-
gration and other geometric operations. Although GLSL pro-
vides builtin functions for computing degrees to/from radians,
this is not sufficient for a ray tracing based system.

• matrixType inverse(matrixType m) will invert any square
or affine transformation (i.e. 2x3 or 3x4) matrix. The results
are undefined if the matrix is singular.

• bvec3 inside(vec3 x, vec3 low, vec3 high) is a convenience
function that returns true if the first argument is bracketed by
the second and third arguments. This function is overloaded
for float, vec2, vec3 and vec4, and the range can either be a
single scalar (used for all components) or a vector value of
the same rank as the first argument. When used with vector
arguments, the return value is a boolean vector type. This
allows simple constructs such as:
if (all(inside(u, 0.0, 1.0))){
// All components of u are in the range [0,1]

}

This style of code is not only quite readable but also is gen-
erally more efficient for a SIMD implementation than a series
of cascading if statements.

• vec3 perpendicularTo(vec3) returns a vector that is perpen-
dicular to the given vector. This function is overloaded for any
vec type. The vector chosen and the algorithm for selecting
that vector are implementation dependent.

• int dominantAxis(vec3) returns the index of the axis that
contains the largest component (absolute value). This func-
tion is overloaded for vec2, vec3 and vec4.

• color trace(vec3 O, vec3 D) spawns a secondary ray with the
given origin and direction. This returns the color. For sim-
plicity in the common case, an overloaded version is available
that only takes a direction and assumes the origin as the cur-
rent hitpoint.

• bool hit(float thit) is used for primitive intersection to report
a ray-object intersection. The thit value is not required to be
larger than 0, as the renderer must automatically prune values
outside of the useful range. Hit returns true if the intersection
is now the new closest intersection for the ray.

• float luminance(color c) computes the luminance value from
the underlying color type. This is useful for ray-tree pruning.

• float rand() generates a uniform random variable in the range
[0,1).

• pow was extended to support additional overloads where the
exponent is an integer value, to allow optimizations based on
a successive power generation algorithm.

• min and max were extended to support a “horizontal” max,
which returns the largest (or smallest) component of a single
vector argument.

3.3 Standard class hierarchies
Using RTSL, we define a handful of common interfaces found in
most renderers: Cameras, Primitives, Textures, Materials, and
Lights. While some renderers may have more distinct interfaces
than these and some have less, we feel these components are uni-
versal enough to be easily translated by a backend. Implementing a
primitive involves creating a class derived from the built-in Primi-
tive interface, and defining methods for intersection, normal com-
putation and bounding box computation. A simple sphere primitive
class in RTSL is shown in Listing 3. Each of these base classes will
be discussed.

class Sphere : rt_Primitive;

public vec3 center;
public float radius;

void constructor(vec3 newcenter,
float newradius) {

center = newcenter;
radius = newradius;

}

void intersect() {
vec3 O = rt_RayOrigin - center;
vec3 D = rt_RayDirection;
float A = dot(D, D);
float B = dot(O, D);
float C = dot(O, O) - radius*radius;
float disc = B*B-A*C;
if(disc > 0.0){
float r = sqrt(disc);
float t0 = -(r+B)/A;
if(t0 > rt_Epsilon){

hit(t0);
} else {

float t1 = (r-B)/A;
hit(t1);

}
}

}

void computeNormal() {
rt_GeometricNormal = (rt_HitPoint - center)/radius;

}

void computeBounds() {
rt_BoundMin = center - vec3(radius);
rt_BoundMax = center + vec3(radius);

}

Listing 3: A Sphere in RTSL

3.3.1 Cameras
A Camera class must provide only one function: generateRay. In
this function, the user may access the 2D ScreenCoord variable
and must write to the RayOrigin and RayDirection vari-
ables. To allow for depth of field, Cameras additionally have ac-
cess to the 2D LensCoord but are not required to use it. Listing 4
shows a simple camera example.

class PinholeCamera : rt_Camera;

public vec3 position;
public vec3 lower_left_corner;
public vec3 uvw_u;
public vec3 uvw_v;
public vec3 uvw_w;

void constructor(vec3 eye, vec3 up, vec3 gaze,
vec2 uv0, vec2 uv1, float d)



{
position = eye;
uvw_v = up;
uvw_w = gaze;
uvw_u = normalize( cross( uvw_v, uvw_w ) );
uvw_v = normalize( cross( uvw_w, uvw_u ) );
uvw_w = normalize( gaze );
lower_left_corner = uv0.x * uvw_u + uv0.y * uvw_v + d *

uvw_w;
uvw_u = uvw_u * (uv1.x - uv0.x);
uvw_v = uvw_v * (uv1.y - uv0.y);

}

void generateRay()
{

rt_RayOrigin = position;
rt_RayDirection = lower_left_corner + rt_ScreenCoord.x*

uvw_u + rt_ScreenCoord.y*uvw_v;
}

Listing 4: A Pinhole Camera in RTSL

3.3.2 Primitives
Primitives in RTSL are more complicated than the majority of other
classes. Most renderers support a variety of methods for primitive
intersection, and many choose to defer the computation of values
including texture coordinates, normals, etc. To address this issue,
Primitives provide the following functions: intersect, computeNor-
mal, computeBounds, computeTextureCoordinates, and computeD-
erivatives.

The intersect function uses various properties of the ray includ-
ing RayOrigin, RayDirection, HitDistance, Epsilon
to determine whether a ray intersects the primitive. A special hit
function is provided that reports a potential intersection and then
returns true if the primitive is now the closest object. This can be
used to avoid unnecessary computation in the event of a miss.

The computeNormal function provides access to HitPoint
and any other scratch variables that were declared in the class. This
function is provided to facilitate systems that used deferred normal
computation.

The world bounds of the object are computed by compute-
Bounds, which is typically used for acceleration structure creation.

Many primitives have a natural parametrization that can be di-
rectly used for texturing. RTSL exposes this in computeTexture-
Coordinates that has access to all the hit information and scratch
variables.

The pair of functions, generateSample and samplePDF are used
to generate points on the surface of the Primitive according to
the specified probability density function, writing to the values
HitPoint and PDF, respectively. These methods are optional,
but need to be implemented if a primitive is to be used as an area
light in some renderers.

Finally, computeDerivatives is provided to allow renderers to
support knowledge of surface derivatives dPdU and dPdV and
other derivatives. For example, the PBRT backend will fill in a dif-
ferential geometry structure. For further discussion on the purpose
and semantics of these derivatives, see Section 3.4.

3.3.3 Materials
Materials in RTSL can provide both arbitrary shading through the
shade function or physically-based rendering through BSDF, sam-
pleBSDF, and evaluatePDF. Some backends may use only one or
the other, and other backends may use both.

In shade, the user must simply compute and set SampleColor.
To do so, they have access to shading information (e.g.,
HitPoint, GeometricNormal, ShadingNormal) as well
as incident lighting through the illuminance and ambient state-
ments.

The physically-based rendering functions provide users methods
to define physical scattering BSDFs. Within BSDF a user needs to
compute the total amount of radiance transferred between a pair of
directions: RayDirection and LightDirection and store
that in BSDFValue. As with shade the user has access to all rele-
vant shading information.

An example material is shown in Listing 5. The section com-
ments will be explained in more detail in Section 4.3.

class SchlickDielectric : rt_Material;

public float eta;
public float f0;
public color absorption;

void constructor(float inside, float outside, color
absorb) {

eta = inside/outside;
f0 = pow((outside-inside)/(outside+inside), 2);
absorption = absorb;

}

void shade() {
// Section 0
vec3 I = normalize(rt_RayDirection);
vec3 P = rt_HitPoint;
vec3 NN = rt_ShadingNormal;

float eta_temp = eta;
color atten = color(1.);
if (dot(rt_RayDirection, rt_ShadingNormal) > 0.) {
eta_temp = 1./eta;
NN = -NN;
atten = pow(absorption, rt_HitDistance);

}

float negNdotV = dot(I, NN);
float k = 1.0 - eta_temp * eta_temp * (1. - negNdotV *

negNdotV);
vec3 R = reflect(I, NN);
vec3 T = R;
if (k >= 0.) {
T = eta_temp * I - (eta_temp * negNdotV + sqrt(k)) *
NN;

}

float Fr = f0 + (1.-f0)*pow(1.+negNdotV, 5);
float Ft = 1.-Fr;
// Section 1
color refl_result = trace(P, R);
// Section 2
color refr_result = trace(P, T);

// Section 3
rt_SampleColor = atten * (Fr * refl_result + Ft *

refr_result);
}

Listing 5: A Dielectric Material in RTSL

To enable importance sampling, a class can implement the sam-
pling function pair sampleBSDF and evaluatePDF. The evalu-
atePDF function must be able to evaluate the probability density
function of the sampling method, while sampleBSDF should gen-
erate a sample according to the same density function. The 2D
random seed BSDFSeed is available to choose sample directions,
however, more are always available through the rand function. The
generated direction should be stored to LightDirection, and
similarly evaluatePDF should store its result in PDF.

Materials may also optionally provide an emission function to
describe the emissive component of a Material. This allows easy
support for area lights and does not require the renderer to store two



Figure 2: Two spheres using the same RTSL texture with two sepa-
rate RTSL materials, a Phong shader (left) and a Ward shader (right).

pointers for both a material and a light source shader. However, ren-
derers that require this distinction (as Renderman does) may require
the backend to split the RTSL Material class into separate classes
in the target language.

3.3.4 Textures

While Materials can produce acceptable images using constant
color parameters, varying surface detail is better described using
Textures. Textures must provide a lookup function which stores its
result in TextureColor or FloatTextureValue for scalar
textures. To determine the texture value at a particular shading
point, the lookup function has access to all the shading info a Ma-
terial might have. Textures are assumed to contain colors, though
in the future RTSL may be extended to handle textures containing
other types, such as float or vec2.

The separation of Material and Texture is quite useful and one
of the key missing features in both the Renderman Shading Lan-
guage and GLSL. For example, a procedural wood texture can be
used as the diffuse term in both a dusty material or a varnished ma-
terial. Figure 2 shows an example separation.

3.3.5 Lights

In RTSL, the Light class is specifically for singular lights. By this
we mean lights that would not be intersected by a reflected ray in a
path tracer. This includes point lights, directional lights, spot lights,
and so forth. The Light class provides an illumination function that
determines the direction and distance to the light from the point
being shaded as well as the amount of light that would reach that
point if it were unoccluded. Occlusion testing and/or shadow ray
attenuation is left to the renderer.

3.4 State Variables

These classes operate by manipulating a suite of built-in variables
that reflect the state of the renderer. As discussed previously, these
variables are globally scoped (lexically) in RTSL but are not truly
global. They merely replace the input and output arguments of the
function in a convenient way.

Several of these variables were mentioned in Section 3.3, but
it is worth considering more of the global state here. For space
considerations, we do not discuss all of it in detail.

An overview of these variables are in Table 1. Each method
(and its callees) may refer only to parts of the global state that are
defined, and may only write to an even smaller subset.

Epsilon is a small constant used to avoid numerical noise. It
should be larger for floating point representations with lower preci-
sion. It is set by the target renderer and is available for all methods
and classes.

TimeSeed is used for a Monte-Carlo sample to support anima-
tion and motion blur. It is available in all of the ray-based methods
of all classes. Depending on the underlying implementation, it may
vary per ray, may be constant over a packet or over an entire frame.
The RTSL code is insulated from these differences.

RayOrigin and RayDirection define the parameters of the ray
currently being processed. The Camera.generateRay method must
write to both of these variables. Any of the Primitive and Ma-
terial methods (except Primitive.computeBounds) can read it. A
RayDirection may or may not be unit length.

HitDistance is the t parameter of the current closest intersec-
tion. It is optionally set by the Camera.generateRay method, and
can be read by and of the Primitive methods.

ScreenCoord is the coordinates of the sample center in screen
space, in the range [0,1]. It is used only in the Camera.generateRay
method, but some renderers may choose to expose it to other meth-
ods through a non-standard interface.

LensCoord is the coordinates of the sample on the lens. It is
used only in the Camera.generateRay method.

GeometricNormal and ShadingNormal reflect the normal
computation at various points of the computation. The geomet-
ric normal is computed by the Primitive.computeNormal func-
tion, and is available for the Primitive.computeDerivatives and
Light.illumination methods and the Material methods. Alterna-
tively, a primitive may set the GeometricNormal in the intersect
method if it is the new closest hit, in which case the computeNormal
function is not needed. Setting the geometric normal also sets the
shading normal, and instancing objects will only modify the shad-
ing normal. Bump mapping would be implemented as a Material
that modified the geometric normal and then called a child material
object.

TextureUV and TextureUVW are the 2D and 3D texture co-
ordinates. They are created by the primitive and are used by tex-
ture classes. They may be lazily evaluated, i.e. an implementa-
tion may elide calls to Primitive.computeTextureCoordinates if the
texture coordinates are not used. If the primitive does not imple-
ment computeTextureCoordinates, the texture coordinates default
to world space coordinates.

Derivative information is tracked in a fashion similar to RSL
but we chose to expose only the most commonly used values. Sur-
face parametrization derivatives, dPdu and dPdv, are computed in
Primitive’s computeDerivatives method and read by other shaders.
Additionally, computeTextureCoordinates can optionally write to
the quartet of derivative variables dsdu, dsdv, dtdu and dtdv
that represent the texture coordinate derivatives with respect to the
surface parametrization.

These derivatives can be used, for example, to implement bump
mapping and to band-limit procedural textures with the aid of two
additional variables, du and dv. These variables represent the
change in surface parametrization at a given point on the shaded
object, analogous to the RSL variables of the same name. It is com-
pletely up to the backend renderer to determine how the values of
these variables are computed. If a particular renderer employs a
finite-differencing scheme for computing derivatives, du and dv
would be the delta values used in the differencing, while a renderer
that analytically computes derivatives may simply set these vari-
ables to zero.

4 RTSL COMPILER

We have implemented a compiler for the language discussed above.
It utilizes a yacc/lex-based parser with a symbol table, and gener-
ates an abstract syntax tree (AST) in memory. The remainder of the
compiler is implemented as a series of passes over this AST to per-
form analysis and create transformations of the tree. A static check
phase ensures that the input is valid through type analysis.



Camera Primitive Texture Material Light
vec3 RayOrigin vec3 RayOrigin vec2 TextureUV vec3 RayOrigin vec3 HitPoint
vec3 RayDirection vec3 RayDirection vec3 TextureUVW vec3 RayDirection vec3 GeometricNormal
vec3 InverseRayDirection vec3 InverseRayDirection color TextureColor vec3 InverseRayDirection vec3 ShadingNormal
float Epsilon float Epsilon float FloatTextureValue vec3 HitPoint vec3 LightDirection
float HitDistance float HitDistance float du vec3 dPdu float TimeSeed
vec2 ScreenCoord vec3 BoundMin float dv vec3 dPdv
vec2 LensCoord vec3 BoundMax float dsdu vec3 LightDirection
float du vec3 GeometricNormal float dtdu float LightDistance
float dv vec3 dPdu float dsdv color LightColor
float TimeSeed vec3 dPdv float dtdv color EmissionColor

vec3 ShadingNormal vec3 dPdu vec2 BSDFSeed
vec2 TextureUV vec3 dPdv float TimeSeed
vec3 TextureUVW float TimeSeed float PDF
vec2 dsdu color SampleColor
vec2 dsdv color BSDFValue
float PDF float du
float TimeSeed float dv

void constructor() void constructor() void constructor() void constructor() void constructor()
void generateRay() void intersect() void lookup() void shade() void illumination()

void computeBounds() void BSDF()
void computeNormal() void sampleBSDF()
void computeTextureCoordinates() void evaluatePDF()
void computeDerivatives() void emission()
void generateSample()
void samplePDF()

Table 1: RTSL state variables and interface methods. In code, all state variables are prefixed with rt

To demonstrate the flexibility of RTSL, we have written three
backends for our compiler corresponding to three very different
renderers: Galileo, PBRT, and Manta. Each of these three backends
emit C++ code that is then compiled and linked into the individual
renderers. Galileo and PBRT are Monte Carlo path tracers, whereas
Manta is an interactive packet based ray tracer that takes advantage
of SSE optimizations when possible. We begin with the description
of our Galileo backend to help explain the basic compiler issues.
We then explain the work necessary to create a similar backend
for PBRT. Finally, we describe what was required to automatically
generate packet and SSE code for Manta.

4.1 Galileo backend
For Galileo, the backend was simply designed to output working
code. There is no requirement for optimization beyond that pro-
vided by the standard C++ compiler. In many cases, the RTSL
classes mapped easily to Galileo (e.g. Cameras, Textures, and
Lights). The majority of the backend code simply handles the gen-
eral output of typed variables, operators, function calls, etc. In a few
cases, however, more work was required to map RTSL to Galileo
and we discuss these cases here.

4.1.1 Primitive
In Galileo, primitive intersection returns a boolean result indicat-
ing whether or not a new hit point has been found. This is a fairly
common design for renderers, but RTSL is designed to be more im-
plementation neutral and so each standard interface method does
not take any arguments nor return any results. Galileo also does not
defer any computation during intersection as RTSL allows. To re-
solve this difference, we simply have to inline the various deferred
functions wherever a new hit point is computed. Scratch variables
are simply local variables in C++.

4.1.2 Material
Naturally, most interesting extensions of nearly any renderer will be
to its material library. Galileo supports both standard arbitrary shad-
ing and physically based rendering, providing two different meth-
ods: kernel and radiance. The kernel function represents the kernel

of the rendering equation [10], which is expressed as a Fredholm
Integral Equation [23]. When a non-singular kernel is not available
(e.g. for perfect dielectrics), the user may override the more general
radiance function that simply returns a color.

Transforming an RTSL BSDF into a kernel is fairly straightfor-
ward: a simple cosine correction term is multipled by the BSDF
result. The “anything goes” shading in RTSL’s shade function nat-
urally maps to Galileo’s radiance. Supporting the illuminance, am-
bient, trace, and emission statements required more care.

The ambient statement in RTSL provides for an “if-then-else”
structure precisely for global illumination renderers that lack a no-
tion of “ambient light”. In this case, Galileo always takes the “else”
path as intended, thereby ignoring ambient lighting. If Galileo
added final gather methods, an option might be provided to use one
of those methods as the LightColor value for the more tradi-
tional ambient evaluation.

The illuminance statement is intended to loop over incident sin-
gular lighting and apply the body of the statement for each light.
As Galileo is usually run as a more traditional path tracer, we chose
not to loop over all lights but to take some number of directional
samples and evaluate those instead. The number of samples is cur-
rently a parameter for our compiler, but could simply be an optional
parameter to illuminance as in RSL.

Galileo only stores a single Ray in its rendering context, so for
a trace call the necessary state must be stored off into temporaries,
the color result computed, and the original state returned. This is
straightforward, but we include this description for completeness.

RTSL represents area light emission by using an emission func-
tion for Materials. This departs from the RSL tradition of separate
“LightShaders” and “SurfaceShaders” that Galileo has followed.
As we realized, however, other than scene graph issues there is no
reason an object cannot simply emit light as long as it implements
the radiance function. The only case where this would be a prob-
lem is an area light source with both a kernel and an emission term.
We do not believe this would happen in practice and may be better
handled outside of RTSL if it is rare.



4.2 PBRT backend
The single-ray architecture of PBRT enables its compiler backend
to share code with the Galileo backend. Any RTSL class not men-
tioned here is assumed to behave in the same manner as the Galileo
implementation. Minor modifications to the backend were neces-
sary to change generated type names and class interfaces; however,
due to architectural differences between the renderers, additional
code is inserted into the generated methods to adapt RTSL mod-
els to PBRT’s codebase. PBRT is also missing certain functional-
ity expected by RTSL, such as a vector division operator or linear
interpolation of colors that is provided via injected code in each
generated object.

4.2.1 Primitive
Like Galileo, PBRT does not defer certain computation and requires
the inlining of RTSL methods. For example, PBRT uses differen-
tial geometry information to imply the surface normal at intersec-
tion time. Primitives are therefore required to implement the com-
puteDerivatives function such that the surface normal can be cal-
culated from the surface parameterization derivatives, ignoring the
computeNormal function entirely. PBRT’s system of ray transforms
(essentially making every Primitive an instance) also requires that
intersection code is wrapped by a correct transformation of the in-
cident ray.

4.2.2 Material
Due to the strict physically based nature of PBRT, several restric-
tions are placed on RTSL Materials compiled for this renderer.
PBRT describes materials as collections of BSDFs, therefore only
supporting BSDF based RTSL Materials; shade and associated
functions such as trace and illuminance are unsupported. BSDF,
sampleBSDF and evaluatePDF, on the other hand, map directly to
PBRT’s class functions.

4.3 Manta Backend
The Manta Interactive Ray Tracer allows us to take advantage of
both packets and SIMD extensions. Automatically generating ef-
ficient packet and SIMD code from an RTSL description presents
both challenges and opportunities.

4.3.1 Automatic Packetization
For primitive intersections and some other methods, the Manta
backend can simply loop over all of the rays in the packet and per-
form the single-ray RTSL computation for each ray. However, Ma-
terial methods require additional analysis. This is due to what we
refer to as packet synchronization points. A packet synchronization
point is any statement that operates on an entire packet of rays in the
Manta architecture, such as trace, ambient and illuminance. For ex-
ample, with the illuminance statement, an entire set of shadow rays
are created for all of the rays in the packet. To accomplish this,
all of the computation preceding the illuminance statement must be
completed for all of the rays in the packet before the shadow rays
are created and traced.

To achieve this, we implemented a “section analyzer” pass that
separates RTSL statements into an ordered set of sections. These
sections are a group of code that works over each ray individually
(in a loop) or over all rays (such as casting shadow rays). These
sections are each analyzed and generated independently. Listing 5
shows the packet synchronization points that are discovered by the
Manta back end. Section 0 operates over each ray in the packet
and completes before section 1 and 2 are executed with a single
call for each trace function. Section 3 is again a loop over all rays.
Variables that cross section boundaries (such as atten, Fr and Ft) are
saved in packet-sized arrays on the stack.

To implement scratch variables, the Manta backend allocates
storage in the ray packet for those variables to be stored. Manta

allows these variables to be overwritten if another primitive even-
tually reports as the closest intersection. This is consistent with the
RTSL semantics.

4.3.2 Packet Optimizations

Beyond the simple benefits for amortizing memory references and
virtual function calls, packets also offer algorithmic benefits [4].
In the case of primitive intersection, there are a number of special
cases that allow the number of operations required for an entire
packet to be reduced from the more general case. The example
in Listing 3 uses up to 32 floating pointing operations, including
three “expensive” operations (divides/square roots). Knowing that
the rays all share a common origin will reduce the total number
of flops to 23. Knowing that the rays are all unit-length reduces
the flops to 24 but also reduces the expensive operations to only
one. Combining these two operations uses only 15 operations with
a single square root. To accomplish these operations, the RTSL
compiler employs a number of optimization passes.

For a packet with a common origin (e.g. as for primary rays com-
ing from a pinhole camera), the vector from the sphere center to the
ray origin is invariant for the packet. For large packets, computing
a “packet invariant” term once can result in considerable perfor-
mance improvements. To achieve this, the compiler implements
loop hoisting to factor out operations that are common to all rays in
a packet. It also factors out other operations that are common over
the ray packet, such as the computation of radius∗ radius in 3.

To exploit unit directions, the compiler tags variables with a unit-
length attribute. This starts with the RayDirection variable and
is propogated through the dependency graph. Dot products of a vec-
tor with itself are reduced to 1, and calls to the normalize function
are eliminated. This is followed by a constant propagation pass to
eliminate identity operations. This optimization could also be per-
formed for target systems that always assume that ray directions are
normalized. The programmer can also annotate variables with the
unit attribute to provide additional hints to the compiler.

The optimizer accurately locates these optimizations in the
primitives that we have implemented, making it performance-
competitive with hand-generated code.

4.3.3 SIMD

Many modern microprocessors offer SIMD instruction sets to op-
erate on multiple (usually four) operands simultaneously under cer-
tain constraints. Manta ensures that data is stored and aligned in
a manner that is friendly to these architectures. However, Manta
employs a splitting algorithm for accomodating divergent ray pack-
ets, so functions must operate on a range of rays. These rays may
begin and end on boundaries that are not a multiple of four. Conse-
quently, similar to standard loop unrolling, it is necessary to handle
these cases outside of the main loop body that operates on four rays
at a time. Doing this by hand is tedious and very error prone. Our
RTSL compiler handles this quite naturally and allows us to eas-
ily tweak how we generate these cases. We have found that using
SSE with a masking operation is more efficient than the short scalar
loops that we had originally implemented.

Translating complicated control flow is perhaps one of the largest
strengths of RTSL. In traditional SIMD processing, a mask is gen-
erated whenever a conditional statement is evaluated. If the mask
indicates that no further processing is required, a particular code
section may be skipped. Otherwise, that section must be entered but
all state changes must obey the current mask. Religiously tracking
these masks is also quite error prone and is probably a reason for
the lack of “advanced code” in current interactive ray tracers. We
avoid the use of a boolean complement instruction by reversing the
sense of masks in else cases. In the first if statement, active rays
have a mask of all 1’s, and for the else statement active rays have a



Figure 4: RTSL translation of Pixar’s uberlight [3] rendered by Manta
(top) and Galileo (bottom).

mask of all 0’s. Using DeMorgan’s law, we can eliminate the need
to complement the masks.

A final complication for utilizing SIMD is that some features are
simply not available in SIMD instruction sets. For example, SSE
does not provide many standard math library functions (e.g. pow,
exp, log, sin, cos) that are so commonly used in rendering software.
For some of these functions, we have chosen to implement our own
versions in SSE; however, for others (such as Perlin noise) we have
simply chosen an “unpack-scalar-repack” solution. Any section of
code containing such a statement will obviously not reap benefits
of SIMD, but the remaining code may still produce a benefit. In the
future, we hope to employ more native SIMD functions wherever
possible.

5 RESULTS

We translated a number of RSL shaders from renderman.org [2] in
addition to existing C++ shaders from Manta and Galileo to RTSL.
For example, Figure 4 shows a translation of Pixar’s uberlight [3]
running in both Manta and Galileo. PBRT generates identical
results to Galileo using its path tracer plugin; we will therefore
only refer to Galileo results for single-ray comparisons. Addition-
ally, Figure 5 shows two procedural textures translated from RSL
shaders.

One of the goals of RTSL was to allow users to extend render-
ers without explicit knowledge of packets or SSE. In Table 2, we
demonstrate our results for automatic scalar and SSE packet code
for a variety of primitives that can be seen in Figure 6. Numbers
are seconds per frame for shading using a single core of a 3.0GHz
MacPro for 1M rays (a 1024×1024 frame). Intersection time was
calculated by taking the difference of time to render a single primi-

Figure 5: Procedural RTSL textures translated from RSL rendered
by Manta (left) and PBRT (right). The brick and wood patterns are
slightly different between images due to differences in renderer im-
plementations of noise functions.

Figure 6: A superellipsoid, sphere and bilinear patch rendered by
Manta with a normal visualization shader.

tive with no other geometry in the scene with a scene containing no
geometry. The primitive occupied a large percentage of the frame.
The compiler-generated code results in a factor of 2.15 to 5.67 over
code that does not exploit the SIMD instructions. The SuperEllip-
soid implementation achieves even more than the theoretical factor
of 4 improvement because the complexity of the scalar code is not
handled by the C++ compiler, so an alternative compilation strategy
may narrow this gap somewhat.

While Manta has an hand-optimized sphere intersection, it does
not have a bilinear patch nor an SSE version of superellipsoid.
Manta’s superellipsoid does not take advantage of ray packet spe-
cial cases. We believe that this is due to the extreme amount of
effort required to carefully generate these versions by hand, which
our compiler does automatically. Table 4 shows a comparison be-
tween code lengths of RTSL and scalar and SSE compiler output
from the Manta backend. Galileo and PBRT code is of similar
length to the scalar Manta code. The length of the SSE versions
of the compiled output helps drive home the point that it is exceed-
ingly unlikely that these SSE primitive intersection routines could
have been written by hand correctly, if at all. We believe that the
SSE versions of the bilinear patch and superellipsoid represent the
first working vectorized implementations of these primitives.

Shown in Listing 6 is an example block of code written in RTSL
and its corresponding conversions to both Manta scalar and Manta
SSE. The single scalar code looks much like the hand written code
found in Manta, while the SSE code shows the complexity involved
in a handful of expressive lines of RTSL.

// RTSL code
if (all(inside(vec2(u.x, v.x), 0.f, 1.f))){

vec3 p0 = mix(mix(p00, p01, v.x),
mix(p10, p11, v.x),
u.x);



Figure 3: Our shading examples. From left to right: Dielectric, Phong, Ward, Velvet and Lambertian.

Seconds per frame Speedup Over
Primitive Scalar SSE Manta Scalar Manta
Sphere .0048 .0022 .0023 2.15x 1.03x
Bilinear .0544 .0161 NA 3.37x NA
SuperEllipsoid 2.0064 .3537 2.2931 5.67x 6.48x

Table 2: Comparisons of different primitives for both SSE and Scalar
output from our compiler to versions in the Manta interactive ray
tracer when they are available. Numbers are seconds per frame for
primitive intersection.

Seconds per frame Speedup Over
Material Scalar SSE Manta Scalar Manta
Dielectric .4988 .2091 .7409 2.38x 3.54x
Lambertian .0316 .0221 .0221 1.43x 1.00x
Phong .0987 .0585 .0528 1.68x .90x
Velvet .1410 .0594 NA 2.37x NA
Ward .1369 .0654 NA 2.09x NA

Table 3: Comparisons of different materials for both SSE and Scalar
output from our compiler to versions in the Manta interactive ray
tracer when possible. Numbers are seconds per frame for shading.

Shader RTSL Scalar SSE
Sphere 45 119 1661
Bilinear 113 192 6152
SuperEllipsoid 181 224 3732
Brick 98 131 1074
ParquetPlank 144 190 1753
UberLight 117 178 500
Dielectric 43 229 1173
Lambertian 27 174 632
Phong 49 307 1423
Velvet 67 256 1339
Ward 72 249 1298

Table 4: Comparisons of length of code of various RTSL shaders and
their compiled output from the Manta backend. Numbers are lines of
code.

float t0 = dot(D, p0 - O) / dot(D, D);
hit(t0);

}

// Manta Single Scalar
VectorT<float, 2> insidearg1(VectorT<float, 2>(rtsl_u.x()

, rtsl_v.x()));
VectorT<bool, 2> allarg2(VectorT<int, 2>(insidearg1[0] >

(0.f) && insidearg1[0] < (1.f), insidearg1[1] > (0.f
) && insidearg1[1] < (1.f)));

if((allarg2[0] && allarg2[1])){
Vector rtsl_p0 = Interpolate(Interpolate(rtsl_p00,

rtsl_p01, rtsl_v.x()), Interpolate(rtsl_p10,
rtsl_p11, rtsl_v.x()), rtsl_u.x());

float rtsl_t0 = (Dot(rtsl_D, (rtsl_p0 - rtsl_O)) / Dot(
rtsl_D, rtsl_D));

rays.hit(i, rtsl_t0, getMaterial(), this,
getTexCoordMapper());

}

// Manta SSE
__m128 rtsl_u_x = _mm_div_ps(_mm_xor_ps(_mm_add_ps(

_mm_mul_ps(rtsl_Av1_, rtsl_v_x), rtsl_A1_),
_mm_castsi128_ps(_mm_set1_epi32(0x80000000))),
_mm_add_ps(_mm_mul_ps(rtsl_Auv1_, rtsl_v_x),
rtsl_Au1_));

__m128 rtsl_u_y = _mm_div_ps(_mm_xor_ps(_mm_add_ps(
_mm_mul_ps(rtsl_Av1_, rtsl_v_y), rtsl_A1_),
_mm_castsi128_ps(_mm_set1_epi32(0x80000000))),
_mm_add_ps(_mm_mul_ps(rtsl_Auv1_, rtsl_v_y),
rtsl_Au1_));

__m128 insidearg13 = _mm_set1_ps(0);
__m128 insidearg15 = _mm_set1_ps(1);
__m128 insidearg16 = rtsl_u_x;
__m128 insidearg17 = rtsl_v_x;
__m128 condmask18 = _mm_and_ps(_mm_and_ps(_mm_cmpgt_ps(

insidearg16, insidearg13), _mm_cmplt_ps(insidearg16,
insidearg15)), _mm_and_ps(_mm_cmpgt_ps(insidearg17,
insidearg13), _mm_cmplt_ps(insidearg17, insidearg15

)));
int condintmask19 = _mm_movemask_ps(condmask18);
__m128 ifmask20 = _mm_and_ps(ifmask11, condmask18);
int ifintmask21 = _mm_movemask_ps(ifmask20);
if(ifintmask21 != 0){

__m128 mixarg22 = rtsl_v_x;
__m128 mixarg23 = _mm_sub_ps(_mm_set1_ps(1.0), mixarg22

);
__m128 mixarg24 = rtsl_v_x;
__m128 mixarg25 = _mm_sub_ps(_mm_set1_ps(1.0), mixarg24

);
__m128 mixarg26 = rtsl_u_x;
__m128 mixarg27 = _mm_sub_ps(_mm_set1_ps(1.0), mixarg26

);
__m128 rtsl_p0_x = _mm_add_ps(_mm_mul_ps(_mm_add_ps(

_mm_mul_ps(_mm_set1_ps(rtsl_p00.x()), mixarg23),
_mm_mul_ps(_mm_set1_ps(rtsl_p01.x()), mixarg22)),
mixarg27), _mm_mul_ps(_mm_add_ps(_mm_mul_ps(
_mm_set1_ps(rtsl_p10.x()), mixarg25), _mm_mul_ps(



_mm_set1_ps(rtsl_p11.x()), mixarg24)), mixarg26));
__m128 rtsl_p0_y = _mm_add_ps(_mm_mul_ps(_mm_add_ps(

_mm_mul_ps(_mm_set1_ps(rtsl_p00.y()), mixarg23),
_mm_mul_ps(_mm_set1_ps(rtsl_p01.y()), mixarg22)),
mixarg27), _mm_mul_ps(_mm_add_ps(_mm_mul_ps(
_mm_set1_ps(rtsl_p10.y()), mixarg25), _mm_mul_ps(
_mm_set1_ps(rtsl_p11.y()), mixarg24)), mixarg26));

__m128 rtsl_p0_z = _mm_add_ps(_mm_mul_ps(_mm_add_ps(
_mm_mul_ps(_mm_set1_ps(rtsl_p00.z()), mixarg23),
_mm_mul_ps(_mm_set1_ps(rtsl_p01.z()), mixarg22)),
mixarg27), _mm_mul_ps(_mm_add_ps(_mm_mul_ps(
_mm_set1_ps(rtsl_p10.z()), mixarg25), _mm_mul_ps(
_mm_set1_ps(rtsl_p11.z()), mixarg24)), mixarg26));

__m128 rtsl_t0_ = _mm_div_ps(_mm_add_ps(_mm_mul_ps(
rtsl_D_x, _mm_sub_ps(rtsl_p0_x, rtsl_O_x)),
_mm_add_ps(_mm_mul_ps(rtsl_D_y, _mm_sub_ps(rtsl_p0_y
, rtsl_O_y)), _mm_mul_ps(rtsl_D_z, _mm_sub_ps(
rtsl_p0_z, rtsl_O_z)))), _mm_add_ps(_mm_mul_ps(
rtsl_D_x, rtsl_D_x), _mm_add_ps(_mm_mul_ps(rtsl_D_y,
rtsl_D_y), _mm_mul_ps(rtsl_D_z, rtsl_D_z))));

rays.hitWithMask(i, ifmask20, rtsl_t0_, getMaterial(),
this, getTexCoordMapper());

}

Listing 6: A section of code of a bilinear patch primitive intersection
in RTSL, Manta single scalar, and Manta SSE

Table 2 demonstrates that the performance of our compiled re-
sults can be competitive with manually generated code for prim-
itives. We also examined how close we are to hand written SSE
materials (see Table 3). These numbers are seconds per frame for
shading using a single core of a 3.0GHz MacPro for 1M rays (a
1024× 1024 frame). Time to perform the shading was calculated
by taking the difference of time to compute a frame similar to the
one as in Figure 3 and again with the scene with the sphere using
no shading. This was done in an effort to isolate the shaders’ per-
formance from the rendering system. For this test, we compared
our Phong and Dielectric implementations to those in Manta. In
particular, the Phong material in Manta has been extensively hand
tuned and takes advantage of a number of optimizations we do not
believe a compiler would automatically generate. We also compare
a few shaders that are not available in Manta, that we believe are
complex enough to stress our system.

6 DISCUSSION

Any effort to produce a new programming language involves many
trade-offs, practical considerations, and matters of personal taste.
Ideally, the process also incorporates knowledge from a community
of stake holders. This document represents the beginning of such
a process for interactive ray tracing. We now address some of the
considerations that we put into the work presented here.

The Renderman Shading Language was also considered as a pos-
sibility for the base language, and if we just wanted to support ma-
terials, textures, and lights, then that may have been a good choice.
However, we felt that supporting cameras, primitives, and possibly
other classes in the future was important. The RTSL object model
enables shade trees to be built in a more flexible manner than with
RSL. Furthermore, it was attractive to build on something that is
familiar to the large number of GPU programmers.

We intentionally avoided the temptation to create a language that
would allow an entire ray tracing application to be built. In particu-
lar, we consciously chose to not address acceleration structures and
scene definition because we felt it would complicate the language
to an intractable level. Full applications are typically written by a
few highly experienced architects and then extended by many, of-
ten less experienced, users. It is these extensions that we wanted to
enable.

In demonstrating the effectiveness of RTSL, we targeted multiple
rendering systems. Undoubtedly some design decisions may be a
burden to other target systems. However, we think that Manta and

Galileo are probably as different as two ray tracers could be, so we
are confident that the bulk of the system could be targeted to most
rendering systems. We also added a PBRT target to help ensure
we covered a variety of renderers and to show how RTSL can be
adapted to various systems.

RTSL provides significant advantages in developing algorithms
that exploit SSE and ray packets. The advantage may not be as sig-
nificant for only single-ray renderers, but we have still found it to be
preferable to writing C++ code due to its simplicity. Furthermore,
RTSL enables code to be used in more than one renderer.

One of our main concerns as we embarked on this project was
whether the compiler could generate SIMD and packet code that
was competitive with human-generated code. We were pleased
that in most cases the compiler was competitive with or even out-
performed hand-generated code. However, a main advantage is that
the level of programming experience needed to extend a ray tracer
is lowered, and the productivity for experienced programmers is
raised. As in any programming, bottlenecks revealed by profiling
should be examined for potential hand-tuning.

Our current compiler lowers to C++ code instead of to assembly
or machine code. Furthermore, it is designed to be “readable” C++
code – generating full expressions instead of the more common but
less readable single-assignment form. This design choice provides
both advantages and disadvantages. It provided for a much simpler
mechanism to incorporate RTSL code into existing systems, and
could potentially provide a more suitable path for subsequent man-
ual tuning. However, control-flow constructs such as loops were a
bit of a challenge.

Using C++ also leverages the optimization and scheduling ef-
forts of existing compilers. We rely on the target compiler to
perform common subexpression elimination, instruction schedul-
ing and register allocation. However, none of the currently avail-
able compilers can automatically generate packet-based SIMD
code from single-ray code. Reflecting on the analysis performed
in Section 4.3, a general-purpose compiler would not have the
application-level knowledge to support such analysis. We antici-
pate that our RTSL compiler could generate assembly language for
some systems such as a hardware ray tracer if the ISA of that hard-
ware was expressive enough to include features such as procedural
textures.

7 CONCLUSIONS

We have presented a shading language to allow cross-platform ex-
tensions to ray tracing programs. This language allows a ray trac-
ing system to be extended with a simple but flexible syntax. We
have also demonstrated a compiler for this language that produces
code that is performance-competitive with hand-generated code, in-
cluding packet-based intersection, shading and texturing. We have
demonstrated this functionality on three open source ray tracers that
span a large space of architectural styles. For an interactive ray
tracing program we have shown that it is feasible to automatically
generate both ray packet and SSE code for shading, camera ray
generation, and ray-object intersection.

8 FUTURE WORK

The creation of a new language has historically been as much a re-
sult of sociological and commercial forces as of technical concerns,
both foreseeable and unforeseen. We have demonstrated that RTSL
can successfully achieve these goals but acknowledge that improve-
ments are certainly possible.

One of the current limitations of RTSL is its assumption that
rendering begins by tracing rays from the camera. Algorithms such
as Metropolis Light Transport [21] and Photon Mapping [9] require
additional functionality from RTSL classes.

To support such bidirectional transport in the future, a Camera
may provide a getFilmPosition function. The purpose of this func-



Figure 7: A scene rendered with PBRT’s photon mapping plugin.
This uses hand-modified output from an RTSL Light shader to en-
able bidirectional sampling.

tion is to determine where an incoming ray would intersect the film
plane, if at all. Additionally, a bidirectional RTSL would require the
ability to generate directional samples from light sources through
an interface similar to Material’s BSDF sampling functions. Fig-
ure 7 shows an RTSL light being used by PBRT’s photon mapping
plugin. The output from this shader was hand-modified to support
generating these samples.

RTSL is also an extensible system; future additions of new
classes to support modules such as backgrounds, environments and
ambient lights or tonemapping operators will not require modify-
ing any current RTSL code. Volume rendering could be supported
through Renderman-style volume shaders. Additional future ex-
tensions to the language could include default arguments to class
constructors and support for additional or arbitrary derivative cal-
culations within shaders. RTSL already supports conditional com-
pilation for various renderers through the C preprocessor; a natural
extension of this is renderer-specific state variables for supporting
renderer specific features.

We are exploring just-in-time compilation with late binding to
allow more sophisticated optimization of complex shade trees sim-
ilar to Renderman. Texture mapping currently operates only on col-
ors and scalars but perhaps a simple generic type mechanism could
extend that to arbitrary types. We are examining support for ad-
ditional systems, including a nascent hardware ray tracing system.
We are also open to the possibility of adding support for some types
of acceleration structures if it can be achieved without incurring un-
wanted complexity in the language and compiler. We are also inter-
ested in simplifying primitive intersection further by implementing
the analysis to automatically segment the normal and texture coor-
dinate computations, which would allow the user to implement just
a single function.

We believe that the compiler could be modified to generate in-
terval arithmetic code to allow more sophisticated packet-based
culling [5]. Additional vector-based optimizations may be also be
possible.

After translating several RSL shaders to RTSL by hand, we plan
to create a mechanical translator from the Renderman format to
our own. This would allow renderers supporting RTSL to func-
tion as Renderman previewers and allow for LPICS [14] and Light-
speed [16] style lighting design.
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