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Abstract 

This paper introduces a method to calibrate a wide area 
system of unsynchronized cameras with respect to a single 
global coordinate system.  The method is simple and does 
not require the physical construction of a large 
calibration object. The user need only wave an 
identifiable point in front of all cameras. The method 
generates a rough estimate of camera pose by first 
performing pair-wise structure-from-motion on observed 
points, and then combining the pair-wise registrations 
into a single coordinate frame. Using the initial camera 
pose, the moving point can be tracked in world space. The 
path of the point defines a “virtual calibration object” 
which can be used to improve the initial estimates of 
camera pose. Iterating the above process yields a more 
precise estimate of both camera pose and the point path. 
Experimental results show that it performs as well as 
calibration from a physical target, in cases where all 
cameras share some common working volume. We then 
demonstrate its effectiveness in wide area settings by 
calibrating a system of cameras in a configuration where 
traditional methods cannot be applied directly. 

 
 

1 Introduction 

Many applications of tracking and observation 
require operation over a wide area, such as monitoring the 
traffic flow of vehicles in a parking structure or people in 
a building. In such cases, a single camera is unlikely to be 
sufficient. Rather, a network of interconnected cameras is 
required, each of which functions over only a small subset 
of the total area. In order to build such a system, a number 
of issues need to be addressed. The cameras must be 
calibrated in some global coordinate system; distributed 
components may need to communicate with each other; 

and some estimate of the system state which integrates all 
available sources of information must be computed. In 
this paper we address the issue of calibrating cameras in a 
wide area sensing environment.  

Wide area system calibration is much more 
challenging than calibrating a single camera. In single 
camera calibration, the usual method involves placing a 
carefully instrumented calibration target in the field of 
view. Based on correspondences between known 3D 
features on the target and their 2D locations in the image, 
calibration can be obtained. If multiple cameras are active 
in the same working volume, then each can be calibrated 
individually using an identical process.  

The case of wide area calibration introduces a 
number of difficulties. Cameras each cover only a small 
subset of the total working volume. A calibration target 
can be moved so that each camera is calibrated separately. 
However, a global calibration requires knowledge of 
relative target motion. This is difficult to obtain without 
expensive instrumentation. Simultaneous activation of 
cameras poses an additional problem. In large systems 
with many possibly heterogeneous cameras it becomes 
difficult to ensure that all cameras record observations at 
exactly the same moment. Many algorithms rely on 
simultaneity as a fundamental constraint.   

In this paper we introduce a method that brings a 
system of unsynchronized cameras into calibration in a 
single global coordinate system. A rough estimate of each 
camera's pose (i.e. location and orientation) is obtained 
using standard structure-from-motion techniques. The 
rough camera calibration can be used to track the path of 
a point moving through the entire working volume. This 
path defines a virtual calibration object, which can be 
used to improve the estimate of camera pose in the global 
coordinate space. Iterating the above process results in the 
convergence to both the point path defining the virtual 
calibration object  and a precise estimate of camera pose. 
We evaluate our method by comparing it to traditional 
calibration techniques. Furthermore, we demonstrate its 
effectiveness in wide area settings by calibrating a multi-
camera indoor tracking system where cameras cover 
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disjoint viewing regions, a more challenging situation 
where traditional methods cannot be easily applied. 

The rest of the paper is organized as follows. Section 
2 introduces the example application to which our 
calibration technique is applied. Section 3 discusses 
previous work. Section 4 describes our proposed method 
and Section 5 gives experimental results. We conclude in 
Section 6. 

2 Application 

The wide area calibration technique presented in this 
paper can be generalized to a wide variety of applications, 
sensors, and environments. However, an understanding of 
the specific application in our lab may prove illustrative. 
Our experimental system was designed to track people in 
front of a large screen, multi-projector display [1]. In one 
application, the head position of the user is acquired to 
provide the correct viewpoint for images rendered on the 
display. The tracking system has ten ceiling-mounted 
cameras oriented to observe a 4.0 x 4.5 meter area. 
Coverage extends from approximately a half meter to 2 
meters from the floor. The wide-angle cameras in the 
corners cover the volume. In addition, since our 
application requires higher tracking resolution right in 
front of the display, a few more narrowly focused cameras 
are installed to increase the resolution in that area. 
Individual cameras observe only a portion of the volume. 
In aggregate, however, they cover the space. Figure 1 
shows a photograph of the tracking space, and a plan view 
of camera placement. Note that in order to ensure correct 
estimates of observed object position, it is required that at 
least two cameras observe any given region in space. 
However, there is no single point that is observed by all 

cameras. 
Each camera is connected to a digitizing board and a 

CPU. Interlaced fields are captured and processed at 
60 Hz. At capture time, fields are time stamped by the 
local CPU, and all CPUs use a standard network time 
daemon to ensure consistent time within 3ms. However, 
the cameras themselves are not synchronized for 
simultaneous capture. After digitization the local CPU 
extracts features and sends these over the network to a 
central estimator that uses an extended Kalman filter [2] 
to integrate data from all cameras into a single estimate of 
object position and orientation.  

3 Previous work 

There has been a great deal of research in the area of 
accurate camera calibration. Most previous methods use a 
known calibration pattern that is imaged by the camera. 
Features are extracted from the image, and the best fit of 
intrinsic camera parameters and extrinsic camera pose is 
obtained. Tsai proposed a widely used model, but other 
more robust models are used as well [3, 4]. 

Azarbayejani and Pentland propose a method for 
calibrating the relative position of cameras [5]. An 
identifiable object is waved in front of a synchronized 
stereo pair of cameras, and the per-camera image location 
of the object at each time step is recorded. A standard 
structure from motion system is used to derive the relative 
pose of the two cameras. Their focus is not wide area 
tracking, and synchronized cameras with a common 
viewing volume are required.  

Stein proposes a system of cameras to track vehicles 
in an outdoor environment [6]. By observing the motion 
of objects in video sequences from multiple cameras, an 

 

(a)           (b)  
 

Figure 1: (a) Ceiling mounted cameras are used to track users around a wide area environment in front 
of the large display. (b) Cameras are arranged so that observation of the entire space is possible, 
although no single camera observes the entire working volume. 



approximate camera pose and time offset can be 
recovered from several unsynchronized cameras. Image 
features are used to refine the calibration estimate. This 
system requires a flat ground plane in all the images and 
solves the homography relating objects on this 2D plane.  

Rander and Kanade have a system of approximately 
50 cameras arranged in a dome to observe a room sized 
space. In order to calibrate these cameras, a large 
calibration object is built and then moved precisely to 
several locations, in effect building a virtual calibration 
object that covers the room [7]. While this works well, it 
can be quite costly to ensure the precise movement of a 
calibration object, and it is not easily adaptable when the 
shape or size of the working volume changes.  

Gottschalk and Hughes propose a framework for 
auto-calibration in wide area spaces [8]. Head mounted 
sensors observe precisely synchronized beacons mounted 
on the ceiling of their UNC lab. Data gathered from the 
sensors can be used to estimate both the moving head 
location and orientation, and to refine the initially 
available position estimate of the beacons. Like the 
system in this paper, they also employ the principle of 
iterative calibration. Welch later proposed a refined 
estimation method [9]. However their tracking 
architecture is quite different from the multi-camera 
environments we consider.  

This paper’s contribution is a wide area calibration 
method that addresses several previously ignored 
difficulties. A large number of unsynchronized cameras 
can be calibrated in a single consistent coordinate system. 
This can be achieved even when some cameras are 
arranged with non-overlapping working volume and when 
no initial estimate of camera pose is available. In addition, 
the method requires no complex instrumentation, and is 
easily adaptable to working volumes of variable size and 
shape.  

4 Proposed Method 

An outline of our method is shown in Figure 2. After 
the separate calibration of intrinsic camera parameters, 
our method begins by obtaining 2D image 
correspondences. The pairwise relative pose between 
cameras can be found using structure from motion. Then, 
a unification process brings these pairwise relationships 
into a single global space. The rough estimate of global 
pose calculated by the preceding steps can be used to 
initialize the following iterative procedure. A 3D trace of 
an object moving through space is estimated using an 
extended Kalman filter (EKF). This trace can be used as a 
virtual calibration object by correlating it with camera 
observations. Using traditional camera calibration, a new 
set of camera pose estimates is obtained. Iteration 
produces a globally consistent camera calibration.  

4.1 Intrinsic calibration 

Camera calibration is typically divided into two parts: 
intrinsic and extrinsic parameter calibration. The intrinsic 
parameters usually consist of lens distortion, image 
center, and focal length. For a short baseline stereo pair 
the relative pose between cameras in the pair could also 
be included. Extrinsic parameters define how the local 
camera coordinate system relates to a global coordinate 
system, i.e. the six parameters defining position and 
orientation. We propose that intrinsic calibration is best 
performed on cameras individually since it is not 
dependent on the global coordinate system. As mentioned 
previously, many calibration methods exist that are 
appropriate for a single camera. We use the intrinsic 
models proposed by Heikkila [4]. Finding the extrinsic 
parameters of each camera in a way that is globally 
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Figure 2: The main stages in our calibration 
method. Boxes represent computational stages. 
Italic text shows data flow.  

 



consistent is the focus of the remaining portion of this 
paper.  

4.2 Initial extrinsic calibration 

Pairwise calibration using structure from motion.  To 
obtain a globally consistent extrinsic calibration of 
cameras, we start by searching for pairwise registration 
between nearby cameras in our system. By finding 
corresponding 2D image points in a pair of camera views 
we can employ any structure from motion system to 
recover both the 3D location of these corresponding 
points, and more importantly for our application, the 
relative pose of the camera pair. We use a publicly 
available structure from motion implementation from 
Zhang [10]. An easily identifiable object is moved so that 
over time it covers the working volume of our system. We 
use an LED or flashlight in a darkened room. Since each 
camera sees only a subset of the working area, not all 
cameras observe the object at any given location. At this 
stage, however, only pairwise registration is required. The 
corresponding 2D observations for all relevant pairs of 
cameras are recorded.  

It should be noted that since the cameras are not 
synchronized for simultaneous input, no pair of cameras 
will actually observe the point at exactly the same 
location. At this stage we make an approximation that will 
be refined in a later part of our algorithm. Since the object 
is known to move continuously, we discretize time into 
small intervals. We use 36ms, since this is approximately 
the time required for two NTSC video fields to be 
processed by our 60Hz cameras. Observations occurring 
during the same time interval are approximated as 
collocated both temporally and spatially. Given this 
approximation and the resulting set of pairwise image 
correspondences, we can employ structure from motion to 
obtain a set of pairwise camera registrations.   

 
Global unification.  The pairwise camera registration that 
has been obtained provides only the relative rotation and 
translation up to an unknown scale factor. The desired 
global calibration will place all cameras in a single global 
coordinate system.  

Starting with an arbitrary pair of cameras, we define 
a global coordinate system. New cameras can be added 
incrementally until all available cameras have been 
included in the global framework. Figure 3 shows an 
example of a new camera being added to the global 
framework.  

In this example the translation and orientation of 
cameras A and B are known in the global coordinate 
system. In addition, we have pairwise relationships giving 
the translation and orientation of camera C, relative to 
those of A and B. Note that the translation of C given by 
its pairwise relationships is a vector with unknown scale.  

However, intersection of the rays AC  and BC  is 
sufficient to acquire the scale factors α and β. Due to 

errors, the rays may not intersect. We use the point with 
the minimum distance to both rays as the approximate 
intersection point. 

Once the scale factor α or β is computed, the global 
location and orientation of camera C can be derived based 
on the global location and orientation of either camera A 

or B. We use the following notation. The translation of 
camera A with respect to B’s coordinate system is 
denoted by A

BT . The normalized vector from B to A is 

A
BT̂ . Similarly the rotation of A relative to B’s coordinate 
system is A

B R . Using W to notate the world, or global 
coordinate system, and arbitrarily picking camera A as a 

base, we have: 
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Incrementally applying the above procedure locates 

all cameras in a single global coordinate system. 
Naturally this global coordinate system has an orientation 
based on the initial camera and an arbitrary scale. We take 
a few real world measurements in order to determine the 
transform to a physically meaningful coordinate system.  

It should be noted that the pairwise registration 
obtained using structure from motion is not of equal 
quality in all cases.  Camera pairs placed in degenerate 
positions are likely to cause errors, as are solutions 
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Figure 3: A set of globally calibrated cameras is 
shown connected by solid lines. The location of 
camera C can be calculated using the pairwise 
relationships with A and B, whose global poses 
are already known.   



determined from only a few image point correspondences. 
Using the residual error returned by structure from 
motion, we can rank the quality of pairwise information.  
This ranking can in turn be used to add cameras to the 
global set in preferential order, thus improving the 
estimate of global calibration. 

 
Sources of error.  Our initial global calibration process 
contains a number of approximations and sources of error. 
The discretization of time results in errors bounded by the 
velocity of the object and the discretization interval. The 
incremental method in which cameras are added to the 
global set is also a source of error. Since the global pose 
of each additional camera is dependent on the previously 
estimated global pose of other cameras, small errors made 
at each step can accumulate. Even though the errors made 
at each stage may be small, cameras added near the end of 
a large collection are likely to suffer from a great deal of 
accumulated error. However, the approximate calibration 
obtained is a good initial guess for the iterative method 
that is the core of our algorithm. 

4.3 Iterative refinement 

EKF based physical point tracking.  Given a globally 
calibrated set of cameras, an object can be tracked 
continuously through the entire working volume. A 
number of techniques exist for integrating information 
from diverse sensors into a single estimate of object 
behavior [2, 11]. We chose to use an extended Kalman 
filter (EKF) because it is simple and efficient. Our EKF is 
configured with a constant velocity model and estimates 
the position and velocity of the tracked point. As an 
object moves through space, observations from cameras 
are used to update the EKF estimate. The resulting trace is 
a continuous estimate of object motion over time. Note 
that there is no requirement that cameras provide 
observations at simultaneous moments. The EKF 
parameters and internal dynamic model provide the 
temporal constraints normally derived from simultaneous 
observation. Details of appropriate EKF parameters and 
models are application dependent, but well known [2, 12, 
13].  

The initial estimate of camera pose using structure 
from motion requires that an identifiable object be moved 
so that the working space is covered. Since the 
requirements are the same for tracking, the data gathered 
earlier can be reused. Rather than discretizing 
observations into time intervals, an EKF processes the 
observations into a continuous 3D object path. 
 
Virtual object creation.  Tracking a 3D object over a 
wide area provides a method for obtaining a large virtual 
calibration object. A conventional calibration object has 
features distributed spatially. Ideally these features are 

distributed in such a way that they are easily identifiable 
and cover the working volume. For large working 
volumes it is impractical to build a precisely measured 
physical object for the purposes of calibration. The virtual 
calibration object defined by the estimated 3D object path 
has features distributed temporally. Each temporal 
moment relates to a single position in space.  

Even with correctly calibrated cameras, the object 
trace obtained previously will not be perfect. Inadvertent 
motion into a region observed by a single camera will 
leave the system under-constrained. Occlusions can cause 
complete loss of the object, and sudden acceleration will 
not fit our EKF model. In order to ensure an accurate 
virtual calibration object, we discard trace points that are 
seen by only one camera. In addition, we discard trace 
points for two seconds after time periods in which no 
camera observes the point. This provides a chance for the 
system to settle back into more reliable state. 

Since almost any location on the path can be used, a 
large number of calibration features can be constructed. If 
the path of the physical object through space traverses all 
portions of the desired working volume, then excellent 
coverage is obtained as well. 
 
Recalibrating camera extrinsics.  The virtual calibration 
object can be used to individually calibrate each camera 
with respect to the global coordinate system. A given 
camera reports a sequence of 2D image observations. The 
time of observation relates this 2D observation to a 
corresponding 3D feature point in the virtual calibration 
object. The resulting set of 2D to 3D correspondences can 
be used to find the external camera pose. As in calibrating 
the internal characteristics of our camera, we use a 
standard method [4]. 

Iterating the above stages improves the estimate of 
both camera pose and virtual object location. More 
accurate virtual objects provide better camera calibration, 
and better camera calibration allows the virtual object 
path to be determined more accurately. We have obtained 
convergence for highly over-constrained environments in 
five iterations, with more general wide area settings 
requiring up to forty iterations. 

5 Results 

Evaluating the effectiveness of a calibration method 
is not trivial. It is sometimes difficult to obtain ground 
truth data for the camera in question. In addition, since we 
have proposed a calibration method for use in wide area 
environments, general comparisons with existing 
techniques are impossible.  

We first discuss an appropriate metric with which to 
evaluate our results. Next we consider calibration in a 
restricted setting, in which comparison with existing 
techniques is possible. Finally, we show that our proposed 



method functions as expected on a more general wide 
area calibration task. 

5.1 Evaluation metric 

Camera calibration is often defined in terms of 
projection error. In a traditional calibration task, known 
3D locations are projected onto the camera image plane. 
The distance from the projected point to the observed 
image location is known as the projection error. Given a 
set of correspondences, the best camera calibration is the 
one that minimizes this error.  

Another formulation provides only 2D image 
correspondences between multiple cameras. In this case, 
in addition to camera parameters, the actual 3D point 
location is unknown. The best fit of these variables is 
often defined as a minimization of projection error. If 
cameras are poorly calibrated in relation to one another, 
then one expects projection error to be quite high.  

Since the cameras used in our application are not 
synchronized, we slightly modify this method. An object 
is tracked using an EKF as previously described. At the 
time of each camera observation, the EKF provides a 
predicted object location. The predicted location can be 
projected onto the camera image plane. The distance 
between the predicted location and the observed location 

is recorded as projection error. Note that this error may be 
caused in part due to an inadequate EKF system dynamic 
model. In our case we use a constant velocity model; thus, 
any acceleration applied to the object will appear as 
projection error. However, this error will be present only 
during acceleration. Extended, consistent bias in the 
projection error can be attributed to poor camera 
calibration. 

5.2 Comparison with existing techniques 

In order to compare our proposed calibration to 
existing methods, we have constructed an example in a 
more restricted setting. By arranging multiple cameras so 
that all may observe a single region of space, traditional 
target based calibration can be performed (Figure 4). 

We calibrate the camera system using two methods, 
the one proposed in this paper, and one that uses a 
physical target. In order to isolate potential noise, the 
target based calibration uses the same LED feature as was 
used to build a virtual calibration object. This LED 
feature is now placed at the end of a Faro digitizing arm 
[14] that returns the position of the tip of the arm with 
sub-millimeter accuracy.  By arranging for simultaneous 
triggering of the digitizing arm and camera, we can obtain 
correspondences between the global 3D location of the 
feature and the observed 2D image location. While only a 
few correspondences are theoretically needed, we use 
approximately 50 to obtain robust external calibration. By 
repeating this process for each camera a complete set of 
calibrations in a single coordinate space is obtained. 

To evaluate our method fairly, we gathered a new 
object trace unrelated to any previous traces used during 
calibration. It is important not to reuse previous traces 
during evaluation, since we want to ensure against overfit 
solutions that match the input data set, but do not actually 
provide a calibrated system of cameras. Figure 5 contains 
a set of graphs showing projection error in the tracking 
process for a particular camera. (Data from other cameras 
in the system is similar.) Using the calibration obtained 
with a traditional physical target results in trace (a). The 
average pixel error in a mean squared sense over all 
cameras is relatively low, only 4.4 pixels. The rough 
global calibration obtained using structure from motion 

 

Figure 4: Restricted setting in which all cameras can 
see a common area. A configuration such as this allows 
comparison with existing calibration techniques. 

 
 (a) (b) (c) (d) 

Figure 5: Comparison of projection error of a point trace using (a) traditional target based calibration, (b) 
structure from motion only, (c) one iteration of virtual object calibration, (d) five iterations of virtual object 
calibration. Note that a virtual calibration object performs as well as traditional calibration. 



results in trace (b). Note that the mean error has greatly 
increased to 33.8 pixels. After building a virtual 
calibration object and recalibrating the cameras, we obtain 
trace (c). Using a virtual calibration object has reduced 
the mean error to 14.4 pixels. After five iterations of 
building virtual calibration objects and recalibrating the 
cameras, trace (d) results. The mean error has been further 
reduced to 3.9 pixels, approximately equal to the known 
reliable calibration obtained with a target. Some error 
remains, but as mentioned earlier this may be due to 
object acceleration or image feature extraction noise.  

5.3 Example in a wide area setting 

In a wide area setting, we can verify that the iteration 
process converges in a similar fashion to the more 
restricted setting described above. The following results 
consider camera placement designed for tracking people 
in a room sized environment. The method proposed in this 
paper was used to calibrate all cameras. Figure 1 shows 

final camera placement, while Figure 6 shows camera 
locations after calibration using only structure from 
motion. Note that these locations are approximately 
correct. However, refinement is required. For example, 
the three cameras in the middle are expected to be 
collinear. Figure 6 also shows a plan view of the temporal 
path used to build a virtual calibration object. Note that 
the path traverses the field of view of all cameras, 
covering the working volume better than a single physical 
calibration object. 

As described previously, projection error is expected 
to decrease as quality of calibration improves. A new 
trace unrelated with calibration was captured. Figure 7a 
shows the projection error of a single camera after 
globally calibrating all cameras using structure from 
motion.  As before, the mean error across all cameras is 
quite large, 16.3 pixels. Holes in the graph indicate time 
periods in which this particular camera did not observe 
the object, so no error measure is available. (Of course 
metrics are available for other cameras that do see the 
point during this time period). Figure 7b shows the 
improvement after three iterations. Forty iterations of 
building a virtual calibration object results in a low 
projection error, 1.3 pixels, shown in Figure 7c. 
Projection error lower than that obtained in the previous 
example can likely be attributed to improvements in 
intrinsic camera calibration. A plot of pixel error vs. 
iterations can be seen in Figure 8. 

6 Conclusions 

Calibration of cameras in a wide area environment 
introduces new challenges to the calibration process. 
Since individual cameras observe only a small fraction of 
the whole environment, determination of reliable global 
relationships is difficult. Typical previous approaches 
such as building calibration objects that span the 
observation space do not scale well into wide area 
environments. 

We have introduced a method suitable for calibration 

 

 

Figure 6: Top view of camera positions after applying 
structure from motion only. The object path shown 
defines a virtual calibration object that can be used to 
improve camera calibration.  

 
 (a) (b) (c) 

Figure 7: Projection error in a wide area calibration task. (a) Error after applying structure from motion. 
(b) Error after three iterations of calibration using a virtual calibration object. (c) Significantly reduced 
error after forty iterations using a virtual calibration object. 



of cameras under these difficult conditions. Intrinsic 
camera properties are calibrated using existing methods. 
Next pairwise extrinsic relationships are determined using 
standard structure from motion techniques. These 
pairwise relationships allow us to derive an approximate 
global calibration involving all cameras. The initial 
estimate of global relationships is not precise. However, it 
can be used to initialize an iterative calibration technique. 
Tracking a known physical object as it moves through the 
environment allows a virtual calibration object to be built. 
This virtual calibration object can be used as if it were a 
giant physical calibration object to improve the global 
camera calibration.  Iterating the above process leads to 
our final camera alignment. 

We have presented results that show our calibration 
method to be competitive with existing techniques in 
environments where comparison is possible. Further, we 
show results from an environment where previous 
calibration methods are unsuitable. 

A number of improvements and extensions are 
candidates for future work. The need for consistent time-
keeping on distributed CPUs could be relaxed. In this case 
the time offset between cameras could be solved as an 
additional calibration parameter. We would also like to 
investigate calibration of moving cameras using a similar 
method, since careful placement of physical targets is 
impossible in dynamic environments.  
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