
Spreadsheets for Images
Marc Levoy

Computer Science Department
Stanford University

Abstract
We describe a data visualization system based on

spreadsheets. Cells in our spreadsheet contain graphical objects
such as images, volumes, or movies. Cells may also contain
widgets such as buttons, sliders, or curve editors. Objects are
displayed in miniature inside each cell. Formulas for cells are
written in a general-purpose programming language (Tcl) aug-
mented with operators for array manipulation, image processing,
and rendering.

Compared to flow chart visualization systems, spreadsheets
are more expressive, more scalable, and easier to program. Com-
pared to conventional numerical spreadsheets, spreadsheets for
images pose several unique design problems: larger formulas,
longer computation times, and more complicated intercell depen-
dencies. In response to these problems, we have extended the
spreadsheet paradigm in three ways: formulas can display their
results anywhere in the spreadsheet, cells can be selectively dis-
abled, and multiple cells can be edited at once. We discuss these
extensions and their implications, and we also point out some
unexpected uses for our spreadsheets: as a visual database
browser, as a graphical user interface builder, as a smart clipboard
for the desktop, and as a presentation tool.

CR Categories: I.4.0 [Image Processing]: General — Image pro-
cessing software; I.3.6 [Computer Graphics]: Methodology and
Techniques — Interaction techniques, Languages; D.3.2 [Pro-
gramming Languages]: Language Classifications — Data-flow
languages

Additional keywords: data visualization, user interfaces, flow
charts, visual programming languages, spreadsheets

1. Introduction
The majority of commercially available image processing

and data visualization systems employ a flow chart paradigm.
Users select processing modules from a menu and wire them
together using a mouse. Although elegant in principle, flow charts
are limited in expressiveness and scalability. Useful program-
ming constructs like procedure calls and variable substitution can-
not be conveniently expressed in these systems. Flow charts
spend their screen real estate on operators and their interconnec-
tions, which becomes uninteresting once the flow chart has been
������������������������������������

Address: Center for Integrated Systems Email: levoy@cs.stanford.edu
Stanford University Web: http://www-graphics.stanford.edu
Stanford, CA 94305-4070

specified, and they run out of screen space if the chart exceeds a
few dozen operators. Flow charts also provide no convenient
mechanism for managing multiple datasets.

We propose an alternative paradigm based on spreadsheets.
Broadly speaking, a spreadsheet is a system for specifying con-
straints among cells arranged in a grid. Cells may contain a con-
stant data value or a formula that evaluates to a data value. For-
mulas may reference the value of other cells, but they may not
alter the value of other cells. Formulas are typically written in a
simple, interpreted language. Examples of spreadsheet systems
are Microsoft’s Excel, Lotus’s 1-2-3, and Borland’s Quattro.

We have implemented a spreadsheet for images (hen-
ceforth denoted SI) in which we extend the notion of a data value
to include graphical objects such as images. These objects are
displayed in miniature inside each cell. Double clicking on a cell
brings up the full-size object. Cells may also contain interactive
widgets. Manipulating a widget modifies the data associated with
the cell. If formulas in other cells reference the modified cell,
they are recomputed as well.

Formulas in our spreadsheet are written in Tcl, a general-
purpose programming language that provides variables, assign-
ment statements, procedures, and a full complement of control
structures. The formula for a cell can range from a one-line
expression to an entire program. To support editing of such for-
mulas, SI is intimately tied to Emacs, a popular, customizable text
editor. Double clicking on a cell brings up an Emacs window
devoted to that cell.

Compared to flow chart systems, the presence of an embed-
ded formula language makes SI more expressive. The infinite
grid of the spreadsheet, together with the ability to resize cells,
gives SI better scalability. SI also spends its screen space on
operands rather than operators, which are usually more interesting
to the user. Finally, because spreadsheets are two-dimensional,
they provide a natural mechanism for applying multiple operators
to multiple datasets.

Compared to conventional numerical spreadsheets, SI
offers three important extensions. Firstly, a formula in SI can
display its result anywhere in the spreadsheet. This allows users
to intermix functional and imperative programming styles, simpli-
fying many common tasks. Secondly, SI allows cells to be selec-
tively disabled. This allows users to work on one part of the
spreadsheet at a time, a useful feature in the face of long cell com-
putation times. Thirdly, SI allows multiple cells to be edited at
once and fired as a group. This simplifies development of compli-
cated spreadsheets. These three extensions complicate the depen-
dency analysis and the cell firing algorithm, as we shall see.

The remainder of the paper is organized as follows. Sec-
tion 2 presents our reasons for choosing Tcl as our formula
language, and it describes how Tcl and SI fit together. Section 3
describes the logical structure and command set of SI. The
remaining sections describe SI’s implementation, our experiences
with SI, comparisons with other systems, and the future of SI.



������������������������������������������������������
load, store, display,
openwindow*, closewindow*,
popwindow, pushwindow

Register manipulation

loadsheet, storesheet,
winsize*, titleheight,
view-pixel*

Spreadsheet services

cellsize*, view-cell,
cut*, copy*,
paste*, delete*,
enable*, disable*

Cell manipulation

regexists, queryreg,
codereg, codecell

Data structure queries
��������������������������������������������������������
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�

Figure 1: Commands of the SI kernel. Starred commands are also
available using a point and click interface.

2. Tcl as a formula language
From a conceptual point of view, the choice of a formula

language is unimportant. We envision SI as a kit of parts in which
the language is a replaceable module. For our prototype, we
sought a language that was powerful, easy to type, and interpreted
rather than compiled (for interactivity). Our choice was Tcl
(Toolkit Command Language) [3]. Tcl consists of an
application-independent embeddable command interpreter, a set
of built-in commands for manipulating variables, strings, lists, and
files, and a set of C-callable interface routines for adding addi-
tional commands. Examples of Tcl code are scattered throughout
this paper.

From the user’s point of view, Tcl’s advantages are that it
is easy to type (like UNIX shell commands) and that it provides a
variety of control structures and substitution mechanisms (like the
UNIX shell but better). From the implementors’ point of view,
Tcl’s advantages are its small code size, its fast execution (fast
enough to use for mouse event loops), and its simple interface to
C — procedure calls with string arguments.

Tcl has one further advantage: it is the basis for Tk [4], an
X11 toolkit similar to Xt. Tk provides a base set of graphics and
text-oriented widgets, a mechanism for defining new widgets, and
a simplified interface between user applications and the X window
system. For SGI users, Tk replaces the window management and
event handling services that are present in GL but are missing in
OpenGL. As the Tcl/Tk user communities expand, we expect to
see Tk widget sets for 3D graphics and image processing.

Tcl appears in two places in SI. Firstly, it is the language
in which formulas are written. Secondly, the SI program provides
a Tcl command prompt. Users may invoke all of the functionality
of SI, including functions normally driven by the mouse, by enter-
ing commands at this prompt. This capability allows users to
record and play back interactive sessions, to customize SI from an
initialization script, and to perform many other useful tasks.

3. The structure and commands of SI
SI consists of a kernel and one or more standalone applica-

tion packages. The kernel manages memory, displays the
spreadsheet, and contains the firing algorithm. The application
packages create and manipulate data registers and are responsible
for defining Tk-compatible widgets to display the registers they
create. This modular design reflects one of Ousterhout’s goals for
Tcl: systems composed of compact, reusable parts.

������������������������������������������������������
scalar, vector, scanline,
image, volume

Register creation

button, slider, label,
plot, imageviewer, cineviewer

Display widgets

copy, extract, insert,
promote, slice, delete

Register manipulation

add, subtract, multiply,
divide, mod, over, and,
or, makeramp, ramp, shift

Pixel operations

rotate, convolve,
scale, displace,
warp, makedisplacement

Spatial operations

readabekas, deinterlace,
profile, opinion, occupancy

3D occupancy grids
��������������������������������������������������������
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Figure 2: Commands of a prototype image processing package,
including the commands for processing 3D occupancy grids that
were used to generate figure 5.

In this section, we take a tour through the logical structure
and command set of the SI kernel. Our examples include com-
mands from a simple image processing application package. The
command set of the SI kernel is listed in figure 1. The command
set of our image processing package is listed in figure 2.

3.1. Registers
The basic unit of storage in SI is called a register. A regis-

ter is a named allocation of memory. Registers may contain any-
thing: images, volumes, geometry, etc. The SI kernel controls the
allocation and deallocation of registers, but the kernel knows
nothing about the contents of a register. The contents and
interpretation of registers is determined by those application pack-
age commands that know how to manipulate them.

Commands in SI generally consist of a command name fol-
lowed by options and one or more arguments. The argument list
for most commands includes the name of one or more registers.
For example,

rotate -Bspline myreg Y 45 newreg

rotates a volume register named myreg around its Y-axis by 45
degrees. The command uses a cubic B-spline as its resampling
filter, and places its result into a register named newreg.

To minimize the number of type coercions a user must per-
form, most commands accept a variety of register types, perform-
ing conversions, applying defaults, or ignoring arguments as
appropriate. One very important default is that if the name of the
output register (newreg above) is omitted, SI will make up a
name. To make this form useful, commands that produce a regis-
ter as output return a string result giving the name of the output
register. The register produced by such a command can be used
as the input to another command using Tcl’s command substitu-
tion mechanism:

rotate -Bspline [load head.mri] Y 45 newreg

In this formula, the load command executes first, generating an
arbitrary name for its output register, e.g. Reg123. The
rotate executes next, with arguments Reg123 Y 45
newreg. The register produced by the load command is never
seen by the user and is unimportant. It is deleted automatically by
SI when the formula is modified or when the cell is deleted.



3.2. Display widgets
The contents of registers are by themselves undisplayable.

The second building block in SI is a display widget. It is a view
of a register. Some types of registers may have more than one
widget that knows how to display them; others may have none.
Such a register would need to be converted to a displayable type
in order to view it.

Display widgets are associated with registers using a
widget command. For example,

cineviewer -rocking [load head.mri]

loads a volume into a register, then opens a window on the works-
tation screen that contains an instance of the cine viewer widget.
This widget contains image subwindows and interactive controls
for viewing slices of a volume as a flipbook animation. The
-rocking option specifies that the animation should alternate
directions rather than circling from the last frame back to the first
frame.

3.3. Cells
The third building block in SI is a cell. In addition to their

usual appearance, all display widgets in SI know how to draw
themselves in miniature inside a spreadsheet cell. Miniature ver-
sions of widgets may be live, meaning that they respond to mouse
events just like the full-size widget, or dead, in which case double
clicking on the miniature version brings up the full-size widget.

Display widgets are associated with cells by adding a cell
name argument to the widget command. To display a miniature
version of the cine viewer widget in cell a1, we type

cineviewer -rocking [load head.mri] a1 (1)

So far, we have assumed that all formulas are entered at the SI
program prompt. If a formula is instead typed into an Emacs win-
dow that is associated with a particular cell, the cell name argu-
ment may be omitted:

a1: cineviewer -rocking [load head.mri]

We use the notation "a1:" (typeset in Times Roman) to signify
that the formula that follows (typeset in Courier) is contained in
the cell a1. The "a1:" does not appear in the cell. Every type of
register has a default display widget. For volumes, it is the cine
viewer. Therefore, the formula in cell a1 could be further
simplified to read

a1: load head.mri

Executing this formula would cause the specified file to be loaded
into a volume register, and a miniature version of the cine viewer
to be displayed in the cell. If the formula contains more than one
command separated by newlines, only the register returned by the
last command executed will be displayed in the cell.

In the common case, the user doesn’t need to think about
registers or display widgets when writing formulas. The vast
majority of formulas will look like this last example. The key to
providing both brevity and flexibility in the formula language lies
in the liberal use of defaults.

3.4. Chaining formulas together
Cell names may be used in any context in which a register

name is valid. This allows us to reference the data in a cell by
either its register name or its cell name. Here is a simple three-
cell spreadsheet:

a1: load alps.rgb
b1: rotate a1 45
c1: ramp b1 [makeramp {{0 255} {255 0}}]

The first command loads an image into cell a1. A miniature ver-
sion of the image is displayed in the cell. The second command
rotates the image by 45 degrees and displays the result in cell b1.
The third command inverts the pixel values in the rotated image,
displaying its result in cell c1. The makeramp command
accepts a Tcl list of coordinate pairs and returns a Tcl list of coor-
dinates piecewise linearly interpolated from the specified coordi-
nates. In this example, the command would return the Tcl list
{{0 255} {1 254} {2 253}...}}. This list becomes an
input argument to the ramp command, which modifies the image
from cell b1.

3.5. Ways to reference a cell
As in numerical spreadsheets, references to cells can be

relative or absolute. b1 is a relative reference. If a formula
containing this reference were moved down one row using cut and
paste, the reference would be changed to b2. If the formula is
being edited in an Emacs window at the time it is relocated, SI
sends the updated text to Emacs. In contrast, the notation /b1,
b/1, or /b/1 forces the column, row, or both coordinates to be
absolute, respectively. Absolute references are not modified if the
cells are relocated.

SI also supports arithmetic calculations on cell references.
For example, a1+2+3 references the cell two rows down and
three columns right from the base address a1. If a formula con-
taining this reference were moved down one row, the base address
a1 would be changed to a2, and the reference would stay
correct. Note that this construction is similar to Excel’s
OFFSET(A1,2,3), but is somewhat easier to type.

Finally, all of Tcl’s substitution mechanisms can be applied
to cell references. Thus, a1+$i+$j references the cell whose
row and column offsets from a1 are given by the Tcl variables
i and j respectively. Similarly, a1+[foo]+[bar] references
the cell whose offsets are the values returned by the Tcl com-
mands foo and bar. Finally, every occupied cell in the
spreadsheet has associated with it a Tcl command that returns the
contents of the register displayed in that cell. Thus,
a1+[b1]+[b2] references the cell whose offsets are the values
contained in cells b1 and b2.

3.6. Active widgets
In addition to being live or dead, widgets may be passive,

meaning that they only display their underlying registers, or
active, meaning that they both display and modify their underly-
ing registers. For example:

a1: load alps.rgb
b1: slider
b2: rotate a1 [b1]

The command slider in cell b1 is a widget command, Since it
is invoked without arguments in this example (compare to the
cineviewer command in example (1)), a default scalar integer
register is created, and the slider displays the contents of that
register. The operand [b1] in cell b2 invokes the command
b1, which returns the current value of the slider in cell b1, and the
rotate command rotates the image in cell a1 by this amount.
Since the formula in cell b2 depends on cell b1, moving the slider
causes the rotation to be recomputed.



The spreadsheet for this example is shown in figure 3. The
slider widget is really Tk’s "scale" widget. The options visible on
the slider command in the figure are options defined by Tk for
its scale command. In addition to these Tk-defined options,
most active widgets accept a -[no]continuous option.
Specifying -continuous means that the widget will fire its
descendents repeatedly (as fast as possible) until the mouse button
is released. If the slider in the previous example were so defined,
dragging the slider bar back and forth would cause the image to
rotate back and forth. To reduce computational delays if cell b2
were the beginning of a long sequence of operations, active widg-
ets also accept a -[no]firedescendents option. Specify-
ing -nofiredescendents means that the widget will fire
only its immediate children as long as the mouse button is down.
When the button is released, the widget’s other descendents will
be fired.

3.7. Control structures
SI supports all of the control structures in Tcl, including

if, while, for, foreach, and case. Of particular
interest are the looping commands. Loops in SI take one of three
general forms:

Single-cell loops. The easiest way to code a loop is
entirely within one cell using the Tcl for command:

a1: load alps.reg temp
for {set i 0} {$i <= 90} {incr i 30}

{rotate temp $i a1}

This formula will step the alpine pasture image through four rota-
tional positions, each of which will appear briefly in cell a1.

Multi-cell for-loop. If the user has already built a
sequence of processing steps and decides retrospectively to iterate
one or more parameters of the sequence over a range of values,
this can be done without reworking the entire spreadsheet by
inserting one additional cell at the beginning of the loop to trigger
it:

a2: for {set i 0} {$i <= 90} {incr i 30}
{byte $i a2; fire b2} (2)

b1: load alps.reg
b2: rotate b1 [a2]
b3: ramp b2 [makeramp {{0 0} {255 100}}]

The original spreadsheet consisted of cells b1 through b3. Cell a2
has been added to control the loop. The byte command creates
a scalar byte register and displays it in a2 using a Tk label widget.
The fire command executes cell b2 as a subroutine. When cell
b2 and its descendents (b3 in this example) have finished execut-
ing, control is returned to a2, which increments i and loops.

Multi-cell while-loop. If the user wishes to predicate loop
termination on a value computed by the loop body, two cells are
required to control the loop:

a1: load alps.reg (3)
c1: byte 3
b2: convolve -box [c1] [c1] a1
c3: if {[max [gradient b2]] > 50}

{byte [expr [c1] + 1] c1}

In this example, the byte command in cell c1 initializes the
loop. The if command in cell c3 evaluates a data object com-
puted by the loop body and conditionally modifies cell c1, on
which the loop body depends. The loop body will thereby be
reexecuted repeatedly until the condition becomes false. In this

Figure 3: Slider widget being used to control a rotation. Cell b2
rotates the image in cell a1 by the angle specified on the slider in
cell b1. Each time the slider is moved, cell b2 (and its descendents,
if it had any) are recomputed.

example, cell a1 is blurred by a box filter of increasing width
(starting at 3x3), stopping when the maximum gradient magnitude
in the image drops below 50.

4. Selected implementation details

4.1. The user interface
SI is implemented in C, C++, Tcl/Tk, and Emacs Lisp.

These depend on UNIX and the X window system but are other-
wise platform independent. Some of the widgets currently depend
on GL — the nonportable version of Silicon Graphics’s graphics
library — but these will shortly be converted to OpenGL, a
platform-independent library.

The unique characteristics of SI pose several challenging
user interface design problems. Firstly, our cells are larger than
those in numerical spreadsheets, so fewer of them are displayed at
once. To make navigation easier, we provide an accelerated scrol-
ling tool and the ability to quickly change the size of all cells.
(Individual cells cannot be resized, as this would destroy the regu-
larity of the spreadsheet grid.)

Secondly, our longer formulas and powerful language
semantics lead to more complicated intercell dependencies than in
numerical spreadsheets. To keep users from getting lost, the for-
mula for each cell is displayed inside the cell. Long formulas can
optionally be decimated to fit (see figures 5 and 6). Although the
decimated text is not legible, its overall structure is clearly visible.
To clarify intercell dependencies, the dependency graph can be
displayed as an overlay (see figures 4 and 5).

Thirdly, our cells take longer to compute than cells in
numerical spreadsheets — several minutes in extreme cases. To
keep the spreadsheet visually consistent during long computa-
tions, cells that depend on modified cells are grayed out (in
Macintosh style) to indicate that they are out of date. As each cell
fires, it is highlighted to provide feedback of its progress. The
mouse is alive during cell computations and can be used to navi-
gate through the spreadsheet or abort an errant computation.



As a further response to long cell computation times, SI
allows cells to be selectively disabled, allowing the user to work
on one part of the spreadsheet at a time. In addition, the user can
select a group of cells to edit simultaneously in Emacs, and then
fire the entire group at once with a single keystroke. While most
of the features described above are cosmetic, these last two pro-
foundly affect the firing algorithm, which is discussed in the next
section.

4.2. Managing dependencies
The dependency relationships in SI are represented by a

directed acyclic graph having two types of nodes, formulas and
objects. Objects consist of cell names, register names, Tcl vari-
ables, and Tcl procedures. When a formula consumes an object
(e.g. specifies a cell as input, invokes a Tcl procedure, etc.), this is
represented in the graph by a directed edge from the object to the
formula. When a formula produces an object (e.g. specifies a cell
as output, defines a Tcl procedure, etc.), this is represented by a
directed edge from the formula to the object.

Following user modification of one or more formulas or
objects, the dependency graph is traversed as described in Appen-
dix A, and the modified formulas and their descendents are
recomputed. The time required to perform a dependency analysis
is usually several orders of magnitude smaller than the time
required to execute a formula or decimate an image for display, so
we do not discuss it further here.

SI’s firing algorithm differs from the firing algorithms
found in conventional spreadsheets in two ways. Firstly, the abil-
ity to specify objects as outputs in formulas forces us to distin-
guish formulas from objects in the dependency graph and gives
rise to producer edges (that is, edges from formulas to objects).
Surprisingly, this additional flexibility does not complicate the
dependency analysis in any substantive way.

The second difference arises from our ability to selectively
disable and reenable cells and to edit several formulas at once.
Conventional spreadsheets do not allow either action. As a result,
our firing algorithm begins with a queue of edited or reenabled
formulas which need to be executed. To further complicate
matters, Tcl allows conditionally executed commands and substi-
tutions in command operands (see section 3.5). This prevents us
from lexically scanning a formula in advance of execution to
determine the set of objects it will consume or produce. Without
this information, it is impossible to determine which formula on
the queue should be executed first.

This is a standard problem in operating system design, and
there are standard solutions to it. The solution used in SI (and
described in the appendix) is to execute modified formulas in arbi-
trary order, requeueing them if they consume undefined or invalid
objects. If the dependency relationships are indeed acyclic, this
algorithm is guaranteed to find a valid firing order. The presence
of a cycle leads to a condition called livelock, and it will be
detected by our firing algorithm. This solution can lead to wasted
computation if a formula contains a long computation followed by
a reference to an invalid object, requiring the formula to be
requeued and recomputed from scratch later, but such cases are
rare. In practice, formulas usually make their consumer refer-
ences early, so the time lost to requeuing is negligible, and the
user sees only the final firing order. We are currently investigat-
ing other solutions, including blocking a formula’s execution until
the invalid object is available (in this case, cycles lead to a condi-
tion called deadlock), lexically scanning the cell to resolve as
many references as possible, or allowing formulas to declare a set
of objects they might consume or produce when executed.

5. Experience and examples
Our experience with SI has been limited but positive.

Although its image processing package offers only rudimentary
functionality, we have used it in several research projects (see
figure 5). We have also found some unexpected uses for SI, such
as summarizing research results for colleagues and giving public
presentations (see figure 6). Sometimes, we use it simply as a
smart clipboard for storing images on our desktop, like the Macin-
tosh clipboard but more powerful. Other plausible applications
for SI are as a database browser, as an exposure sheet for com-
puter animation, or as a video postproduction planner.

The ability to specify outputs in formulas makes SI very
different from a conventional spreadsheet, so it is worthwhile to
consider how this additional power might be used. Consider the
spreadsheet shown in figure 4. The user in this example began by
building a pipeline for classifying 3D medical datasets. Puzzled
by the classified volume displayed in cell d2, the user added the
following diagnostic code to the formula in that cell:

set means ""
for {set z 0} {$z < [d2 zlen]} {incr z} {

lappend means [mean [slice d2 $z]]
}
set order [lorder $means]
for {set i 0} {$i < 5} {incr i} {

slice d2 b4+0+$i [lindex $order $i]
}

This code creates a Tcl list containing the mean pixel intensity for
each of the [d2 zlen] slices in the classified volume, calls
lorder, a Tcl proc (defined elsewhere in the formula) to gen-
erate a second list containing slice numbers in order of decreasing
mean slice pixel intensity, and displays the brightest 5 slices in
cells b4 through f4. Still puzzled, the user created formulas in
cells f5 and g5 to analyze one of these slices.

In this example, the ability to display results anywhere in
the spreadsheet made it easy to insert the visual equivalent of a
printf statement into an existing formula — without having to
reorganize the spreadsheet. The ability to define and reference
local variables made it easy to write the for-loops needed to sort
the slices — conventional spreadsheets don’t allow local variables
in formulas. The flexibility to use an imperative programming
style (that is, with assignment statements) in cell d2 to produce
cell f4 and a functional programming style in cell g5 to consume
cell f4 extends but does not break the spreadsheet paradigm — on
the contrary, it seems very natural. This example would have
been difficult to write without this flexibility.

6. Comparisons and discussion
Spreadsheets for images are not a new idea. Piersol’s ASP

package [6], a spreadsheet program based on the Smalltalk-80
object-oriented programming environment, anticipates many of
the features of SI. Cells are allowed to contain any sort of object,
including images and other spreadsheets, and formulas are written
in Smalltalk — a general purpose programming language. In
keeping with the conventional spreadsheet paradigm, formulas in
cells in ASP are not permitted to alter the value of other cells.

Palaniappan’s IISS environment [5] combines a custom
Mathematica-like formula language, Mark Overmars’s Forms UI
toolkit, and the Khoros image processing library. IISS appears to
allow assignment statements, but a complete definition of their
language and firing algorithm has not yet been published.

A key feature of SI is its ability to intermix functional and
imperative programming (see the example in section 5).



Figure 4: A simple classification pipeline for a 3D medical dataset. A slice chosen using the slider in cell b1 is classified according to the transfer
function selected in cell c1. The unclassified and classified slices are displayed in cells b2 and c2, respectively. When the user presses the button in
cell d1, the entire volume is classified and displayed in cell d2. In addition, the brightest 5 slices are displayed in row 4. The display of these
classified slices is controlled by the formula in cell d2 (see section 5). An Emacs editor window is also visible; it is currently editing the contents of
the formula in cell d2.

Interestingly, conventional numerical spreadsheets also offer
imperative programming, usually in the form of a second, hidden
command language that is more flexible than the cell formula
language. To write an imperative program using Excel Version
4.0 [2], the user creates an auxiliary spreadsheet called a macro
sheet that has special properties. Formulas in a macro sheet can
assign values to any cell in the macro sheet using the
SET.VALUE() function. This notation is not permitted in the
main spreadsheet. The advantage of a two-language design is that
it presents a simple programming model to the novice computer
user. The disadvantage is that the jump in complexity from
spreadsheet programming to macro sheet programming is large.

The currently dominant paradigm for visualizing image
data is flow charts, so it is worthwhile comparing them to SI. The
earliest system to combine a graph-based execution model with a
visual programming interface was Paul Haeberli’s ConMan [1].
Currently popular flow-chart visualization packages include AVS,
Explorer, apE, Khoros, IBM’s Data Explorer, PV-Wave,
Wavefront’s Data Visualizer, FIELDVIEW from Intelligent Light,
VoxelView, and many others. SGI’s Explorer [7] is perhaps the
most highly developed of these packages, so we base our com-
parisons on it. Three major factors can be identified:

Expressiveness. The "repeat" and "while" modules of Explorer
approximate the for and while loops of Tcl. Explorer con-
tains no modules, however, that evaluate conditionals or perform
substitutions (unless the user writes a custom module).

Scalability. The "micro" form of a module icon in Explorer
measures 116 x 40 pixels; 30 modules and their associated wiring
makes for a crowded window. Modules may be coalesced into a
single icon, but the user must perform this reduction. Cells in SI
can be resized down to 12 x 17 pixels simply by dragging the win-
dow frame, allowing up to 6000 cells to be displayed at once.
Although cells are unreadable at that size, such a view makes it
easy to navigate through a large spreadsheet.

Customization. Explorer provides extensive support for writing
custom modules, but the jump in complexity from visual program-
ming to module programming in C or Fortran is nontrivial. In SI,
the formula language is also the customization language. The
transition from novice user to expert user is therefore smooth. To
facilitate rapid module prototyping, Explorer also offers an inter-
preted language called Shape. Its power is greater than Tcl
because it directly supports array manipulations, but its interface
to the flow chart via the encapsulating "LatFunction" module is
somewhat cumbersome.

7. Status and future work
The kernel of SI is complete and relatively stable. Our

efforts are now focused on building application packages. The
image processing package used in these examples needs more
commands and a richer library of widgets. We plan to soon add a
volume visualization package, a polygon mesh package, and a
surface fitting package.

The most critical issue for the future of SI is performance.
Spreadsheets offer a natural mechanism not present in flow charts
— and not yet exploited in SI — for controlling computational
expense; images need only be computed at a resolution commen-
surate with the size of the cells in which they are displayed. In the
early stages of a data exploration, miniature images suffice, and
computations should be fast. If the user stretches the spreadsheet,
images get bigger and computations slow down. If the user dou-
ble clicks on a cell, that cell is recalculated at full resolution.
Many image processing operators lend themselves in an obvious
way to such computation shedding; spatial warps can be subsam-
pled; frequency domain operators can be windowed; polygonal
meshes can be retiled using fewer polygons. Our goal is to make
these optimizations transparent to the user.



Another area for future development is the formula
language. Tcl is not an ideal solution in many respects. It offers
only one datatype — strings. Because there are no numerical
datatypes, arithmetic expressions are cumbersome to write, as the
examples in this paper demonstrate. Tcl also does not support
multidimensional arrays. All manipulation of arrays (and hence
images) in SI must be done through C-language commands.
Finally, Tcl does not have the speed of a compiled language like
C. We often find ourselves prototyping a computation in Tcl, then
rewriting it in a combination of Tcl and C. Alternatives to Tcl
include Lisp, a C or C++ interpreter (several now exist), or a new
language that combines the simplicity of Tcl with the power of an
array manipulation language like Mathematica or MATLAB.

To summarize, SI combines the power of a data analysis
language, the interactivity of a flow chart visualizer, and the
extemporaneous qualities of a spreadsheet. While the power of SI
seems useful and easily manageable in examples such as the one
shown in figure 4, SI is nevertheless a general programming
environment, and it is possible to create confusing programs using
it. In particular, the flow of control in the while-loop in section
3.7 is not obvious. In general, the presence of conditionally exe-
cuted commands and substitutions in command operands means
that the reference patterns of formulas in SI are dynamic; cycles
can appear and disappear during spreadsheet recomputation. The
ability of SI to display the dependency graph and to detect cycles
helps, but it is not foolproof. We are continuing to refine the
design of SI as we search for a data analysis paradigm that is sim-
ple enough to keep a novice out of trouble yet powerful enough to
satisfy the needs of a scientist/programmer.

8. Acknowledgements
Discussions with David Heeger, Richard Frank, Bob

Brown, and Robert Skinner were useful in the early stages of the
project. I wish to particularly acknowledge many fruitful discus-
sions with Philippe Lacroute. This research was supported by the
NSF under contract CCR-9157767 and by Software Publishing.

9. References
[1] Haeberli, Paul, ‘‘ConMan: A Visual Programming

Language for Interactive Graphics,’’ Computer Graphics
(Proc. SIGGRAPH), Vol. 22, No. 4, Atlanta, Georgia,
August, 1988, pp. 103-111.

[2] Microsoft Corporation, Excel User’s Guide 2, Microsoft
Corporation, Document Number XL26297-1092, 1992.

[3] Ousterhout, John K., ‘‘Tcl: An Embeddable Command
Language,’’ Proc. 1990 Winter USENIX Conference.

[4] Ousterhout, John K., ‘‘An X11 Toolkit Based on the Tcl
Language,’’ Proc. 1991 Winter USENIX Conference.

[5] Palaniappan, K., Hasler, A.F., Manyin, M., ‘‘Exploratory
Analysis of Satellite Data Using the Interactive Image
Spreadsheet (IISS) Environment,’’ Preprint volume of the
9th Internation Conference on Interactive Information and
Processing Anaheim, California, January, 1993, pp. 145-
152.

[6] Piersol, K.W., ‘‘Object Oriented Spreadsheets: The Ana-
lytic Spreadsheet Package,’’ Proc. OOPSLA ’86, Sep-
tember, 1986, pp. 385-390.

[7] Silicon Graphics Inc., IRIS Explorer User’s Guide and IRIS
Explorer Module Writer’s Guide, Silicon Graphics Inc.,
Document numbers 007-1371-020 and -1369-, 1992-1993.

Appendix A: The firing algorithm
Dependency relationships in SI are represented by by a

directed acyclic graph having two types of nodes, formulas and
objects, as described in section 4.2. Formula are marked as
modified or unmodified, and objects are marked as modified or
unmodified, and as valid or invalid. Formulas become modified in
one of three ways:

(1) The user changes a formula using the Emacs text editor.

(2) The user adds, deletes, cuts, pastes, or loads a cell.

(3) The user enables for firing a previously disabled cell.

Following user modification of one or more formulas, an execu-
tion queue is created and is initialized to the set of modified for-
mulas, arranged in arbitrary order. The firing algorithm then
proceeds as follows:

Step 1: execute a formula. Remove a formula i from
the front of the queue, delete all edges originating or ter-
minating at i, and submit it to the Tcl interpreter for execu-
tion. For each object j consumed (or produced) by formula i
as it executes, add a directed edge from j to i (or from i to j)
to the graph. If two producer references point to the same
object, a collision has occurred; flag it as an error. If i is
found to consume an undefined or invalid object (e.g. an
empty or invalidated cell, an undefined Tcl procedure, etc.),
abort execution and move i to the back of the queue. If no
formula on the queue can be executed successfully, the
spreadsheet contains a cycle; flag it as an error.

Step 2: invalidate its descendents. If formula i exe-
cutes successfully, mark as invalid all objects k such that
there exists a path of length one or more originating from i
and terminating at k. Allow cycles of length two involving a
formula and an object. This allows a formula to
read/modify/write a register. Cycles of length greater than
two are flagged as errors.

Step 3: fire its direct consumers. Add to the execu-
tion queue all direct consumers of all objects produced by i,
i.e. all formulas m for which the graph now contains a
directed edge of length two from i to m (passing through an
object).

Following user modification of an object (e.g. by manipulating an
active widget or by resetting a global variable at SI’s Tcl com-
mand prompt), all formulas that consume (either directly or
indirectly) the object are queued for execution using a similar
algorithm.

To avoid introducing cycles into the dependency graph,
multi-cell loops require the following special treatment. In the
for-loop of example (2) (section 3.7), the fire command in cell
a2 executes cell b2 and its descendents as a subroutine. The sub-
routine returns when the execution queue is empty, allowing cell
a2 to continue execution. This mechanism bypasses the usual
dependency analysis, allowing us to omit from the graph a pro-
ducer edge from the formula in cell a2 to cell b2 and a consumer
edge from cell b3 to the formula in cell a2, which would form a
cycle. In the while-loop of example (3), the byte command in
cell c3 conditionally overwrites cell c1, creating an edge in the
graph from c3 to c1 and temporarily creating a cycle. This edge is
deleted each time c3 begins execution. On the last iteration
through the loop, the byte command is not executed and no
edge is created. Therefore, in the quiescent states that precede
and follow execution of the loop, the graph is acyclic.



Figure 5: This spreadsheet depicts the flow of data in a 3D fax machine - a machine we are building in our lab for digitizing the shape and
external appearance of physical objects using a laser scanner and precision motion platform. When the button in cell a1 is pressed, four
laser reflection image sequences are loaded into cells a2 through a5, respectively. A cine viewer widget associated with each cell displays a
frame from that image sequence in miniature in the cell. The slice specified in the slider in cell b1 is then loaded into cells b2 through b5.
Two different occupancy grid algorithms are applied to these slices, leading after some intermediate steps to the results shown in cells c5
and i5. Volume renderings of the complete volumetric occupancy grid have been imported from another spreadsheet and are shown in cells
c6 and i6. The user has double clicked on cell i6, so its image is also shown full size at the bottom of the screen. The scene is a pile of
wooden children’s blocks. An Emacs editor window is also visible; it is currently editing the contents of the formula in cell g2.

Figure 6: This spreadsheet was used to give a live classroom demonstration of the effects of image quantization. The original 8-bit
images are in cells a3 through a5. The sliders in cells c1 through i1 are used to set the number of bits to which the images appearing in that
column are quantized. This example demonstrates how the two-dimensional grid of a spreadsheet lends itself naturally to visualizing
multiple operators applied to multiple datasets. The user has double clicked on cells g3 and c5, so they are also shown at full size. This
spreadsheet took about 10 minutes to construct.


