
High-Speed Videography Using a Dense Camera Array

Bennett Wilburn∗ Neel Joshi† Vaibhav Vaish† Marc Levoy† Mark Horowitz∗

∗Department of Electrical Engineering†Department of Computer Science
Stanford University, Stanford, CA 94305

Abstract

We demonstrate a system for capturing multi-thousand
frame-per-second (fps) video using a dense array of cheap
30fps CMOS image sensors. A benefit of using a camera
array to capture high-speed video is that we can scale to
higher speeds by simply adding more cameras. Even at ex-
tremely high frame rates, our array architecture supports
continuous streaming to disk from all of the cameras. This
allows us to record unpredictable events, in which nothing
occurs before the event of interest that could be used to trig-
ger the beginning of recording.

Synthesizing one high-speed video sequence using im-
ages from an array of cameras requires methods to cali-
brate and correct those cameras’ varying radiometric and
geometric properties. We assume that our scene is either
relatively planar or is very far away from the camera and
that the images can therefore be aligned using projective
transforms. We analyze the errors from this assumption and
present methods to make them less visually objectionable.
We also present a new method to automatically color match
our sensors. Finally, we demonstrate how to compensate for
spatial and temporal distortions caused by the electronic
rolling shutter, a common feature of low-end CMOS sen-
sors.

1. Introduction
As semiconductor technology advances, capturing and pro-
cessing video from many cameras becomes increasingly
easy and inexpensive. It therefore makes sense to ask what
we can accomplish with many cameras and plentiful pro-
cessing. To answer this question, we have built a custom
array of over one hundred inexpensive CMOS image sen-
sors, essentially a gigasample per second photometer. We
are free to allocate those samples in many ways—abutting
the cameras’ fields of view for increased resolution, viewing
the same regions with varying exposure times to increase
dynamic range, and so on. In this paper, we explore dis-
tributing the samples in time to simulate a single high-speed
camera.

Creating a single high-speed camera from our array re-

quires a combination of fine control over the cameras and
compensation for varying geometric and radiometric prop-
erties characteristic of cheap image sensors. We show that
we can geometrically align our images with 2D homogra-
phies and present ways to minimize objectionable artifacts
due to alignment errors. To achieve good color matching
between cameras, we use a two-step process that iteratively
configures the sensors to fit a desired linear response over
the range of intensities in our scene, then characterizes and
corrects the sensor outputs in postprocessing. Another char-
acteristic of inexpensive CMOS sensors is the electronic
rolling shutter, which causes distortions for fast moving ob-
jects. We show that rolling shutter images are diagonal
planes in the spatiotemporal volume. Slicing the volume
of rolling shutter images along vertical planes of constant
time eliminates the distortions. We also explore ways to
extend performance by taking advantage of the unique fea-
tures of multiple camera sensors—parallel compression for
very long recordings, and exposure windows that span mul-
tiple high-speed frame times for increasing the frame rate
or signal-to-noise ratio.

2. Previous Work
High-speed imaging is used to analyze automotive crash
tests, golf swings, explosions, and more. Industrial, re-
search, and military applications have motivated increas-
ingly faster high-speed cameras. Currently, off-the-shelf
cameras from companies like Photron and Vision Research
can record 800x600 pixels at 4800fps, or 2.3 gigasamples
per second. These devices use a single image sensor and
are typically limited to storing just a few seconds of data be-
cause of the huge bandwidths involved in high-speed video.
The short recording duration means that acquisition must
be synchronized with the event of interest. Our system cap-
tures and compresses data from many cameras in parallel,
allowing us to stream for minutes and eliminating the need
for triggers.

To our knowledge, little work has been done generating
high-speed video from multiple cameras running at video
frame rates, although several groups have demonstrated the
utility of large camera arrays. Virtualized RealityTM [1] cap-



tures video from 49 synchronized, color, off-the-shelf S-
Video cameras for for 3D reconstruction and virtual navi-
gation through dynamic scenes. Yang et al. built a real-
time distributed light field camera[2] from an 8x8 grid of
commodity webcams for real-time light field rendering of
dynamic scenes. Their system produces one video stream’s
worth of data, although this stream can be assembled from
multiple camera inputs in real time. With our more flexible
array, we can explore ways to extend camera performance
other than view interpolation.

The prior work closest to ours is the paper by Shechtman,
et al. on increasing the spatio-temporal resolution of video
from multiple cameras[3]. They acquire video at regular
frame rates with motion blur and aliasing, then synthesize
a high-speed video. Our method, with better timing control
and more cameras, eliminates the need for this sophisticated
processing, although we will show that we can leverage this
work to extend the range of the system.

3. High-Speed Videography Using An
Array of Cameras

In this section, we present an overview of our camera ar-
ray hardware and the features which are critical for this ap-
plication. We then discuss the issues in synthesizing one
high-speed video stream from many cameras. Specifically,
our cameras have slightly different centers of projections,
and vary in focal length, orientation, color response, and so
on. They must be calibrated relative to each other and their
images corrected and aligned in order to form a visually ac-
ceptable video sequence.

3.1. The Multiple Camera Array
Our 100 camera array is based on the prototype six-camera
architecture described in[4]. This work and that of [5] are
the first applications demonstrating the final system. The
cameras use CMOS image sensors, MPEG compression,
IEEE1394, and a simple means for distributing a clock and
trigger signals to the entire array. Each camera has a pro-
cessing board that manages the compression and IEEE1394
interface, and a separate small board that contains the im-
age sensor. We use Omnivision OV8610 sensors to capture
640x480 pixel, Bayer mosaic color images at 30fps.

The array can take up to twenty synchronized, sequential
snapshots from all of the cameras at once. The images are
stored locally in memory at each camera, limiting us to only
2/3s of video. Using MPEG compression at each camera,
we can capture essentially indefinitely. MPEG compresses
9MB/s of raw video to 4Mb/s streams, reducing the total
video bandwidth of our 52 camera array from 457MB/s to a
more manageable 26MB/s. The resulting compression ratio
is 18:1, which is considered mild for MPEG. We require just
one PC per 26 cameras to capture the compressed video.

Figure 1: An array of 52 cameras for capturing high-speed
video. The cameras are packed closely together to approxi-
mate a single center of projection.

Each camera’s exposure duration can be set in incre-
ments of 205µs down to a minimum of 205µs, or four scan-
lines. Common clock and trigger signals are distributed via
CAT5 cables to the entire array. Unlike the prototype, our
new cameras are not only frequency-locked but can also be
arbitrarily phase-shifted with respect to the trigger signal.
The camera timing is accurate to within 200ns across the
entire array, or less than one tenth of a percent of our cam-
eras’ minimum exposure time. As we will show, this precise
control is critical to our high-speed video application.

To approximate a camera with a single center of pro-
jection, we would like our cameras to be packed as close
together as possible. The array was designed with tight
packing in mind. As noted earlier, the image sensors are on
separate small boards. For work in this paper, we mounted
them on a sheet of laser cut plastic with holes for up to a
12x12 grid of cameras. Each camera board is attached to
the mount by three spring-loaded screws that can be turned
to fine tune its orientation. Figure 1 shows the assembly of
52 cameras used for these experiments.

3.2. High-Speed Videography From Inter-
leaved Exposures

Usingn cameras running at a given frame rates, we create
high-speed video with an effective frame rate ofh = n ∗ s
by staggering the start of each camera’s exposure window
by 1/h and interleaving the captured frames in chronolog-
ical order. Using 52 cameras, we haves=30, n=52, and
h=1560fps. Unlike a single camera, we have great flexibil-
ity in choosing exposure times. We typically set the expo-
sure time of each camera to be1/h or less, or1/1560sec.
Such short exposure times are often light limited, creating



a trade-off between acquiring more light (to improve the
signal-to-noise ratio) using longer exposures, and reducing
motion blur with shorter exposures. Because we use multi-
ple cameras, we have the option of extending our exposure
times past1/h to gather more light and using temporal su-
perresolution techniques to compute high-speed video. We
will return to these ideas later.

3.3. Geometric Alignment
To create a single high-speed video sequence, we must align
the images from our 52 cameras to a reference view. Since
they have different centers of projection, this is in general a
difficult task, so we make the simplifying assumption that
our scene lies within a shallow depth of a single object
plane. In that case, we can use a simple projective transfor-
mation to align the images. Of course, this condition holds
only for scenes that are either relatively flat or sufficiently
far from the array relative to the camera spacing. We de-
termine the 2D homography to align the images by taking
pictures of a planar calibration target placed at the object
plane. We pick one of the central cameras to be the refer-
ence view, then use point correspondences between features
from that view and the others to compute a homography for
each of the other cameras. This transformation effectively
rectifies all of the cameras’ views to a common plane, then
translates them such that objects on that plane are aligned.

Figure 2 shows the alignment error as objects stray from
the object plane. In this analysis, (although not in our cali-
bration procedure), we assume that our cameras are located
on a plane, their optical axes are perpendicular to that plane,
their image plane axes are parallel, and their focal lengths
f are the same. For two cameras separated by a distancea,
an object at a distances will see a disparity ofd = fa/s
between the two images (assuming the standard perspective
camera model). Our computed homographies will account
for exactly that shift when registering the two views. If the
object were actually at distances′ instead ofs, then the re-
sulting disparity should bed′ = fa/s′. The difference be-
tween these two disparities is our error (in metric units, not
pixels) at the image plane.

Equating the maximum tolerable errorc to the difference
betweend andd′, and solving fors′ yields the equation

s′ =
s

1− sc
fa

Evaluating this for positive and negative maximum er-
rors gives our near and far effective focal limits. This is the
same equation used to calculate the focal depth limits for a
pinhole camera with a finite aperture[6]. In this instance,
our aperture is the area spanned by our camera locations.
Rather than becoming blurry, objects off the focal plane re-
main sharp but appear to move around from frame to frame
in the aligned images.

s

s’

f

Alignment Error

Object Plane

Image Plane

2nd camera

a

Reference camera

Figure 2: Using a projective transform to align our images
causes errors for objects off the assumed plane. The solid
lines from the gray ball to each camera show where it ap-
pears in each view with no errors. The dashed line shows
how the alignment incorrectly projects the image of the ball
in the second camera to an assumed object plane, making
the ball appear to jitter spatially when frames from the two
cameras are temporally interleaved.

For our lab setup, the object plane is 3m from our cam-
eras, the camera pitch is 33mm, and the maximum separa-
tion between any two of the 52 cameras is 251mm. The
image sensors have a 6mm focal length and a pixel size of
6.2µm. Choosing a maximum tolerable error of +/- one
pixel, we get near and far focal depth limits of 2.963 and
3.036m, respectively, for a total depth of field of 7.3cm.
Note that these numbers are a consequence of filming in
a confined laboratory. For many high-speed video appli-
cations, the objects of interest are sufficiently far away to
allow much higher effective depths of field.

The false motion of off-plane objects can be rendered
much less visually objectionable by ensuring that sequential
cameras in time are spatially adjacent in the camera mount.
This constrains the maximum distance between cameras
from one view in the final high-speed sequence to the next
to only 47mm and ensures that the apparent motion of mis-
aligned objects is smooth and continuous. If we allow the
alignment error to vary by a maximum of one pixel from
one view to the next, our effective depth of field increases
to 40cm. Figure 3 shows the firing order we use for our 52
camera setup.



1

2

3

4 5

86

7 9 10

111213

14 15 16 17

181920

2122

2324

25

26

27

28

29

3031

32

33

34

3536

37 38 39

40414243

44 45 46

47 48

49 50

51

52

Figure 3: Our firing order for our 52 camera array. Ensuring
that sequential cameras in the trigger sequence are spatially
adjacent in the array makes frame-to-frame false motion of
off-plane objects small, continuous and less objectionable.

3.4. Radiometric Calibration
Variations in the radiometric properties of our cameras will
cause color differences between interleaved frames in our
high-speed videos. Our inexpensive cameras have widely
different default intensity and color responses, and unreli-
able automatic white balance and autogain functions. We
have implemented a new, automatic method to configure
and calibrate our cameras using images of a Macbeth color
checker chart. We first adjust the sensor gains and offsets
so their outputs for the six grayscale patches on the chart
best fit a line that maps the brightest and darkest squares to
RGB values of (220,220,220) and (20,20,20), respectively.
This simultaneously white balances our images and maxi-
mizes the usable data in each color channel for each camera.
We fit to a range of 20-220 because our sensors are nonlin-
ear near the limits of their output range (16-240). A sec-
ond post-processing step generates lookup tables to correct
nonlinearities in each sensor’s response and then determines
3x3 correction matrices to best match, in the least squares
sense, each camera’s output to the mean values from all of
the sensors. A more thorough treatment of our color cal-
ibration can be found in [7]. At the moment we are not
correcting forcos4 falloff or vignetting.

4. Overcoming the electronic rolling
shutter

For image sensors that have a global, “snapshot” shutter,
such as an interline transfer CCD, the method we have de-
scribed would be complete. Unfortunately, the image sen-
sors in our array use an electronic rolling shutter. A snap-
shot shutter starts and stops light integration for every pixel
in the sensor at the same times. Readout is sequential by

(a) (b)

Figure 4: The electronic rolling shutter. Many low-end im-
age sensors use an electronic rolling shutter, analogous to
an open slit that scans over the image. Each row integrates
light only while the slit passes over it. (a) An example of an
object moving rapidly to the right while the rolling shutter
scans down the image plane. (b) In the resulting image, the
shape of the moving object is distorted.

scanline, requiring a sample and hold circuit at each pixel
to preserve the value from the time integration ends until it
can be read out. An electronic rolling shutter, on the other
hand, exposes each row just before it is read out. Rolling
shutters are attractive because they do not require the ex-
tra sample and hold circuitry at each pixel, making the cir-
cuit design simpler and increasing the fill factor (the portion
of each pixel’s area dedicated to collecting light). A quick
survey of Omnivision, Micron, Agilent, Hynix and Kodak
reveals that all of their color, VGA (640x480) resolution,
30fps CMOS sensors use electronic rolling shutters.

This disadvantage of the rolling shutter, illustrated in fig-
ure 4, is that it distorts the shape of fast moving objects,
much like the focal plane shutter in a 35mm SLR cam-
era. Since scanlines are read out sequentially over the 33ms
frame time, pixels lower in the image start and stop integrat-
ing incoming light nearly a frame later than pixels from the
top of the image.

Figure 5 shows how we remove the rolling shutter dis-
tortion. The camera triggers are evenly staggered, so at any
time they are imaging different regions of the object plane.
Instead of interleaving the aligned images, we take scan-
lines that were captured at the same time by different cam-
eras and stack them into one image.

One way to view this stacking is in terms of a spatiotem-
poral volume, shown in figure 6. Images from cameras with
global shutters are vertical slices (along planes of constant
time) of the spatiotemporal volume. Images from rolling
shutter cameras, on the other hand, are diagonal slices in
the spatiotemporal volume. The scanline stacking we just
described is equivalent to slicing the volume of rolling shut-
ter images along planes of constant time. We use trilinear
interpolation between frames to create the images. The slic-



�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

	�	
	�	
	�	
	�	
	�	


�


�


�


�


�


���
���
���
���
���

���
���
���
���
���

Figure 5: Correcting the electronic rolling shutter distortion. The images on the left represent views from five cameras with
staggered shutters. At any time, different rows (shown in gray) in each camera are imaging the object plane. By stacking
these rows into one image, we create a view with no distortion.

(a) (b)

Figure 7: “Slicing” rolling shutter videos to eliminate dis-
tortions. (a) An aligned image from one view in the fan
sequence. Note the distorted, non-uniform appearance of
the fan blades. (b) “Slicing” the stacked, aligned frames so
that rows in the final images are acquired at the same time
eliminates rolling shutter artifacts. The moving blades are
no longer distorted.

ing results in smooth, undistorted images. Figure 7 shows
a comparison of frames from sliced and unsliced videos of
a rotating fan. The videos were filmed with the 52 camera
setup, using the trigger ordering in figure 3.

The spatiotemporal analysis so far neglects the interac-
tion between the rolling shutter and our image alignments.
Vertical components in the alignment transformations raise
or lower images in the spatiotemporal volume. As figure 8
shows, such displacements also shift rolling shutter images
later or earlier in time. By altering the trigger timing of each
camera to cancel this displacement, we can restore the de-
sired evenly staggered timing of the images. Another way
to think of this is that a vertical alignment shift ofx rows
implies that features in the object plane are imaged not only
x rows lower in the camera’s view, but alsox row times
later because of the rolling shutter. A row time is the time
it takes the shutter to scan down one row of pixels. Trigger-
ing the camerax row times earlier exactly cancels this delay
and restores the intended timing. Note that pure horizontal
translations of rolling shutter images in the spatiotemporal
volume do not alter their timing, but projections that cause

scale changes, rotations or keystoning alter the timing in
ways that cannot be corrected with only a temporal shift.

We aim our cameras straight forward so their sensors
planes are as parallel as possible, making their alignment
transformations as close as possible to pure translations.
We compute the homographies mapping each camera to the
reference view, determine the vertical components of the
alignments at the center of the image, and subtract the cor-
responding time displacements from the cameras’ trigger
times. As we have noted, variations in the focal lengths and
orientations of the cameras prevent the homographies from
being strictly translations, causing residual timing errors. In
practice, for the regions of interest in our videos (usually the
center third of the images) the maximum error is typically
under two row times. At 1560fps, the frames are twelve row
times apart.

The timing offset error caused by the rolling shut-
ter is much easier to see in a video than in a se-
quence of still frames. The following example and
all other videos in this paper are available online at
http://graphics.stanford.edu/papers/highspeedarray/. The
video faneven.mpg shows a fan filmed at 1560fps using
our 52 camera setup and evenly staggered trigger times.
The fan appears to speed up and slow down, although its
real velocity is constant. Note that the effect of the tim-
ing offsets is lessened by our sampling order—neighboring
cameras have similar alignment transformations, so we do
not see radical changes in the temporal offset of each im-
age. Fanshifted.mpg is the result of shifting the trigger
timings to compensate for the alignment translations. The
fan’s motion is now smooth, but the usual artifacts of the
rolling shutter are still evident in the misshapen fan blades.
Fanshiftedsliced.mpg shows how slicing the video from
the retimed cameras removes the remaining distortions.

5. Results
Filming a rotating fan is easy because no trigger is needed
and the fan itself is nearly planar. In this section we present
a more interesting acquisition: 1560 fps video of balloons
popping, several seconds apart. Because our array can
stream at high speed, we did not need to explicitly syn-
chronize video capture with the popping of the balloons.



y

t
x

(a)

y

t
x

(b)

Figure 6: Slicing the spatiotemporal volume to correct rolling shutter distortion. (a) Cameras with global shutters capture
their entire image at the same time, so each one is a vertical slice in the volume. (b) Cameras with rolling shutters capture
lower rows in their images later in time, so each frame lies on a slanted plane in the volume. Slicing rolling shutter video
along planes of constant time in the spatiotemporal volume removes the distortion.

y

t
x

(a)

y

t
x

(b)

Figure 8: Alignment of rolling shutter images in the spatiotemporal volume. (a) Vertically translating rolling shutter images
displaces them toward planes occupied by earlier or later frames. This is effectively a temporal offset in the image. (b)
Translating the image in time by altering the camera shutter timing corrects the offset. The image is translated along its
original spatiotemporal plane.

In fact, when we filmed we let the video capture run while
we walked into the center of the room, popped two balloons
one at a time, and then walked back to turn off the record-
ing. This video is also more colorful than the fan sequence,
thereby exercising our color calibration.

Figure 9 shows frames of one of the balloons popping.
We have aligned the images but not yet sliced them to cor-
rect rolling shutter-induced distortion. Although we strike
the top of the balloon with a tack, it appears to pop from the
bottom. In the video (balloon1distorted.mpg on the web
site), one can also see the artificial motion of our shoulders,
which are in front of the object focal plane. Because of our
camera ordering and tight packing, this motion, although
incorrect, is relatively unobjectionable.

Figure 10 shows the second balloon in the sequence pop-
ping. The full video online is balloon2sliced.mpg. Slicing
the stacked balloon images removes the rolling shutter dis-

tortion, and the balloon correctly appears to pop from where
it is punctured by the pin. This slicing fixes the rolling shut-
ter distortions but makes alignment errors and color varia-
tions more objectionable. Before slicing, the alignment er-
ror for objects off the focal plane was constant for a given
depth and varied somewhat smoothly from frame to frame.
After slicing, off-plane objects, especially the background,
appear distorted because their alignment error varies with
their vertical position in the image. This distortion pat-
tern scrolls down the image as the video plays and becomes
more obvious. Before slicing, the color variation of each
camera was also confined to a single image in the final high-
speed sequence. These short-lived variations were then av-
eraged by our eyes over several frames. Once we slice the
images, the color offsets of the images also create a slid-
ing pattern in the video. Note that some color variations,
especially for specular objects, are unavoidable for a multi-



Figure 9: 1560fps video of a popping balloon with rolling shutter distortions. The balloon is struck at the top by the tack, but
it appears to pop from the bottom. The top of the balloon seems to disappear.

camera system. The reader is encouraged to view the online
videos to appreciate these effects. The unsliced video of
the second balloon popping, balloon2distorted.mpg is pro-
vided for comparison, as well as a continuous video show-
ing both balloons, balloons.mpg.

6. Discussion and Future Work
We have demonstrated a method for acquiring very high-
speed video using a densely packed array of lower frame
rate cameras with precisely timed exposure windows. The
system scales to higher frames rates by simply adding more
cameras. Our parallel capture and compression architecture
lets us stream essentially indefinitely and requires no trig-
gers, a feature we have not found in any commercially avail-
able off-the-shelf high-speed camera. Inaccuracies correct-
ing the the temporal offset caused by aligning our rolling
shutter images are roughly one sixth of our frame time and
limit the scalability of our array. A more fundamental limit
to the scalability of the system is the minimum integration
time of the camera. At 1560fps capture, the exposure time
for our cameras is three times the minimum value. If we
scale beyond three times the current frame rate, the expo-
sure windows of our cameras will begin to overlap, and our
temporal resolution will no longer match our frame rate.

The possibility of overlapping exposure intervals is a
unique feature of our system—no single camera can ex-
pose for longer than the time between frames. If we can
use temporal superresolution techniques to recover high-
speed images from cameras with overlapping exposures, we
could scale the frame rate even higher than the inverse of
the minimum exposure time. As exposure times decrease
at very high frame rates, image sensors become light lim-
ited. Typically, high-speed cameras solve this by increas-
ing the size of their pixels. Applying temporal superreso-
lution to overlapped high-speed exposures is another possi-

(a) (b) (c)

Figure 11: Overlapped exposures with temporal superres-
olution. (a) Fan blades filmed with an exposure window
four high-speed frames long. (b) Temporal superresolution
yields a sharper, less noisy image. Note that sharp features
like the specular highlights and stationary edges are pre-
served. (c) A contrast enhanced image of the fan filmed un-
der the same lighting with an exposure window one fourth
as long. Note the highly noisy image.

ble way to increase the signal-to-noise ratio of a high-speed
multi-camera system. To see if these ideas show promise,
we applied the temporal superresolution method presented
by Shechtman [3] to video of a fan filmed with an expo-
sure window that spanned four high-speed frame times. We
omitted the temporal alignment process because we know
the convolution that relates high-speed frames to our blurred
images. Figure 11 shows a comparison between the blurred
blade, the results of the temporal superresolution, and the
blade captured in the same lighting with a one frame expo-
sure window. Encouragingly, the deblurred image becomes
sharper and less noisy.

Using a large array of low quality image sensors poses
challenges for high-speed video. We present methods to
automatically color match and geometrically align the im-



Figure 10: 1560fps video of a popping balloon, corrected to eliminate rolling shutter distortions.

ages from our cameras that can be of general use beyond
this application. Nearly all low-end CMOS image sensors
use electronic rolling shutters that cause spatial and tempo-
ral distortions in high-speed videos. We demonstrate how to
correct these distortions by retiming the camera shutters and
resampling the acquired images. This mostly removes the
artifacts at the cost of making radiometric differences be-
tween the cameras and alignment errors off the object plane
more noticeable.

One opportunity for future work is a more sophisticated
alignment method, possibly based on optical flow. The false
motion induced by misalignments will have a fixed pattern
set by the camera arrangement and the depth of the ob-
jects, so one could imagine an alignment method that de-
tected and corrected that motion. For such a scheme, using
a camera trigger ordering that maximized the spatial dis-
tance between adjacent cameras in the temporal shutter or-
dering would maximize this motion, making it easier to de-
tect and segment from the video. One could use this either
to aid alignment and increase the effective depth of field or
to suppress off-plane objects and create “cross-sectional”
high-speed video that depicted only objects at the desired
depth.

Another avenue of research would be combining high-
speed video acquisition with other means of effectively
boosting camera performance. For example, one could
assemble a high-speed, high dynamic range camera using
clusters of cameras with varying neutral density filters and
staggered trigger timings, such that at each trigger instant
one camera with each density filter was firing. One can
imagine creating a camera array for which effective dy-
namic range, frame rate, resolution, aperture, number of
distinct viewpoints and more could be chosen to optimally
fit a given application. We are looking forward to investi-
gating these ideas.

Acknowledgments

The authors would like to thank Augusto Roman and Guil-
laume Poncin for help on the system and experiments. This
work was supported by DARPA grants F29601-00-2-0085
and NBCH-1030009, and NSF grant IIS-0219856-001.

References

[1] P. Rander, P. Narayanan, and T. Kanade, “Virtual-
ized reality: Constructing time-varying virtual worlds
from real events,” inProceedings of IEEE Visualiza-
tion, Phoenix, Arizona, Oct. 1997, pp. 277–283.

[2] J.-C.Yang, M. Everett, C. Buehler, and L. McMillan, “A
real-time distributed light field camera,” inEurograph-
ics Workshop on Rendering, 2002, pp. 1–10.

[3] E. Shechtman, Y. Caspi, and M. Irani, “Increasing
space-time resolution in video sequences,” inEuropean
Conference on Computer Vision (ECCV), May 2002.

[4] B. Wilburn, M. Smulski, H. Lee, and M. Horowitz,
“The light field video camera,” inMedia Processors
2002, ser. Proc. SPIE, S. Panchanathan, V. Bove, and
S. Sudharsanan, Eds., vol. 4674, San Jose, USA, Jan-
uary 2002, pp. 29–36.

[5] V. Vaish, B. Wilburn, and M. Levoy, “Using plane +
parallax for calibrating dense camera arrays,” inCVPR
2004, 2004.

[6] R. Kingslake,Optics in Photography. SPIE Optical
Engineering Press, 1992.

[7] N. Joshi, “Color calibration for arrays of inexpensive
iamge sensors,” Stanford University, Tech. Rep. GET
THIS NUMBER, 2004, paper in preparation.


