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Figure 1: The Gaussian kd-tree accelerates a broad class of non-linear filters, including the bilateral (left), non-local means (middle), and a
novel non-local means for geometry (right).

Abstract

We propose a method for accelerating a broad class of non-linear
filters that includes the bilateral, non-local means, and other related
filters. These filters can all be expressed in a similar way: First, as-
sign each value to be filtered a position in some vector space. Then,
replace every value with a weighted linear combination of all val-
ues, with weights determined by a Gaussian function of distance
between the positions. If the values are pixel colors and the posi-
tions are (x, y) coordinates, this describes a Gaussian blur. If the
positions are instead (x, y, r, g, b) coordinates in a five-dimensional
space-color volume, this describes a bilateral filter. If we instead set
the positions to local patches of color around the associated pixel,
this describes non-local means. We describe a Monte-Carlo kd-
tree sampling algorithm that efficiently computes any filter that can
be expressed in this way, along with a GPU implementation of this
technique. We use this algorithm to implement an accelerated bilat-
eral filter that respects full 3D color distance; accelerated non-local
means on single images, volumes, and unaligned bursts of images
for denoising; and a fast adaptation of non-local means to geome-
try. If we have n values to filter, and each is assigned a position
in a d-dimensional space, then our space complexity is O(dn) and
our time complexity is O(dn log n), whereas existing methods are
typically either exponential in d or quadratic in n.

CR Categories: I.4.3 [Image Processing and Computer Vi-
sion]: Enhancement—Filtering I.3.5 [Computer Graphics]: Com-
putational Geometry and Object Modeling—Geometric algorithms,
languages, and systems

Keywords: bilateral filter, non-local means, geometry filtering,
denoising

1 Introduction

In recent years, a variety of related non-linear filters have become
important for various tasks in image processing, computational
photography, geometry processing, and related fields. These in-
clude the bilateral filter, the non-local means filter, and various simi-
lar ad-hoc filters used for particular applications. Such filters are of-
ten highly computationally intensive. We present a framework with
which to understand such filters, and an acceleration data structure
and algorithm that applies broadly across all of them.

Let us begin with the simple case of a bilateral filter. Recent meth-
ods for accelerating the bilateral filter respect distance in space and
in luminance. One such method, the bilateral grid [Paris and Du-
rand 2006], does this by embedding the image as a two dimen-
sional manifold in a coarsely voxelized three dimensional space-
luminance volume, performing a 3D Gaussian blur, and then sam-
pling again along the image manifold to construct the output. A
shortcoming of this technique, as well as other recent accelera-
tions of the bilateral filter by [Durand and Dorsey 2002] and [Weiss
2006], is that they do not respect distance in chrominance, result-
ing in unwanted blurring of neighbouring isoluminant regions (Fig-
ure 2).

One way to address this problem is to expand the bilateral grid to
a 5D space-color volume, as described in [Paris and Durand 2009].
However, as we argue in Section 3.1, the memory required to rep-
resent the grid grows exponentially with the number of dimensions,
as does the time required by each stage of the algorithm. This
growth is manageable if the filter size in both space and color is
large, which in turn permits the grid to be coarse. However, if the
filter is small the grid must be fine, making the memory and time
requirements of this approach impractical.

Bilateral filtering can alternatively be rephrased as a nearest neigh-
bour search in five dimensions. For every (x, y, r, g, b) point in the
image, we would like to gather colors from other nearby points.
This suggests storing the cloud of points representing the image
manifold in a kd-tree, and using approximate nearest neighbour
queries (as described by [Arya et al. 1998]) to find nearby values.
Unfortunately this approach scales poorly with filter size. For a
large filter each pixel may be near to every other pixel. It would
be preferable to subsample this set of neighbours in a statistically
efficient manner.



Figure 2: Bilateral filtering respecting only distance in luminance
produces objectionable artifacts. On the left is a bilateral-filtered
image of some roof tiles against sky respecting distance in lumi-
nance only. Note the bleeding of the blue sky into the similarly
bright roof tiles (inset). On the right is the image filtered using full
3D color distance.

To facilitate such queries, we propose a new type of kd-tree, which
we term a Gaussian kd-tree, described in Section 2. The tree
sparsely represents the high-dimensional space as values stored at
points. This point cloud is derived from a reduced set of the pixels
from the original image, so unlike the bilateral grid, we only ever
store a 2D manifold, regardless of the size and dimensionality of
the space in which it is embedded. The tree supports rapid Monte-
Carlo-sampled queries to probabilistically scatter to or gather from
the points, using stratified weighted importance sampling. These
queries are used to implement the embedding, blurring, and sam-
pling of the space as described in Section 2, and they do so at a
computational complexity independent of the filter size and linear
in the dimensionality.

Since the Gaussian kd-tree scales well with dimension, we need not
constrain ourselves to three-dimensional color distances. With the
ability to cheaply perform blurs weighted by higher dimensional
distances, we can also accelerate non-local means [Buades et al.
2005]. Non-local means mixes pixel values with other pixels that
have similar local neighborhoods, and is equivalent to a Gaussian
blur on a 2D manifold embedded in a space of much higher di-
mensionality. Non-local means is usually made tractable by lim-
iting it to only search for similar neighborhoods in a small local
search window around each pixel. Our method is in fact slightly
faster when the search is completely unbounded, as there are fewer
dimensions to consider. We discuss non-local means in detail in
Section 3.2.

While non-local means increases the number of range dimensions,
we can also increase the number of domain dimensions to include
time. In Section 3.2, we demonstrate fast non-local means for de-
noising space-time volumes. Non-local means is able to denoise
dynamic scenes by averaging pixel values over time without requir-
ing an explicit motion model.

Finally, the Gaussian kd-tree does not require any particular order-
ing or structure to the values it stores. The values need not lie on a
grid, and we can mix them according to distances between any set
of associated vectors we like. We therefore need not restrict our-
selves to images. In Section 3.3 we apply non-local means to noisy
geometry.

Our tree construction and Gaussian query algorithms are data-
parallel, and so we have also implemented them on a graphics card
using CUDA [Buck 2007] for a significant speedup over the CPU
implementation. Implementation details are in Section 2.4.
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Figure 3: Filtering that respects distance in both domain and range
can be done by embedding the input signal in a higher dimensional
domain-range space (splatting), performing a Gaussian filter in
that space (blurring), and finally sampling the space along the orig-
inal embedded manifold (slicing). Color bilateral filtering requires
a five dimensional space, with range dimensions r, g, b, and do-
main dimensions x and y. Non-local means is conceptually the
same, but requires many more range dimensions. We represent the
high-dimensional space sparsely using points stored in a Gaussian
kd-tree (see Figure 4).

2 The Gaussian KD-Tree

Filtering is most generally described by replacing each value vi in
a set of size n with a linear combination of all other values vj :

v̂i =

n∑
j=1

wij · vj (1)

We assume that values are represented by homogeneous coordi-
nates, and the homogeneous coordinate is filtered along with the
others. This makes the usual division by the sum of the weights
unnecessary. Weights wij are commonly computed by associating
each value vi with a position pi in some other space, with the weight
then given by a function of distance between the two positions:

v̂i =

n∑
j=1

f(|pi − pj |) · vj (2)

For example, when performing a Gaussian blur on an image, values
are pixel colors, and have (x, y) coordinates associated with them
(pi = (xi, yi)

T ). The weights are given by a Gaussian function of
the distance between two such positions, with standard devation σ:

v̂i =

n∑
j=1

e−|pi−pj |2/2σ2
· vj (3)

When performing a bilateral filter, that weight is further reduced by
a Gaussian function of distance in color space, with spatial standard
devation σp and color space standard deviation σc:

v̂i =

n∑
j=1

e−|pi−pj |2/2σ2
p · e−|vi−vj |2/2σ2

c · vj (4)

A joint bilateral filter (described by [Eisemann and Durand 2004]
and [Petschnigg et al. 2004]) instead uses color distance from some
other image. By extending pi and pj to include the color distance
term, Equation 4 can be more generally expressed as:

v̂i =

n∑
j=1

e−|pi−pj |2/2 · vj (5)

In this formulation, first proposed by [D.Barash 2002], pixel val-
ues vi are now associated with positions pi in a five-dimensional



Figure 4: We show a comparison of the bilateral grid of [Paris and Durand 2006] to our Gaussian kd-tree. Regardless of the signal (in
orange), the bilateral grid stores samples on a regular grid (the blue points). The number of samples grows exponentially with dimension.
The Gaussian kd-tree only stores samples along the signal, which in the case of a bilateral filter of a color image is a 2D manifold in a 5D
space-color volume. We place these samples at the centroids of the bounding boxes (in light blue) of the pixels that lie within each leaf node
(outlined in gray). Filtering is done by scattering pixel values onto nearby samples (splatting), gathering at each sample from nearby samples
(blurring), and then gathering at each pixel from nearby samples to construct the output (slicing). Each of these stages operates using an
importance-sampled query of the tree. Such a query simulates sending a number of samples, distributed in a Gaussian cloud (shown in green)
around the query point down to the leaves of the tree, so that the probability of a sample arriving at a particular leaf is proportional to the
integral of the Gaussian over that leaf. The effective standard deviation of the entire blur is the square root of the sum of the squares of the
standard deviations of the Gaussian clouds associated with each stage.

space whose axes are (x, y, r, g, b), scaled by the inverse of the
standard deviations of the filter in the respective dimensions. We
are free to scale the positions arbitrarily, so without loss of gener-
ality our Gaussian kernel always has standard deviation of one (σ
is absent in Equation 5). We can transform it to an arbitrary ellip-
tical ball with a linear transform of the position vectors. Non-local
means (described by [Buades et al. 2005]), which averages pixels
with others that have a similar local neighborhood, can also be ex-
pressed as Equation 5 with pi equal to a neighborhood around pixel
i. Non-local means can also be adapted to geometry using a similar
formulation (Section 3.3).

Given an arbitrary set of (vi, pi) of size n, with pi of dimension
d, and vi of lesser dimension, a naive computation of Equation 5
would take O(n2d) time, as every value interacts with every other
value (for example when blurring an image with a filter as large
as the image). Equation 5 is a type of discrete Gauss transform,
which can be accelerated using the Improved Fast Gauss Trans-
form of [Yang et al. 2003]. The Improved Fast Gauss Transform
groups vectors pi into clusters of radius proportional to the stan-
dard deviation of the desired Gaussian, and computes Taylor series
approximations of the result at each cluster center. It is an effective
tool for very large radius blurs, as few clusters are needed. Unfortu-
nately the standard deviations commonly used in filtering are small
enough that there are few data points per cluster, and little benefit is
derived from the clustering. We find that when applied to bilateral
filtering, the Improved Fast Gauss Transform is in fact slower than
a naive filter implementation for typical parameter settings.

We instead accelerate computation of Equation 5 in three ways.
Firstly, interactions further than three standard deviations apart can
be safely ignored (as the weights become very small) making this
a collision detection problem for spheres in d-dimensional space.
This suggests placing the points in a kd-tree (or a grid if d is small).
Details of our tree construction are in Section 2.1. Secondly, Equa-
tion 5 replaces each value with a sum over many values. This sum
can be importance sampled to avoid having to consider every inter-
action between v̂i and some vj . Details of this are in Section 2.2.

Thirdly, Gaussian filtering can be accelerated by computing the fil-
ter at a lower resolution and then interpolating the result. We con-

struct a reduced set with only m positions and values, downsample
to it using a Gaussian kernel of size σs, blur the smaller set with a
Gaussian filter of size σb, then upsample to the original positions
with a Gaussian kernel of size σs. As long as our m points sam-
ple the space densely enough, this will be equivalent to a single
Gaussian blur of size

√
2σ2

s + σ2
b . We consider the sampling dense

enough when the maximum spacing between data points in the re-
duced space is σs. In the work of [Chen et al. 2007], these three
stages are termed grid construction, low pass filtering, and slicing.
We refer to them as splatting, blurring, and slicing (Figure 3). We
typically set σb = 3σs, and scale σb and σs so that their combined
effect is equivalent to a Gaussian blur of standard deviation one.
If memory use is a concern, we can omit the blurring stage and
achieve the same effective filter by increasing σs. This allows for
more coarsely spaced points, but increases the number of samples
required during the Monte-Carlo splatting and slicing. We derive
our reduced set of size m during tree building, described below.

2.1 Building the tree

Our Gaussian kd-tree stores a cloud of m points in d dimensions,
one point per leaf, and is designed to allow for fast importance-
sampled queries of these points (Section 2.2). Each inner node of
the tree η represents a d-dimensional rectangular cell, which may
extend to infinity in one or more dimensions. An inner node stores a
dimension ηd along which it cuts, and value ηcut on that dimension
to cut along, the bounds of the node in that dimension ηmin and
ηmax, and pointers to its children ηleft and ηright. Leaf nodes
contain only a d dimensional point, which lies somewhere within
the cell they represent. The key difference between this tree and
a conventional kd-tree is that we store ηmax and ηmin as well as
ηcut. The maximum bound is computed as the minimum cut value
of all ancestors which cut along the same dimension and have a
larger cut value. The minimum bound is similarly the maximum
cut value of all ancestors which cut along the same dimension and
have a smaller cut value. See Figure 4 for a comparison of the tree
to a bilateral grid.

We are now faced with the task of building a Gaussian kd-tree con-
taining a point cloud (the blue points in Figure 4) with adequate



density around the regions where we intend to sample. Fortunately
we know ahead of time that we will only ever sample at the po-
sitions used to construct the tree. For example when bilateral fil-
tering, we will construct the tree using the (x, y, r, g, b) values of
every pixel, and then scatter from and gather to those locations in
five-dimensional space. Therefore, we can ensure adequate density
by guarantee that every position pi is within σs/2 of a point stored
at a leaf node.

The goal when building a kd-tree is usually to minimize the ex-
pected time taken by a query. In raytracing, for example, this means
it can be advantageous to have a highly unbalanced tree which
carves off empty space and commonly hit areas early. However,
we never sample in unpopulated areas, so how we deal with empty
space is irrelevant, and for typical data each of our leaf nodes is as
likely to be reached as any other, so the tree should be balanced.

To recursively turn a list of positions pi into a tree, we first com-
pute their bounding box. If the bounding box has diagonal length
less than σs we create a leaf node, and an associated point at the
center of the bounding box. Otherwise, we split halfway along the
longest bounding box dimension, divide the input list into two, and
continue recursively. This scheme descends to cells that have a
small diagonal as quickly as possible. Another common scheme
for generating balanced trees is to split on the median value along
the longest dimension. In our case, an uneven distribution of points,
for example those produced from an image which is mostly a sin-
gle color, can in fact cause this to produce an unbalanced tree.
While this has the advantage of placing the most commonly ac-
cessed leaves closer to the root of the tree, in practice we found that
it did not improve performance.

2.2 Querying the tree

A query into our Gaussian tree is designed to facilitate gathers from
(or scatters to) values around a given query position, for the purpose
of computing an importance-sampled approximation of Equation 5.
Figure 4 illustrates the process. A query takes as input a query
position q in the space, a standard deviation σ around that position,
and a number of samples s, and returns a list of at most s points pi

and corresponding weights wi. If the number of samples is set to
infinity, the list returned will include all points within three standard
deviations of the query, with weights proportional to a Gaussian
kernel of the given standard deviation (wi = e−|q−pi|2/2σ). If
the number of samples is set to one, the list will contain a single
leaf node, probabilistically chosen from all leaf nodes within three
standard deviations of the query, such that repeatedly asking for a
single sample and merging the resulting lists will produce the same
result in the limit as asking for an infinite number of samples from
a single query.

We can think of our samples as a cloud of points normally dis-
tributed around the query with the given standard deviation, al-
though we do not explicitly represent them as such. At each inner
node η we compute the expected number of samples that lie within
the left and right child by computing the area of the Gaussian, trun-
cated to with ηmin and ηmax, that lies on either side of ηcut. The
Gaussian is separable, so decisions already made by nodes that split
in other dimensions are irrelevant. The expected number of sam-
ples that split each way are rounded down to the nearest integer,
and that many samples are assigned to the left or right child respec-
tively. The final sample omitted by the rounding, if there is one, is
probabilistically assigned to either the left or the right child.

This splitting scheme saves work compared to individually simu-
lating every sample, resulting in a runtime which is sublinear in the
number of samples, and bounded by the number of cells overlap-

Algorithm 1 Requesting multiple samples from a multi-
dimensional Gaussian kd-tree.
// A quadratic approximation to the integral of a
// Gaussian of standard deviation one.
float cdfApprox(float x);

// A uniform random float between zero and one.
float urand();

class InnerNode : public Node {
int d;
float min, max, cut;
Node *left, *right;

void Query(vector<float> q, float sigma, int samples,
vector<Result> &results, float p=1) {

float cdfMin = cdfApprox((min - q[d])/sigma);
float cdfMax = cdfApprox((max - q[d])/sigma);
float cdfCut = cdfApprox((cut - q[d])/sigma);
float pLeft = (cdfCut - cdfMin)/(cdfMax - cdfMin);
float expectedLeft = pLeft*samples;
int samplesLeft = floor(expectedLeft);
int samplesRight = floor(samples - expectedLeft);
if (samplesLeft + samplesRight < samples) {
if (urand() < expectedLeft - samplesLeft)
samplesLeft++;

else
samplesRight++;

}
if (samplesLeft > 0)
left->Query(q, sigma, samplesLeft,

results, p*pLeft);
if (samplesRight > 0)
right->Query(q, sigma, samplesRight,

results, p*(1-pLeft));
}

};

class LeafNode : public Node {
vector<float> position;

void Query(vector<float> q, float sigma, int samples,
vector<Result> &results, float p) {

float distance = Distance(q, position);
float correctP = exp(-distance*distance/(2*sigma));
results.push back(Result(this, samples*correctP/p));

}
};

ping a query. It also stratifies the sampling, resulting in less noise
in the output for a fixed number of samples.

We arrive at a given leaf node with a probability proportional to the
integral of the Gaussian over the corresponding cell. This is not
the correct weight, however, as our tree stores values at points, not
cells. To correct for this, we keep track of the (unrounded) expected
number of samples to reach this leaf, compute the probability with
which we should have reached this point by evaluating the Gaussian
at it, and return a weight which is the latter divided by the former.
This is weighted importance sampling, as described by [Bekaert
et al. 2000] in the context of radiosity. This correction allows us to
use a piecewise quadratic approximation to the Gaussian (given by
the convolution of three identical rect filters) while descending the
tree, as its integral is easier to compute than that of a Gaussian. See
Algorithm 1 for the relevant snippets of C++ code.

2.3 Complexity Analysis

Recall that we start with n d-dimensional data points, reduced to
m during tree building, and that we use s samples when querying
the tree. We filter the data set by first constructing our Gaussian kd-
tree. Tree construction must process O(n) nodes at each level of
the tree, doing O(d) work per node. Our splitting scheme balances



Figure 5: Timing, memory use, and difference from a naive implementation respectively for the various implementations of the bilateral filter.
All filters were run on a 10 megapixel image using a color space standard deviation of 1

8
. The first graph shows that the running time of

the naive implementation grows large as the filter size grows, as its run time is proportional to the filter size squared. The running time of
the bilateral grid (and its memory use) grow large as the filter size shrinks, as both are inversely proportional to the filter size squared. The
Gaussian kd-tree has running time independent of filter size. The third graph shows that the 3D bilateral grid does not compute the color
bilateral filter, the Gaussian kd-tree computes something similar but not exactly the same (described below), and the 5D bilateral grid almost
exactly computes the color bilateral filter.

the tree, so we can expect a depth of O(log m). Tree construction
therefore takes O(nd log m) time. We then initialize the leaf nodes
to have a value of zero, and do a Gaussian query with s samples
for each of the n input data points to scatter values into the tree.
A Gaussian query has a runtime bounded by O(s(log m + d)), so
this stage takes O(sn(log m+d)) time. Next we blur with a Gaus-
sian query at each leaf node which gathers nearby values, and costs
O(sm(log m + d)), and finally we slice with a Gaussian query at
each input position for a cost of O(sn(log m + d)).

This all results in a total complexity of O(n((s + d) log m + sd)).
Recall that m < n and s is a sampling constant (typically 4 ≤
s ≤ 256). This results in the simplified expression O(dn log n)
given earlier. The important two features of this bound are that it is
neither exponential in d (as are grid techniques) nor is it quadratic
in n (as is the naive technique).

2.4 GPU Implementation

Once the tree is built, all stages of our algorithm are data-parallel
across queries. With this in mind we implemented the algorithm in
CUDA [Buck 2007] and ran it on an NVIDIA GeForce GTX 260.
We observed a typical speedup of 10x over our single-threaded CPU
implementation running on an Intel Core 2 Duo E6400 at 2.13 GHz.

There are a few interesting issues related to running the algorithm
on the GPU. Firstly, the recursion of the query method in Algo-
rithm 1 is not possible on the GPU, which has no function call
stack. We convert the recursive code to iterative code by storing the
arguments to pending calls to the query method in shared memory.
Each thread in a block takes work from this structure when idle. If
the work represents a leaf node, the thread either scatters to mem-
ory (for splatting), or gathers (for blurring or slicing), using atomic
floating point adds to memory in either case. If the work represents
an inner node the thread walks the samples down the tree until they
reach a leaf node or diverge over a split. In the latter case, the
thread continues working on the smaller of the two resulting tasks,
and places the other back into the pending work structure. Although
each thread is initially responsible for its own query, the sharing of
pending work allows for load balancing between the threads in a
block. If the pending work structure fills, threads revert to inde-
pendently simulating each sample. For the case of a single sample,
Algorithm 1 becomes tail-recursive, and can be converted to itera-
tion without using extra space.

Secondly, building a kd-tree on the GPU is difficult, and has been
the subject of recent research (such as [Zhou et al. 2008]). For this
stage we again mimic the recursive structure of the CPU algorithm,
using explicit pending work queues stored in global graphics mem-
ory. Our algorithm builds the tree in stages in a breadth-first manner
using a pair of queues containing build jobs. A single build job is
an array of points and a pointer to a parent node to which the re-
sulting subtree should be attached. For the initial few large build
jobs, the CPU runs the algorithm recursively, using GPU kernels to
accelerate the tasks of bounding box computation and sorting data
over a pivot. Once there are enough build jobs to parallelize across
them effectively, the GPU takes over. In each stage all the jobs from
the first queue are processed, creating the same number of nodes,
and the new jobs created to build any children are placed on the
second queue. In between stages the queues are swapped. We par-
allelize build jobs over thread blocks rather than threads, treating
each thread block as a SIMD unit, in which each thread concerns
itself with a single dimension. In a final phase after construction,
each node η in parallel walks up the tree to the root to calculate
ηmin and ηmax.

The graphics card typically has less memory than the host system,
so it may not be able to fit all n vectors in memory for tree build-
ing, even if the final tree only uses O(md) memory. To overcome
this, we build the tree using a large random subset of the data. We
then perform a two-phase query to include the vectors that were not
initially selected. First we parallelize across input vectors and send
each to the leaf node that contains it. Then we parallelize across
leaf nodes, and process the vectors that arrived at each to locally
extend the tree if necessary. If the initial random subset selected
covers the space well, we will typically see only a small growth of
the tree.

If the data set is too large to fit into host memory, we can pick some
of the position dimensions with large extent and subdivide the data
into overlapping blocks, processing each block individually. Typi-
cally the dimensions with largest extent will be those representing
spatial coordinates, making blocking easy.

3 Applications

We have described a high-speed, low-memory way to compute a
filtering of a set of values (Equation 5), such that every value is re-
placed with a weighted linear combination of all other values, with



Figure 6: Different methods of computing the bilateral filter pro-
duce different results. This filter had a spatial standard deviation
of 16 pixels and a color space standard deviation of 1

8
. (a) Com-

puted using the naive algorithm. (b) Computed using a 5D bilateral
grid. The result is nearly identical. (c) Computed using a Gaussian
kd-tree. Artifacts from the random sampling are visible in some
places in the image, and the result is very slightly more aggressive
in preserving edges than the naive, as can be seen in the ampli-
fied difference image at bottom left. (d) Computed using the 3D
bilateral grid. It works perfectly on the uniformly brown head, but
displays unwanted blurring around the boxing gloves where there
is a strong chrominance boundary. The unwanted color transfer is
shown in the amplified difference image on the bottom right.

the weights given by a Gaussian function of the distance between
arbitrary vectors associated with each value. This is a very general
method, which we will now apply to three particular problems, each
of which has been solved in its own separate way in the past.

3.1 Bilateral Image Filtering

The bilateral filter, first proposed in the work of [Aurich and Weule
1995], [Tomasi and Manduchi 1998], and [Smith and Brady 1997],
is a non-linear filter that replaces each pixel value with a weighted
average of all pixel values, with weights respecting distance in both
position and color. With small spatial extent it is an effective way to
denoise, and with large spatial extent it is used for decomposition
into base and detail layers. [Durand and Dorsey 2002] accelerated

the filter by using subsampling in conjunction with piecewise lin-
ear approximation in the spatial domain. [Paris and Durand 2006]
then introduced the idea of expressing the filter as a linear filter in
a higher dimensional space, by explicitly representing the filter in
a higher dimensional data structure. [Chen et al. 2007] accelerates
the filter in the same way by treating it as a three-dimensional bi-
lateral grid, and also applies that grid to related problems. [Weiss
2006] takes a different approach, and accelerates the filter by main-
taining partial histograms during a scan of the image, which makes
it cheap to compute a local histogram at any one pixel on the fly,
from which a bilateral filter can be approximated. [Eisemann and
Durand 2004] and [Petschnigg et al. 2004] introduced the idea of
the cross or joint bilateral filter, where an image can be filtered with
respect to color distances in a different image. In the bilateral grid,
this is equivalent to decoupling the position of the image manifold
in the volume from the values stored along it.

The most common implementation of a bilateral filter directly eval-
uates the appropriate weighted sum at each pixel. It runs faster than
the O(n2) implied by Equation 5 by only considering neighbour-
ing pixels within some small number of spatial standard deviations.
This approach is fine for small spatial standard deviations, but run-
ning time scales with the square of the spatial standard deviation;
thus, processing a 10 megapixel image using a spatial standard de-
viation of more than 16 pixels takes hours (Figure 5(a)).

While the grid-based accelerations have superior scaling with fil-
ter size, they have the disadvantage of only respecting distance in
luminance, rather than full color distance (Figure 2). Fortunately,
human eyes are more sensitive to luminance variation than chromi-
nance variation, and demosaicing algorithms exploit this, so that
most photographs at full resolution have locally constant chromi-
nance. When the spatial standard deviation is small enough for this
condition to hold, but large enough for a naive algorithm to run
slowly, a 3D bilateral grid performs well (see Figure 5).

One way to respect full color distance is to extend the bilateral grid
to five dimensions, representing the two spatial and three color di-
mensions in an image, as described by [Paris and Durand 2009].
We implemented such a grid, using tent filters for splatting and slic-
ing, and a Gaussian for blurring, with filter widths designed so that
the combined effect of the three is an approximate Gaussian blur
of standard deviation one. While the results are very close to the
naive bilateral filter (Figure 5(c)), the memory usage is prohibitive
for small filter sizes (Figure 5(b)), as samples in the grid are placed
proportionally to the filter size. Runtime is proportional to the total
size of the grid, as the blur stage must process every grid point, and
so the computational cost is also prohibitive for small filter sizes
(Figure 5(a)). Furthermore, running time and memory use both
scale exponentially with d, so the grid generalizes poorly to higher
dimensional filters.

The Gaussian kd-tree We now apply the Gaussian kd-tree de-
scribed in Section 2 to this task. The value vectors vi are the (homo-
geneous) pixel colors, and the position vectors pi are their locations
in (x, y, r, g, b) space, scaled by the inverse of the respective stan-
dard deviations. After performing some exploratory experiments,
we settled on 8, 32, and 16 samples with standard devations of
1/
√

11, 3/
√

11, and 1/
√

11, for splatting, blurring, and slicing re-
spectively. We did not use our faster GPU implementation for these
experiments, so that we can provide a fair comparison against the
other methods.

We can see from Figure 5(b) that the memory use is initially
bounded, and then drops gradually with higher spatial standard de-
viations as the space is more coarsely sampled. The timing results
in Figure 5(a) show that, of the methods that respect color distance,



Figure 7: Non-local means denoises without removing detail. (a) At the top we show a crop of the noisy input. Below it is a further crop of a
portion of the dog’s head. (b) The same crops of the output of non-local means, implemented using our Gaussian kd-tree, with 9× 9 patches,
reduced with PCA to 25 dimensions, using a filter with standard deviation in patch space of 0.2, and no spatial term. It mixes the dog’s head
with far away grass, turning it greenish. (c) Next we add a spatial term with standard deviation of 10 pixels to prevent such mixing, and
expand the patch space standard deviation to 0.3, producing a better result. (d) Finally, we show the result of a bilateral filter that removes
an equivalent amount of noise. The bilateral filter produces an inferior result to non-local means. Some detail has been lost, yet chrominance
noise remains. Furthermore, as our algorithm scales linearly with dimension, non-local means is not significantly more expensive to compute.

we perform the best at moderate standard deviations. This effect is
further illustrated in Figure 6, which shows the outputs produced
by the various techniques.

Figure 5(c) shows us that what we compute is not quite the bilateral
filter. The difference is related to the sparsity of our sampling. Con-
sider a bilateral filter of a hard edge between a black region and a
white region. All the samples in our tree are either of black or white
pixels. A single large Gaussian blur in range-domain space may
allow for some energy transfer between the two, slightly graying
either side of the boundary. However, each stage of our algorithm
represents a smaller blur, and it is possible for no energy to cross
the boundary during any stage, leaving the input unchanged. If in-
stead there were a line of gray pixels along the boundary to serve as
a stepping stone, then the combined effect of the three stages could
transfer energy between black and white pixels via those gray pix-
els.

Our version of the bilateral filter therefore respects hard boundaries
slightly more than soft ones, which may in fact be a benefit in most
applications. If this behaviour is undesirable, one can set σs = 0,
which forces n = m (i.e. we allocate one leaf node per input
pixel), and then set σb = 1, so that the full blur happens during the
blur stage only. With these parameters, the typical RMS difference
between our output and the naive output drops to 0.002, or half of
the quantization limit. However, under these settings more samples
are required for splatting or slicing, reducing performance.

Conclusion The graphs tell a mixed story. We recommend us-
ing the naive approach for small spatial standard deviations when
accuracy is important. When a locally-constant chrominance as-
sumption holds across the filter size desired, the three-dimensional
bilateral grid is the best option. For very large filters, the five-

dimensional grid is superior. For moderate filter sizes, with spa-
tial standard deviations between two and ten pixels, the Gaussian
kd-tree performs the best. d = 5 appears to be a tipping point,
at which grid methods are comparable to the tree. As we scale d
higher in the following sections, we begin to see results much more
difficult to obtain with existing methods.

3.2 Image Denoising with Nonlocal Means

Now that we can use three-dimensional color distances in an accel-
erated bilateral filter, it is natural to ask what other dimensions we
could add to the position vectors. One could include local gradients
as well, or the output of any set of local filters. As one adds dimen-
sions to the position, and in this way becomes more specific about
what constitutes a good match between two pixels, it is desirable to
simultaneously extend the spatial extent of the filter, to search for
similar pixels over a wider area. The limit of this expansion is the
non-local means filter, though an effective filter for a given purpose
may lie anywhere along the continuum between the bilateral and
non-local means.

Non-local means, first proposed by [Buades et al. 2005], averages
pixels with other pixels whose local neighborhoods contain similar
image features. That is, non-local means evaluates Equation 5 with
vi set to the (homogeneous) color of pixel i and pi set to a window
of pixel values around pixel i. Non-local means is thus very effec-
tive for self-similar images. An image need not contain explicitly
repeated elements to be self-similar. For example, every pixel along
a straight edge between two flat regions has a similar local neigh-
borhood to every other pixel along that edge. Non-local means is
particularly effective at denoising without removing detail because
it makes no smoothness assumptions in its image model.



Figure 8: One slice of the input (left) and output (right) of non-
local means applied to a 500 × 500 × 240 volume data set gath-
ered using cryo-electron tomography [Amat et al. 2008]. Patches
were 5× 5× 5 voxel subvolumes reduced to the most important 16
dimensions with PCA. The spatial standard deviation was 10 pix-
els, and the patch space standard deviation was 0.1. The resulting
volume is easier for biologists to analyze than the input.

Non-local means, however, is intractably slow in its basic form,
as every image patch must be compared with every other patch,
resulting in a complexity of O(f2n2) for n pixels and f×f patches.
The simplest way to ameliorate this is to reduce the search to a
small local search window. More sophisticated approaches, such
as [Brox et al. 2008] have focused on accelerating the patch search
over the entire domain, by clustering the patches in a tree structures
of various kinds. When applied to non-local means, the Gaussian
kd-tree can be viewed as a member of this family of techniques.
As discussed above, gridded approaches will not work here, due
to the exponential memory use and computational complexity with
respect to dimension.

The Gaussian kd-tree can be used to accelerate non-local means
in exactly the same way it accelerates bilateral filtering, using the
same kd-tree implementation. To do this, we construct the position
vectors pi out of patches around each pixel in the input, rather than
the (r, g, b, x, y) vectors used for bilateral filtering. If the patches
are large and memory is limited it may be difficult to explicitly
construct and store all of them, and they can instead be gathered
from the input image as needed during splatting and slicing.

At dimensionalities above around 50, for example when using large
patches, the Gaussian kd-tree begins to exhibit poor sampling be-
havior. By the time any given sample has reached a leaf node, it
has been split over log m different partitions. If d � log m there
are many dimensions over which no splitting was done, and the
chance of the point stored in the cell being close to the query point
becomes low. To ameliorate this, as a preprocess we perform PCA
over the set of patches to compute a set of filters that best capture
the variance in a patch. PCA helps even if we do not use it to reduce
dimensionality, as the transformation decorrelates the dimensions,
and orders them from most to least variance across the data set.
This allows kd-tree to split on dimensions with the largest variance
first, which are now axis-aligned. Once a query makes it down to a
leaf node, the dimensions that have not yet been split over are those
with the lowest variation over the data set, so it is much more likely
that the query point is close to the point stored in the leaf node. In
practice, it is also advantageous to simply drop the dimensions with
small eigenvalues. This speeds up the algorithm without notice-
ably changing the results. For very noisy scenes (such as the top of
Figure 9) it in fact improved the results, as it slightly denoises the
position vectors.

Figure 9: Denoising using non-local means on a burst of images is
able to average information across frames without computing any
global alignment or optical flow. On the top is a burst of 16 shots of
a man looking around and waving a toy. This is denoised using non-
local means with 21 × 21 patches reduced to 16 dimensions with
PCA. The spatial standard deviation was 10 and the patch standard
deviation was 0.23. The eighth frame from the burst, before and af-
ter denoising, is shown. At the bottom is a noisy burst of 10 shots of
a dog walking through foliage, with the fifth frame shown enlarged.
This is a deforming textured scene with the typical amount of noise
from a point-and-shoot camera. Non-local means performs well at
removing the noise (see for example the dog’s nose), although it
removes some fine details in the fur. The patch size was 11 × 11
again reduced to 16 dimensions, the spatial standard deviation was
30 and the patch standard deviation was 0.1.

Results We use our algorithm to apply non-local means to sev-
eral types of data. Figure 7 shows our algorithm used to generate a
comparison between non-local means, non-local means with a spa-
tial term added, and bilateral filtering.

In Figure 8 we show results on a volume data set of a bacteria pro-
duced by cryo-electron tomography by [Amat et al. 2008]. Such
volumes are typically very noisy, because bombarding specimens
with large numbers of electrons tends to alter them, meaning few
electrons must be used, limiting the signal-to-noise ratio obtainable.

Non-local means is able to robustly use nearby similar information
to improve an image. The easiest way to acquire similar informa-
tion on a digital camera is to take a second noisy photograph of the
same scene, or an entire burst of shots. This property makes non-
local means excellent for denoising from a burst of unaligned shots,
which may contain objects that deform or change their appearance.
Existing methods for denoising from multiple shots or videos either
globally align and average (such as the work of [Telleen et al. 2007]
and [Adams et al. 2008]) or search for explicit block matches (such
as [Avanaki 2006]). These methods are fairly brittle. A more robust
approach is the work of [Bennett and McMillan 2005] which aver-
ages in either space or time, as appropriate, but does not denoise
moving textured objects. [Buades et al. 2008] finds that applying
non-local means to the volume produces better output than explicit
searches for matching blocks or pixel trajectories. Figure 9 shows
results from applying non-local means to such two such bursts.



Figure 10: Non-local means for geometry smoothing. Left: the dragon model corrupted by Gaussian noise with σ = 1/2 mean edge length
Middle: smooth base layer produced by Laplacian smoothing of the noisy mesh; Right: non-local means result. This mesh contains 300K
vertices and it took under a minute to perform the denoising.

The running time for our implementation of non-local means is typ-
ically spent half performing the patch PCA (which is implemented
as a stack of convolutions accelerated on the GPU), and half com-
puting the denoising. The time for each portion is typically under
one minute per megapixel at 16 dimensions, regardless of the size
of the search.

3.3 Geometry Filtering

Due to the success of 3D range acquisition techniques, denoising
of meshes and point clouds is an active research area in geometry
processing. The goal is the same as in image denoising, to remove
noise while best preserving the underlying signal, which in this case
comes as a set of 3d points (potentially with mesh connectivity)
sampled from some surface.

Isotropic geometry denoising methods, such as [Taubin 1995], per-
form the same amount of smoothing irrespective of whether sharp
features such as edges and corners are present in the input, which
results in these features appearing rounded-off in the result. Re-
cently, several approaches for feature-preserving denoising have
been proposed based on geometry diffusion [Desbrun et al. 1999],
projections [Fleischman et al. 2005], the bilateral filter [Jones
et al. 2003] [Fleishman et al. 2003], and its extension to non-local
means [Yoshizawa et al. 2006]. In this section, we will show that,
since the Gaussian kd-tree does not place any structural constraints
on input data, it can be used for filtering of geometry.

Refer once again to Equation 5, which states that to produce an
output value v̂i at a point pi, a generalized bilateral filter averages
together a set of values vj weighted by a Gaussian function of the
distance between pi and each point pj . The main difficulty in adapt-
ing this bilateral filtering framework from the image domain to 3d
geometry is that, in general, our input is a set of 3d point coordi-
nates (xi, yi, zi) describing a surface, which does not come param-
eterized over some regularly sampled domain. Therefore, unlike for
images, there is no natural decomposition of the input into positions
(pi’s) and values (vi’s), as required for Equation 5.

Two approaches to decompose a set of 3d points into the spatial
and signal domains for bilateral filtering of meshes have been pro-
posed recently. [Jones et al. 2003] computes the filtered coordi-
nates of each mesh vertex as a weighted sum of its projections onto
the mesh faces within the point’s neighborhood. In this case, the
positions in Equation 5 are the centroids of the neighboring trian-
gles, and the values are the projections. And alternative method was
proposed by [Fleishman et al. 2003], which uses tangent planes at
each vertex to build a local parametrization of the geometry. For
each neighboring vertex, the projection onto the tangent plane be-

comes the position, and the height above the tangent plane becomes
the value. The filtered vertex is then moved along its normal by
the averaged height computed by the bilateral filter. The approach
of [Fleishman et al. 2003] has been extended to non-local means
in [Yoshizawa et al. 2006] by adding a geometric descriptor to each
vertex in the mesh.

The above approaches solve the problem of separating 3d point co-
ordinates into the spatial and data components by representing the
neighbors of each vertex in its own local coordinate system. How-
ever, there are two problems in using the decompositions of [Jones
et al. 2003] and [Fleishman et al. 2003] in Equation 5. First, since
local projections are used, each value vj in the sum to produce the
output value vi depends both on coordinates of vertex i and ver-
tex j, which does not give us a one-to-one mapping between values
and positions required for efficiently computing the blur. The sec-
ond problem is that the parameterizations only make sense locally
around each vertex since they use tangent plane approximations of
the geometry. For non-local means denoising, we need to average
values that are potentially far apart in space, as long as the local ge-
ometry looks similar, for example the scales on the front and back
of the dragon in Figure 10. However, the projection of a point j
on the back of the mesh onto the local frame of a point i on the
front can be very far away from i, especially if surface orientation
at i and j are different, even if local geometry is similar. We would
prefer a global notion of value that makes sense across the whole
mesh.

Computing Global Positions and Values To produce a globally
meaningful value that we can average across all points on the mesh,
we will treat feature-preserving mesh smoothing as a problem of
adding back lost detail to a smooth base layer. This approach is
often used in mesh editing [Sorkine et al. 2004], where a smooth
base layer is used to produce large-scale geometric deformations,
and fine detail is then added back as offsets from the deformed ge-
ometry.

LetM be the input mesh, let xi, i = 1 . . . n be the vertex positions,
and ni be the vertex normals computed by averaging the face nor-
mals for faces incident on vertex i. We apply Laplacian smoothing
to M to produce the smooth base layer M̃ with vertex positions
x̃i and normals ñi. Laplacian smoothing successfully removes the
noise from the mesh, but will smooth across sharp features. The dif-
ference between the vertex coordinates of M and M̃ gives us the
noisy detail layer, di = xi − x̃i. The resulting detail vectors are
translation invariant, however they are still dependent on the surface
orientation at xi. To achieve invariance to rigid transformations, we
express each detail vector di in the principal coordinate frame of



Figure 11: On the left is a carved box model corrupted by Gaussian noise with σ = 1/4 mean edge length. Next is the smooth base layer
produced by Laplacian smoothing. Next is the output of non-local means with standard deviation in spin image space on 0.05. It took under a
minute to denoise this 700K vertex mesh with our algorithm. Finally a closeup of the detail produced by non-local means (top) and a bilateral
filter that produces equivalent smoothness (bottom). While the bilateral filter still keeps some edge information, more detail is visible in the
non-local means result.

the vertex i of M̃. That is, for each vertex on the smoothed base
layer, we compute the coordinate frame (ñi, k̃

1
i , k̃

2
i ), where k̃1

i , k̃
2
i

are the directions of minimum and maximum curvature. These vec-
tors are computed on the smoothed base layer, so they are not cor-
rupted by noise. The final offset vector for each vertex is computed
as the projection of di into the principal curvature frame, which is
then expressed in homogeneous coordinates to give the value vector
for each vertex:

vi = (〈di, ñi〉 ,
〈
di, k̃

1
i

〉
,
〈
di, k̃

2
i

〉
, 1) (6)

This gives us the set of n values vi, which are meaningful globally
and can be averaged across the entire input using the regular vector
addition. The second component of the non-local means denoising
is the position values in Equation 5, which should be related to some
measure of neighborhood similarity. Our neighborhood descriptor
should be robust to noise, invariant to rigid transformations, and
represented as a vector in Rn. We use the well-known spin im-
age descriptors [Johnson and Hebert 1999], which are orientation-
invariant histograms of cylindrical coordinates of points within a
given neighborhood. For a point xi with normal ni, the spin value
(α, β) of a point xj in the neighborhood of xi is defined as:

(α, β) = (

√
||xj − xi||2 − 〈ni,xj − xi〉2, 〈ni,xj − xi〉) (7)

To build a spin image of a surface patch around xi, we quantize the
pairs (α, β) into a set of bins. Since the spin images are most sen-
sitive to the orientation of the surface normal, we use the normals
ñi from the base layer and the point coordinates from the original
mesh to form the spin images. If the normals are robust, the rest
of the computation is relatively robust to noise due to the binning
that is performed to compute the spin image. We use 5 bins for the
values of α and 10 bins for the values of β with the bin size equal
to the sample spacing of the mesh as recommended in [Johnson
and Hebert 1999]. This gives us 50-dimensional position vectors
pi. Once the values are positions are computed, we blur using the
Gaussian kd-tree to produce the smoothed detail vectors, which are
then added back as offsets to the base layer to produce the final
denoised result.

Results We apply our non-local means denoising algorithm to
several examples of meshes corrupted by Gaussian noise. In all
examples, we use 20 iterations of Laplacian smoothing to produce

the base mesh, and smooth the detail layer with the filter of standard
deviation 0.05 in spin image space.

Figure 10 shows the results of applying non-local means smooth-
ing to a dragon model corrupted by Gaussian noise. The denoising
is particularly effective at recovering self-similar areas of the mesh
such as the scales and the back ridge of the dragon. In Figure 11 we
apply non-local means to a noisy model with many sharp features
and fine detail. Notice that we are able to maintain sharp edges
of the carvings on the box, as well as recover the fine detail in the
petals. This model has many planar areas, so it is also particularly
suitable for the algorithm of [Jones et al. 2003], which uses local
planar approximations. On the right of Figure 11 we show the re-
sults of applying bilateral smoothing to produce equivalent amount
of noise reduction in the flat areas. While bilateral smoothing pre-
serves edges better than Laplacian smoothing used to produce the
base layer, non-local means is able to recover more detail in the
petals.

In this section, we demonstrated that the Gaussian kd-tree can be
used for non-local means smoothing of geometry. Our method re-
lies on decomposing the input into a base and a detail layer. Such
decompositions have also been addressed in the context of mesh
parameterizations [Sheffer et al. 2006], and we expect that a vari-
ety of parametrization and decomposition approaches can be used
in our framework. In addition, investigating different geometry de-
scriptors in the context of non-local means denoising is a promising
area of future work. Finally, we expect that a similar method can be
applied to point cloud denoising.

4 Conclusion and Future Work

We have described a novel method for computing the broad class
of non-linear filters which can be described by Equation 5, based
on weighted importance sampling of a modified kd-tree. This class
of filters includes bilateral filters, joint bilateral filters, non-local
means filters, and related filters in which values are averaged with
other values that are considered nearby in some high-dimensional
space. For bilateral filtering, we compare this method to a 5D ex-
tension of the bilateral grid of [Paris and Durand 2006], and find
that which method is superior depends on the filter size used. For
higher dimensional filters, such as non-local means, our tree-based
filter exhibits excellent performance, as its runtime and memory use
both scale linearly with dimension. Our method requires no particu-
lar structure to the input, so we also apply it to the task of denoising



geometry to produce a novel non-local means filter for meshes.

Several issues remain to be addressed in future work. Firstly, our
tree building takes a significant fraction of our total runtime, and so
we use a very simple splitting scheme. It is possible that a more
sophisticated building algorithm could improve the runtime of later
stages enough to justify its cost.

Secondly, in cases with n values and many more than log(n) di-
mensions, the splitting that takes place in our tree does not ade-
quately constrain a sample’s location before it reaches a leaf, and
many samples are returned with very small weights attached. In
this work, we solved this by throwing away the least important di-
mensions with PCA, but it may be that other tree structures are still
amenable to weighted importance sampling while more strongly
constraining sample locations. It may also be beneficial to store
values at leaf cells, rather than at a point somewhere within them.
This would improve the complexity of the algorithm by removing
the distance evaluation currently required to compute the correct
probabilities at the leaf nodes, and making the importance sampling
exact rather than weighted, but it would compute a different func-
tion of the values - one far more dependent on the specific way in
which the tree was built.

Finally, tree traversal is an extremely irregular algorithm, and the
speedup we observed from our GPU implementation is significantly
less than theoretically possible. More intelligent software caching
of portions of the tree and other data structures may speed this up
further.
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