
Tuplespaces as Coordination Infrastructure for
Interactive Workspaces

Brad Johanson and Armando Fox, Stanford University
Gates 3B-376, 353 Serra Mall

Stanford, CA 94305-9035
bjohanso@graphics.stanford.edu, fox@cs.stanford.edu

Abstract. Especially given the falling cost of
hardware and ubiquity of local-area wireless
networking technologies, there is high current interest
in programming models and software infrastructures
to support “Weiserian” ubiquitous and environmental
computing. In this paper, we argue from both a priori
reasoning and our experimental experience that, with
slight modifications, the tuplespace programming
model is a natural fit for such an application. From
the functionality perspective, the constraints of the
problem lead directly to those put forth when the
tuplespaces were originally proposed. From the
systems engineering perspective, the use of a
tuplespace enables improved robustness and and more
resilient resource management, which are necessary if
ubiquitous computing is to achieve high penetration.
In the context of our implemented prototype
environment, the iRoom interactive workspace, we
describe the principles that led us to this design
choice, the modifications we made to the basic
tuplespace model to improve its suitability for
ubiquitous computing, our day-to-day experience over
the past year and a half putting these principles into
practice, and some avenues for future research. The
experience and applications described run on top of
infrastructure software tools that we distributing to
enable other researchers to build on our efforts.
1 Introduction
Improvements in device technologies and falling costs
are rapidly enabling the original vision of ubiquitous
computing [20]. Devices from large wall-sized
displays to small PDAs can easily (and wirelessly) be
networked together in localized areas, forming the
hardware side of the ubiquitous computing
environment. Once connected together, however, the
problem becomes how to allow programs running on
the devices to coordinate with one another in a
flexible and intuitive manner, given that they were not
designed to work together.

Our own project, Interactive Workspaces, investigates
the systems and HCI issues that arise in room-based
ubiquitous computing environments that are
technology-rich and consist of interconnected large
and small displays and multi-modal I/O devices,
where people gather to do naturally collaborative
activities such as design reviews, brainstorming, etc.
Compared to other projects, some of which we list
toward the end of the paper, the systems half of our
project is focused on providing infrastructure for
dynamic, heterogeneous and ad hoc collections of
devices, applications and operating systems, all of
which may be either new or legacy. Based on our
experience with the iRoom, our prototype Interactive
Workspace, the realities of these environments make
most currently-used programming models incomplete
or inadequate. We have the following indispensable
desiderata for our software infrastructure:
1. It must tolerate a dynamic environment: portable

devices entering and leaving the room’s wireless
network should not disrupt the experience of others.

2. The room as a whole must maintain a high degree
of robustness and availability despite inevitable
(usually transient) software and hardware failures.
This is especially important since part of
experimental research includes fast prototyping, and
we do not want such experimentation to destabilize
an existing system.

3. It must allow the rapid integration of new devices
and systems. A common-language approach such
as “Java everywhere” is not enough by itself: we
wish to leverage new devices and their existing
application bases, i.e. Win32 productivity
applications or Palm built-in PIM applications.

4. It must be portable across installations, allowing
as much as possible for the heterogeneity of specific
equipment installed at each site.

In the next section we begin by defending the
assertion that most applications running in such an
environment can be characterized as a collection of

autonomous traditional applications and devices
loosely coupled in an ensemble (in the spirit of [10]).
We then explain why a tuplespace model is well
suited for this scenario as well as what changes we
made to the basic model, and discuss our experience
with the iRoom so far.
We also propose that there are several extensions to
the basic tuplespace model that are necessary in an
interactive workspace, and we explain why they are
needed. Specifically, the extensions are self-
describing tuples, tuple types and flexible typing,
tuple sequencing and tuple expiration.
2 Tuplespaces and Ubiquitous Computing

2.1 Interactive Workspace Applications Are
Ensembles

We assert that most applications running in an
interactive workspace will consist of traditional
applications and devices composed into an ensemble.
There is no single dominant OS or programming
environment in our scenario. OS demands may be
dictated by the experience of programmers, the
availability of device drivers for experimental I/O
devices, the constraints of homebuilt equipment such
as our hi-res Mural [13] (which is addressable only in
OpenGL), and other factors. Therefore we must make
it easy to use existing OS’s and their associated
applications as large building blocks, and identify
ways to use those applications potentially in ways the
designer never intended, for example by controlling
them through “puppeteering” [8].
The question, then, is what model best facilitates this
composition, such that the user has the impression of
using one distributed application.

2.2 Coordination-Based Programming
In [10], Gelernter and Carriero proposed that
computation and coordination should be thought of as
orthogonal. Computation languages express how
calculations proceed, and coordination languages
express the interaction between autonomous processes
(standard procedure calls being a special case in
which the caller process suspends pending a response
from the callee). They propose the Linda [1]
tuplespace model as an example of a general-purpose
coordination language. A tuple is a set of ordered
typed fields, each of which either contains a value or
is undefined; a tuplespace is an abstract space
containing all tuples and visible to all processes. The
language primitives are ‘out’ (puts a tuple into an
abstract space), ‘in’ (consume a tuple from the space),
and ‘read’ (copy a tuple), where the ‘in’ and ‘read’
operations supply a match template that may specify

explicit values or wildcards for any tuple fields. It is
easy to see how other coordination types such as RPC
or message passing can be implemented on top of
tuplespaces if they are more appropriate for some
task.

2.3 Supporting Portability and Heterogeneity
Gelernter and Carriero argue that providing a
coordination mechanism separate from the
computational language provides two key features:
portability, by providing a computation language
independent mechanism of coordination, and support
for heterogeneity by allowing devices and
applications to coordinate with one another even if
they are based on different hardware or languages.
Since tuplespaces have only three primitives, they are
easy to deploy on many devices and platforms, and it
is easy to add wrappers to existing programmatic
interfaces when source code is unavailable (similar to
“puppeteering” [8]). Since coordination state is stored
in the infrastructure (in the abstract tuplespace) and
not in each client, even relatively impoverished
devices can easily implement the model. Finally,
while marshalling and un-marshalling are still
required, the tuplespace code running on the client
need only implement marshaling into and un-
marshaling from the basic tuple format.

2.4 Robustness to Transient Failure
Failure isolation in tuplespaces is naturally achieved
since autonomous receivers and senders don’t directly
interact. As long as the tuplespace infrastructure itself
can tolerate a client failure, the failure of one client
does not directly cause failure in another. Put another
way, the natural indirection in communication leads to
a programming style that makes cascading failure less
likely. Tuples also persist, decoupling applications in
time as well as space: an application can retrieve
tuples posted while it was down.

2.5 Interposability and Snooping
Tuplespaces support coordination among multiple
applications not originally designed to work together.
Multicast communication between disparate groups of
devices and applications is easy since multiple
applications can get a copy of the same tuple if they
all match for it. The rendezvous mechanics for
applications are also straightforward, and are aided by
the following three key features:
Interposability: Since tuples are public and
indirectly sent between applications, an intermediary
can pick up a tuple from a source and put back one or
more tuples of different types which will cause the
appropriate action in a receiver or receivers. This

allows applications not originally intended to work
together to coordinate.
Snooping: The tuplespace model allows one
component to snoop on tuples being sent among other
components without impinging on their behavior.
Information in that tuple can then be used to affect the
local behavior of the snooping application.

2.6 Adapting Tuplespaces for an Interactive
Workspace

Our current implementation of coordination, the
Event Heap, makes some changes to the basic
tuplespace model to address engineering needs of
interactive workspaces:
Self-describing Tuples: Since ensemble components
are not necessarily designed to work together, we give
each tuple field a name as well as a value, so users
can figure out the intent of tuples by browsing
through the tuplespace.
Flexible Matching for evolvability: In the standard
tuplespace model, the number of fields in a tuple and
the order of fields is significant. Our system permits
the tuple matching logic to ignore these attributes and
match on field names and values only. Applications
can thereby extend standard message types by adding
extra fields, without breaking older applications; this
enables continuous evolution. (This is analogous to
enhanced Web clients or servers adding new HTTP
headers.) Work on flexible typing [4] describes how
such a system can still preserve the desired safety
properties of strict typing.
Typed Tuples for anonymous communication: We
require that all tuples include a designated type field,
whose value denotes a generic tuple class potentially
intelligible to many applications, and implies the
presence and semantics of certain other fields in that
tuple. For example, a “pointer event” tuple is
expected to have xPos and yPos fields. (Since the
fields are named, ordering does not matter.) This
provides a useful compromise between strong and
weak typing, although name collisions on tuple types
are still possible. Tuple types also facilitate
anonymous communication: as long as two
applications understand the same tuple types, there is
no need to explicitly coordinate their behaviors.
Tuple Sequencing: Traditionally, if multiple tuples
exist that match the template tuple on a ‘read’ or ‘in’
operation, any of the matching tuples can be returned
on any call. Tuple sequencing means that receivers
will not read the same tuple more than once.
Sequencing ensures that applications requesting state
change tuples will get tuples exactly once, and in
order, rather than fetching the same tuple repeatedly.

Nonconsuming read is still supported as a “snoop”
method, which allows applications to peek at tuples
without affecting sequencing.
Expiration of Tuples: If tuples intended for a
particular recipient are never consumed (perhaps the
recipient(s) have failed), tuples may build up in the
tuplespace. We address this by giving all tuples a
TimeToLive field that specifies how long (in wall
clock time) until they are “garbage collected” by the
tuplespace. In addition to eliminating the resource
reclamation problem, expiration facilitates two other
useful behaviors. First, it bounds the causal latency
between the posting of a tuple and an action in
response to reading the tuple. For example, a light
should turn on within a few seconds of the remote
control activation, or not at all. Second, expiration
facilitates service discovery and advertisement via
soft-state, announce/listen protocols [17], which are
known to have excellent robustness properties (we
describe our implemented service discovery and
advertisement system in [16]).
3 Discussion and Experience

3.1 Design Alternatives Rejected
Publish-subscribe provides some of the same
advantages as tuplespaces. However, P/S is primarily
receiver-driven in that senders may not publish unless
they know someone is listening; in contrast, the
natural broadcast provided by tuplespaces makes
anonymous rendezvous potentially easier. (Consider
implementing a remote-control applet without
knowing in advance how to bind to a receiver.) Also,
P/S events lack persistence, making it difficult for a
temporarily-down listener to retrieve an event after it
comes back up. This makes it more difficult to keep
he system running smoothly through a failure.
RPC/RMI suffer from well-known systems problems
associated with transparency; they also lack temporal
persistence in coordination, and make language
independence more difficult since the method
interface needs to be agreed upon ahead of time by all
parties, and all parties must be notified if the interface
changes. Since communication is direct, it is difficult
to rendezvous programs not designed to work with
each other via snooping and intermediation as
described above. Both RPC/RMI and P/S can be
implemented on top of tuplespaces if needed.

3.2 Drawbacks/Challenges of Tuplespaces
Scalability. Tuplespaces do not scale easily, since all
participants communicate through a shared medium.
We accept this tradeoff because the scale of an
interactive workspace is bounded by human

interaction, i.e. it will contain perhaps tens of users
and hundreds of processes. For this same reason, we
anticipate that the best way to “link” multiple
interactive workspaces will involve selectively
filtering events to communicate among multiple
independent tuplespaces. (It is unlikely that most
messages controlling specific physical plant in room
A are of interest to software in room B.)
Indirection. Peer-to-peer communication takes two
hops. Since we are primarily interested in supporting
interactions at human-scale latencies, the speed of
current computers and networks diminish the
importance of this issue in our domain. Also, in [6] it
has been shown that a properly implemented
tuplespace can adapt over time to route messages
using a single hop.
Security is particularly important for multiple-space
scenarios, but the “social model” for security even in
a single space is not yet well-understood. In our
prototype, complete trust is extended to all entities
that can communicate via the tuplespace, and the
entire environment is behind a firewall.

3.3 Experience To Date
Our prototype iRoom includes three SmartBoard wall-
size touch-sensitive displays, a hi-res Mural display, a
tabletop display, wireless LAN and wireless pointing
devices, and integration with laptops and PDA’s.
Space does not allow a detailed description of our
extensive experience with the iRoom to date. We
routinely use several applications that rely on the
functionality of the Event Heap, including
SmartPresenter and multibrowsing [14] (exploiting
multiple displays for PowerPoint presentations and
Web browsing respectively), the Interface Crafter [16]
and several associated “soft” remote controls for
lighting, projector mux, etc. that can also be accessed
handheld devices [9], and wireless buttons that can be
programmed as “macros” (e.g. power up the entire
room). Most of these were realized by combining a
diverse array of off-the-shelf applications (e.g.
PowerPoint) with tens or hundreds of semicolons of
“glue”. As a research lab, the room has been
remarkably robust under day-to-day use, and also
supports several outside groups that use it for demos
and as a facility for their own (non-Computer
Science) projects. We cannot prove that this
combination of ease of integration and robustness
would have been impossible with any other approach,
but we believe we have demonstrated that our model
is indeed a natural fit for such an environment.

3.4 Related Work
A large number of interesting and complex, but non-
interoperable, projects [2][3][5][7][18] are
investigating room or work-area based ubiquitous
computing. Each has uncovered important insights in
ubiquitous computing but have yet to propagate and
deploy their frameworks significantly beyond the
project’s boundaries. Many are focused more on
making the environment “smart” and responsive to
users’ needs, and have focused less on creating a
reusable, portable and robust infrastructure. Hasha
[12] proposes publish/subscribe for controlling homes
filled with smart appliances, sensors and I/O devices;
we believe the temporal persistence and expiration
properties we have added to tuplespaces make them
slightly more useful for connecting legacy
components and applications and for dealing with
partial failure and state corruption. Jini [19] provides
lower level mechanisms by which clients and servers
that understand common interfaces can interact with
each other, but does not specify how coordination
proceeds after the initial rendezvous. JavaSpaces [15]
and TSpaces [21] are essentially direct
implementations of the tuplespace model; we have
extended TSpaces as described above to form the
Event Heap, the basis of our coordination
infrastructure.
4 Conclusions
Because of practicality and complexity constraints,
many ubiquitous computing application scenarios will
continue to be characterized as loosely-integrated
ensembles of heterogeneous legacy components. We
propose that this domain may be a “killer app” for the
tuplespace model of coordination, because of that
model’s portability, extensibility, flexibility, and
ability to deal with heterogeneous environments. In
addition, we proposed key extensions to the basic
tuplespace model for this domain: self-describing
tuples, flexible typing, typed tuples, tuple sequencing,
and tuple expiration. The results of using our
implemented prototype (the Event Heap and the
iRoom) routinely over the past year and a half have
been very favorable, and we encourage interested
readers to help evaluate and extend our approaching
by setting up their own Interactive Workspace. The
hardware can be easily simulated using a collection of
PC’s, handhelds and laptops, and the software
described in this paper is available at
iwork.stanford.edu.

References
[1] Ahuja, S., Carriero, N., and Gelernter, D., Linda and

Friends, IEEE Computer, August, 1986.

[2] G.Abowd,“Classroom 2000:An Experiment with the
Instrumentation of a Living Educational Environment,”
IBM Systems J.,Vol.38,No.4,Oct.1999,pp.508-530.

[3] Larry Arnstein et al. Ubiquitous computing in the
biology laboratory. Journal of Laboratory Automation,
March 2001.

[4] Begel, A. and Spreitzer, M. More Flexible Data
Types. Proceedings of The Eighth IEEE International
Workshops on Enabling Technologies: Infrastructure
for Collaborative Enterprises (WET-ICE'99).

[5] Brumitt, B., Meyers, B., Krumm, J., Kern, A. and
Shafer, S.,. Easyliving: Technologies for intelligent
environments. In Handheld and Ubiquitous Computing
2000 (HUC2K), Septemb er 2000.

[6] Carriero, N., Gelernter, D., Mattson, T., and Sherman,
A., “The Linda alternative to message-passing
systems”, Parallel Computing, 20, 633-655, 1994.

[7] Coen, M., Phillips, B., Warshawsky, N., Weisman, L.,
Peters, S., and Finin, P. Meeting the Computational
Needs of Intelligent Environments: The Metaglue
System, Managing Interactions in Smart
Environments,. Paddy Nixon, Gerard Lacey and Simon
Dobson eds. Dublin, Ireland, 1999

[8] De Lara, E., Dan Wallach, and Willy Zwaenepoel.
Puppeteer: Component-based Adaptation for Mobile
Computing. In Third USENIX Symposium on Internet
Technologies and Systems, San Francisco, CA, March
2001.

[9] Armando Fox, Brad Johanson, Pat Hanrahan, and
Terry Winograd. Integrating Information Appliances
into an Interactive Workspace. In IEEE Computer
Graphics & Applications, Vol. 20, No. 3, May/June
2000.

[10] Gelernter, D., and Carriero, N., Coordination Languages and
their Significance, Communications of the ACM, Vol. 32,
Number 2, February, 1992.

[11] Robert Grimm, Tom Anderson, Brian Bershad, and
David Wetherall. A system architecture for pervasive
computing (PDF, 128 KB). In Proceedings of the 9th
ACM SIGOPS European Workshop, pages 177-182,
Kolding, Denmark, September 2000.

[12] Hasha, R., Needed: A common distributed object
platform, IEEE Intelligent Systems. March/April 1999.

[13] Greg Humphreys, Ian Buck, Matthew Eldridge, and
Pat Hanrahan. Distributed Rendering for Scalable
Displays. In Proc. IEEE Supercomputing 2000.

[14] Brad Johanson, Shankar R. Ponnekanti, Caesar
Sengupta, Armando Fox. Multibrowsing: Moving Web

Content across Multiple Displays. Technical Note in
UBICOMP 2001, Atlanta, GA.

[15] Sun Microsystems Labs, JavaSpaces Specification,
http://www.sun.com/jini/specs/js.pdf.

[16] Shankar R. Ponnekanti, Brian Lee, Armando Fox, Pat
Hanrahan, Terry Winograd. ICrafter: A Service
Framework for Ubiquitous Computing Environments.
In Proc. UBICOMP 2001, Atlanta, GA

[17] Suchitra Raman and Steven McCanne. A Model,
Analysis, and Protocol Framework for Soft
State based Communication. In Proc. ACM
SIGCOMM 99.

[18] N.A. Streitz et al., i-LAND: An interactive Landscape
for Creativity and Innovation. In Proc. ACM
Conference on Human Factors in Computing Systems
(CHI '99) , Pittsburgh, Pennsylvania, U.S.A., May 15-
20, 1999. ACM Press, New York, 1999, pp. 120-127.

[19] Waldo, Jim, Jini Technology Architectural Overview,
Sun White Paper, 1999

[20] Weiser, M., The computer for the twenty-first century.
Scientific American, pages 94–100, September 1991.

[21] P. Wyckoff, S. W. McLaughry, T. J. Lehman and D.
A. Ford. TSpaces. IBM Systems Journal 37(3). Also
available at http://www.almaden.ibm.com/cs/TSpaces.

