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Abstract.  Especially given the falling cost of 
hardware and ubiquity of local-area wireless 
networking technologies, there is high current interest 
in programming models and software infrastructures 
to support “Weiserian” ubiquitous and environmental 
computing.  In this paper, we argue from both a priori 
reasoning and our experimental experience that, with 
slight modifications, the tuplespace programming 
model is a natural fit for such an application.  From 
the functionality perspective, the constraints of the 
problem lead directly to those put forth when the 
tuplespaces were originally proposed.  From the 
systems engineering perspective, the use of a 
tuplespace enables improved robustness and and more 
resilient resource management, which are necessary if 
ubiquitous computing is to achieve high penetration.  
In the context of our implemented prototype 
environment, the iRoom interactive workspace, we 
describe the principles that led us to this design 
choice, the modifications we made to the basic 
tuplespace model to improve its suitability for 
ubiquitous computing, our day-to-day experience over 
the past year and a half putting these principles into 
practice, and some avenues for future research.  The 
experience and applications described run on top of 
infrastructure software tools that we distributing to 
enable other researchers to build on our efforts. 
1 Introduction 
Improvements in device technologies and falling costs 
are rapidly enabling the original vision of ubiquitous 
computing [20].  Devices from large wall-sized 
displays to small PDAs can easily (and wirelessly) be 
networked together in localized areas, forming the 
hardware side of the ubiquitous computing 
environment.  Once connected together, however, the 
problem becomes how to allow programs running on 
the devices to coordinate with one another in a 
flexible and intuitive manner, given that they were not 
designed to work together. 

Our own project, Interactive Workspaces, investigates 
the systems and HCI issues that arise in room-based 
ubiquitous computing environments that are 
technology-rich and consist of interconnected large 
and small displays and multi-modal I/O devices, 
where people gather to do naturally collaborative 
activities such as design reviews, brainstorming, etc.  
Compared to other projects, some of which we list 
toward the end of the paper, the systems half of our 
project is focused on providing infrastructure for 
dynamic, heterogeneous and ad hoc collections of 
devices, applications and operating systems, all of 
which may be either new or legacy.  Based on our 
experience with the iRoom, our prototype Interactive 
Workspace, the realities of these environments make 
most currently-used programming models incomplete 
or inadequate.  We have the following indispensable 
desiderata for our software infrastructure: 
1. It must tolerate a dynamic environment: portable 

devices entering and leaving the room’s wireless 
network should not disrupt the experience of others. 

2. The room as a whole must maintain a high degree 
of robustness and availability despite inevitable 
(usually transient) software and hardware failures.  
This is especially important since part of 
experimental research includes fast prototyping, and 
we do not want such experimentation to destabilize 
an existing system. 

3. It must allow the rapid integration of new devices 
and systems.  A common-language approach such 
as “Java everywhere” is not enough by itself: we 
wish to leverage new devices and  their existing 
application bases, i.e. Win32 productivity 
applications or Palm built-in PIM applications. 

4. It must be portable across installations, allowing 
as much as possible for the heterogeneity of specific 
equipment installed at each site.   

In the next section we begin by defending the 
assertion that most applications running in such an 
environment can be characterized as a collection of 



autonomous traditional applications and devices 
loosely coupled in an ensemble (in the spirit of [10]).  
We then explain why a tuplespace model is well 
suited for this scenario as well as what changes we 
made to the basic model, and discuss our experience 
with the iRoom so far. 
We also propose that there are several extensions to 
the basic tuplespace model that are necessary in an 
interactive workspace, and we explain why they are 
needed.  Specifically, the extensions are self-
describing tuples, tuple types and flexible typing, 
tuple sequencing and tuple expiration. 
2 Tuplespaces and Ubiquitous Computing 

2.1 Interactive Workspace Applications Are 
Ensembles 

We assert that most applications running in an 
interactive workspace will consist of traditional 
applications and devices composed into an ensemble.  
There is no single dominant OS or programming 
environment in our scenario. OS demands may be 
dictated by the experience of programmers, the 
availability of device drivers for experimental I/O 
devices, the constraints of homebuilt equipment such 
as our hi-res Mural [13] (which is addressable only in 
OpenGL), and other factors.  Therefore we must make 
it easy to use existing OS’s and their associated 
applications as large building blocks, and identify 
ways to use those applications potentially in ways the 
designer never intended, for example by controlling 
them through “puppeteering” [8]. 
The question, then, is what model best facilitates this 
composition, such that the user has the impression of 
using one distributed application.  

2.2 Coordination-Based Programming 
In [10], Gelernter and Carriero proposed that 
computation and coordination should be thought of as 
orthogonal.  Computation languages express how 
calculations proceed, and coordination languages 
express the interaction between autonomous processes 
(standard procedure calls being a special case in 
which the caller process suspends pending a response 
from the callee).  They propose the Linda [1] 
tuplespace model as an example of a general-purpose 
coordination language.  A tuple is a set of ordered 
typed fields, each of which either contains a value or 
is undefined; a tuplespace is an abstract space 
containing all tuples and visible to all processes.  The 
language primitives are ‘out’ (puts a tuple into an 
abstract space), ‘in’ (consume a tuple from the space), 
and ‘read’ (copy a tuple), where the ‘in’ and ‘read’ 
operations supply a match template that may specify 

explicit values or wildcards for any tuple fields.  It is 
easy to see how other coordination types such as RPC 
or message passing can be implemented on top of 
tuplespaces if they are more appropriate for some 
task.   

2.3 Supporting Portability and Heterogeneity 
Gelernter and Carriero argue that providing a 
coordination mechanism separate from the 
computational language provides two key features: 
portability, by providing a computation language 
independent mechanism of coordination, and support 
for heterogeneity  by allowing devices and 
applications to coordinate with one another even if 
they are based on different hardware or languages. 
Since tuplespaces have only three primitives, they are 
easy to deploy on many devices and platforms, and it 
is easy to add wrappers to existing  programmatic 
interfaces when source code is unavailable (similar to 
“puppeteering” [8]).  Since coordination state is stored 
in the infrastructure (in the abstract tuplespace) and 
not in each client, even relatively impoverished 
devices can easily implement the model.  Finally, 
while marshalling and un-marshalling are still 
required, the tuplespace code running on the client 
need only implement marshaling into and un-
marshaling from the basic tuple format. 

2.4 Robustness to Transient Failure  
Failure isolation in tuplespaces is naturally achieved 
since autonomous receivers and senders don’t directly 
interact.  As long as the tuplespace infrastructure itself 
can tolerate a client failure, the failure of one client 
does not directly cause failure in another.  Put another 
way, the natural indirection in communication leads to 
a programming style that makes cascading failure less 
likely.  Tuples also persist, decoupling applications in 
time as well as space: an application can retrieve 
tuples posted while it was down. 

2.5 Interposability and Snooping 
Tuplespaces support coordination among multiple 
applications not originally designed to work together.  
Multicast communication between disparate groups of 
devices and applications is easy since multiple 
applications can get a copy of the same tuple if they 
all match for it.  The rendezvous mechanics for 
applications are also straightforward, and are aided by 
the following three key features: 
Interposability:  Since tuples are public and 
indirectly sent between applications, an intermediary 
can pick up a tuple from a source and put back one or 
more tuples of different types which will cause the 
appropriate action in a receiver or receivers.  This 



allows applications not originally intended to work 
together to coordinate. 
Snooping:  The tuplespace model allows one 
component to snoop on tuples being sent among other 
components without impinging on their behavior.  
Information in that tuple can then be used to affect the 
local behavior of the snooping application.   

2.6 Adapting Tuplespaces for an Interactive 
Workspace 

Our current implementation of coordination, the 
Event Heap, makes some changes to the basic 
tuplespace model to address engineering needs of 
interactive workspaces: 
Self-describing Tuples:  Since ensemble components 
are not necessarily designed to work together, we give 
each tuple field a name as well as a value, so users 
can figure out the intent of tuples by browsing 
through the tuplespace. 
Flexible Matching for evolvability: In the standard 
tuplespace model, the number of fields in a tuple and 
the order of fields is significant.  Our system permits 
the tuple matching logic to ignore these attributes and 
match on field names and values only.  Applications 
can thereby extend standard message types by adding 
extra fields, without breaking older applications; this 
enables continuous evolution.  (This is analogous to 
enhanced Web clients or servers adding new HTTP 
headers.)  Work on flexible typing [4] describes how 
such a system can still preserve the desired safety 
properties of strict typing. 
Typed Tuples for anonymous communication:  We 
require that all tuples include a designated type field, 
whose value denotes a generic tuple class potentially 
intelligible to many applications, and implies the 
presence and semantics of certain other fields in that 
tuple.  For example, a “pointer event” tuple is 
expected to have xPos and yPos fields.  (Since the 
fields are named, ordering does not matter.)  This 
provides a useful compromise between strong and 
weak typing, although name collisions on tuple types 
are still possible.  Tuple types also facilitate 
anonymous communication: as long as two 
applications understand the same tuple types, there is 
no need to explicitly coordinate their behaviors. 
Tuple Sequencing:  Traditionally, if multiple tuples 
exist that match the template tuple on a ‘read’ or ‘in’ 
operation, any of the matching tuples can be returned 
on any call.  Tuple sequencing means that receivers 
will not read the same tuple more than once.  
Sequencing ensures that applications requesting state 
change tuples will get tuples exactly once, and in 
order, rather than fetching the same tuple repeatedly.  

Nonconsuming read is still supported as a “snoop” 
method, which allows applications to peek at tuples 
without affecting sequencing.   
Expiration of Tuples:  If tuples intended for a 
particular recipient are never consumed (perhaps the 
recipient(s) have failed), tuples may build up in the 
tuplespace.  We address this by giving all tuples a 
TimeToLive field that specifies how long  (in wall 
clock time) until they are “garbage collected” by the 
tuplespace.  In addition to eliminating the resource 
reclamation problem, expiration facilitates two other 
useful behaviors.  First, it bounds the causal latency 
between the posting of a tuple and an action in 
response to reading the tuple.  For example, a light 
should turn on within a few seconds of the remote 
control activation, or not at all.  Second, expiration 
facilitates service discovery and advertisement via 
soft-state, announce/listen protocols [17], which are 
known to have excellent robustness properties (we 
describe our implemented service discovery and 
advertisement system in [16]). 
3 Discussion and Experience 

3.1 Design Alternatives Rejected 
Publish-subscribe  provides some of the same 
advantages as tuplespaces.  However, P/S is primarily 
receiver-driven in that senders may not publish unless 
they know someone is listening; in contrast, the 
natural broadcast provided by tuplespaces makes 
anonymous rendezvous potentially easier.  (Consider 
implementing a remote-control applet without 
knowing in advance how to bind to a receiver.)  Also, 
P/S events lack persistence, making it difficult for a 
temporarily-down listener to retrieve an event after it 
comes back up.  This makes it more difficult to keep 
he system running smoothly through a failure. 
RPC/RMI suffer from well-known systems problems 
associated with transparency; they also lack temporal 
persistence in coordination, and make language 
independence more difficult since the method 
interface needs to be agreed upon ahead of time by all 
parties, and all parties must be notified if the interface 
changes.  Since communication is direct, it is difficult 
to rendezvous programs not designed to work with 
each other via snooping and intermediation as 
described above.  Both RPC/RMI and P/S can be 
implemented on top of tuplespaces if needed. 

3.2 Drawbacks/Challenges of Tuplespaces 
Scalability.  Tuplespaces do not scale easily, since all 
participants communicate through a shared medium.  
We accept this tradeoff because the scale of an 
interactive workspace is bounded by human 



interaction, i.e. it will contain perhaps tens of users 
and hundreds of processes.  For this same reason,  we 
anticipate that the best way to “link” multiple 
interactive workspaces will involve selectively 
filtering events to communicate among multiple 
independent tuplespaces.  (It is unlikely that most 
messages controlling specific physical plant in room 
A are of interest to software in room B.) 
Indirection.  Peer-to-peer communication takes two 
hops.  Since we are primarily interested in supporting 
interactions at human-scale latencies, the speed of 
current computers and networks diminish the 
importance of this issue in our domain.  Also, in [6] it 
has been shown that a properly implemented 
tuplespace can adapt over time to route messages 
using a single hop. 
Security is particularly important for multiple-space 
scenarios, but the “social model” for security even in 
a single space is not yet well-understood.  In our 
prototype, complete trust is extended to all entities 
that can communicate via the tuplespace, and the 
entire environment is behind a firewall. 
 

3.3 Experience To Date 
Our prototype iRoom includes three SmartBoard wall-
size touch-sensitive displays, a hi-res Mural display, a 
tabletop display, wireless LAN and wireless pointing 
devices, and integration with laptops and PDA’s.  
Space does not allow a detailed description of our 
extensive experience with the iRoom to date.  We 
routinely use several applications that rely on the 
functionality of the Event Heap, including 
SmartPresenter and multibrowsing [14] (exploiting 
multiple displays for PowerPoint presentations and 
Web browsing respectively), the Interface Crafter [16] 
and several associated “soft” remote controls for 
lighting, projector mux, etc. that can also be accessed 
handheld devices [9], and wireless buttons that can be 
programmed as “macros” (e.g. power up the entire 
room).  Most of these were realized by combining a 
diverse array of off-the-shelf applications (e.g. 
PowerPoint) with  tens or hundreds of semicolons of 
“glue”.  As a research lab, the room has been 
remarkably robust under day-to-day use, and also 
supports several outside groups that use it for demos 
and as a facility for their own (non-Computer 
Science) projects.  We cannot prove that this 
combination of ease of integration and robustness 
would have been impossible with any other approach, 
but we believe we have demonstrated that our model 
is indeed a natural fit for such an environment. 

3.4 Related Work 
A large number of interesting and complex, but non-
interoperable, projects [2][3][5][7][18] are 
investigating room or work-area based ubiquitous 
computing.  Each has uncovered important insights in 
ubiquitous computing but have yet to propagate and 
deploy their frameworks significantly beyond the 
project’s boundaries.  Many are focused more on 
making the environment “smart” and responsive to 
users’ needs, and have focused less on creating a 
reusable, portable and robust infrastructure.  Hasha 
[12] proposes publish/subscribe for controlling homes 
filled with smart appliances, sensors and I/O devices; 
we believe the temporal persistence and expiration 
properties we have added to tuplespaces make them 
slightly more useful for connecting legacy 
components and applications and for dealing with 
partial failure and state corruption.  Jini [19] provides 
lower level mechanisms by which clients and servers 
that understand common interfaces can interact with 
each other, but does not specify how coordination 
proceeds after the initial rendezvous.  JavaSpaces [15] 
and TSpaces [21] are essentially direct 
implementations of the tuplespace model; we have 
extended TSpaces as described above to form the 
Event Heap, the basis of our coordination 
infrastructure.   
4 Conclusions  
Because of practicality and complexity constraints, 
many ubiquitous computing application scenarios will 
continue to be characterized as loosely-integrated 
ensembles of heterogeneous legacy components.  We 
propose that this domain may be a “killer app” for the 
tuplespace model of coordination, because of that 
model’s portability, extensibility, flexibility, and 
ability to deal with heterogeneous environments.  In 
addition, we  proposed key extensions to the basic 
tuplespace model for this domain: self-describing 
tuples, flexible typing, typed tuples, tuple sequencing, 
and tuple expiration.  The results of using our 
implemented prototype (the Event Heap and the 
iRoom) routinely over the past year and a half have 
been very favorable, and we encourage interested 
readers to help evaluate and extend our approaching 
by setting up their own Interactive Workspace.  The 
hardware can be easily simulated using a collection of 
PC’s, handhelds and laptops, and the software 
described in this paper is available at 
iwork.stanford.edu.  
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