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1 Abstract

Constellation is a visualization system for the results of queries
from the MindNet natural language semantic network. Constella-
tion is targeted at helping MindNet’s creators and users refine their
algorithms, as opposed to understanding the structure of language.
We designed a special-purpose graph layout algorithm which ex-
ploits higher-level structure in addition to the basic node and edge
connectivity. Our layout prioritizes the creation of a semantic space
to encode plausibility instead of traditional graph drawing metrics
like minimizing edge crossings. We make careful use of several
perceptual channels both to minimize the visual impact of edge
crossings and to emphasize highlighted constellations of nodes and
edges.

2 Introduction

Constellation is a tool for visualizing fragments of MindNet [5, 11],
a system that constructs a large semantic network by parsing the
text of machine-readable dictionaries and encyclopedias. MindNet
was developed at Microsoft Research, and its possible applications
include grammar checking, intelligent agent help systems, machine
translation, and common-sense reasoning. MindNet’s creators and
users wanted a tool to help them check the plausibility of the results
returned from a query about the connections between two words.
The result of each query can be displayed as a medium-sized di-
rected graph of less than one thousand nodes.

We found that relying on generic graph layout techniques to dis-
play this complex structure led to inadequate results. In most tradi-
tional graph drawing systems, spatial position bears most of the per-
ceptual burden, and interaction is used simply for basic navigation.
One of the major constraints on spatial positioning in traditional
graph layout approaches is the need to minimize edge crossings,
in order to avoid the visual impression of attachments that do not
actually exist.

We instead incorporate a great deal of domain-specific informa-
tion into our custom layout algorithm. Although spatial position
is the strongest perceptual channel, we reduce false attachments by
using several other perceptual channels in concert to create dynam-
ically changeable foreground and background visual layers. The
user can interactively explore highlighted subsets (constellations)
of the graph while retaining the context of the entire dataset.

Our system incorporates ideas from graph drawing, human-
computer interaction, computer graphics, cognitive psychology,
and graphic design. While Constellation itself is quite narrowly
targeted for the MindNet developers, the visualization and interac-
tion techniques that we have developed have a wider scope and can
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be reused in other domains. Color Plates 1 and 2 show the visual
effect that we have achieved.

3 MindNet

The MindNet parsing process turns a dictionary or encyclopedia
entry sentence into a smalldefinition graph of roughly one dozen
nodes. The edges represent directed labelled relations between
words, such as “is-a”, “part-of”, or “modifier”. The nodes represent
word senses: a natural language word may have several meanings
depending on context, for instance “bank” as “financial institution”
or “side of a river”. MindNet distinguishes between these word
senses by adding a numerical suffix and treats them as separate
nodes. Two definition graphs that share a node can be combined
into a larger graph, and this unification process results in a huge
semantic network that can contain millions of nodes.

The semantic networks generated by MindNet are sufficiently
large and interconnected that its developers find it impractical to
study their global structure. They instead rely on a query engine to
probe a small subsection of the network. Each of these snapshots
is checked for potential problems and the system is modified to ad-
dress them. The user provides a query consisting of two words and
the number ofpaths to return. MindNet computes the best paths be-
tween the words, using (among other things) the edge weights in its
unified network of definition graphs. Our target users requested that

Figure 1: The Constellation visualization system showing the
MindNet query result of the top ten paths between “kangaroo”
and “tail”, along with the definition graphs used to construct those
paths. This black and white figure shows our spatial layout but
since our visual layering scheme requires color, we have postpro-
cessed the image for legibility purposes. Plate 2c shows a color
version of this dataset.
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Figure 2: The previously existing textual views in MindNet: the definition graphs for kangaroo100 and Tasmaniandevil100 are shown in
(a) and (b), and the ten best paths between kangaroo and tail are shown in (c). The first path is only one hop since tail101 is present in the
definition of kangaroo100. The second shows that Tasmanian devils and kangaroos are both marsupials, and Tasmanian devils have tails. The
words to the right of each path are the definition graphs which were used by MindNet to construct the path. This output has been simulated
for legibility purposes. Figures 1 and 3 and Plate 2c show this full dataset laid out in Constellation.

we treat the internal MindNet path computation algorithms [5, 11]
as a black box, so we simply use the ordering of the returned paths
as aplausibility measurement. The system returns both the paths
themselves and the definition graphs used to compute each path.
Although each path usually contains less than ten words, the num-
ber of associated definition graphs can range from one to dozens.
The users typically request the best ten or fifty paths.

A single word sense may appear in multiple places: it could lie
on several different paths, appear as aleafword inside several defini-
tions, and also appear as aheadword with its own definition graph.
These shared words are the reason it is difficult to understand how
paths relate to each other and to the definition graphs used to cre-
ate them. The existing MindNet software infrastructure provides
dozens of specialized local textual views as in Figure 2, but none of
them provides the MindNet developers with a global picture of the
relationships between paths and definition graphs. One of the main
design goals of Constellation is to provide such a spatial framework
to help the users analyze these interrelationships.

4 Spatial layout

Color plates 1 and 2 show the results of our graph layout algo-
rithm, which uses the domain-specific elements of paths and def-
inition graphs. The broad layout parameters are based on the two
orderings returned directly by MindNet: horizontal flow is derived
from the plausibility ordering between the paths, and vertical flow
is based on the internal ordering of words within a path, with the
source on top and the sink on the bottom.

We start on the left with the most plausible path, and draw its
pathwords in tan boxes one at a time at points along a curved verti-
cal band from top to bottom. The plausibility ranking is used for the
horizontal ordering and width of the path bands: the most impor-
tant band on the left is straightest and widest, while lower ranking
path bands farther to the right are more curved and narrow. Im-
portant words on the left are drawn larger than implausible ones on
the right since wider bands allow larger font sizes. The left-to-right
plausibility size gradient is usually much more visually salient than
the underlying bands. After the vertical sweep for the pathwords of
the leftmost path is finished, we move on to the next band on the
right. A pathword that occurs in multiple paths is drawn only once,
in the first (most plausible) path position encountered on the above
sweep.

MindNet provides an association between a path and all the def-
inition graphs used in its computation. In some cases a pathword
is theheadword of a definition graph, whoseleafwords are drawn
beneath it in a ladder-like structure with blue label boxes, as in the

two tan boxes in Plate 1b. This local structure as shown in Figure
3 is deliberately similar to the previously existing definition graph
view shown in Figures 2a and 2b.

In other cases a pathword is a leafword rather than the headword
of a definition graph, so the entire definition graph is drawn in a
green box nested within the tan pathword box, as in the leftmost box
of Plate 1b. Some path computations involve the pooled influence
of many definition graphs for a single pathword, so there may be
many green boxes vertically stacked inside a single tan pathword
box, as in the lower left corner of Plate 2a. Path 7 of the kangaroo-
tail 10 path dataset is an extreme example, visible as text in Figure
2c and in our layout in Plate 2c.

Although pathwords and thus entire definition graphs are drawn
only once, the individual words inside a definition graph may be
drawn multiple times so that the entire definition can be easily read
in the local view. The first time a word is drawn it is colored black,
and subsequent instances are drawn in grey and connected to the
master by long slanted lines.

Figure 3: We have zoomed in on the dataset of Figure 1 to focus
on the highlighted path 2 elements, for comparison with path 2 in
Figure 2. We have postprocessed this image for black and white
legibility purposes. Our visual layering scheme is visible in the
color plates.



5 Navigation and legibility

Constellation is optimized for three viewing levels: a global view
for inter-path relationships, an intermediate view for pathword as-
sociations, and a local view for reading individual definition graphs.
In the global view the path-level words are emphasized by devoting
a large part of the box space to the top word. Leafwords are smaller
than headwords, and may be drawn as a line or omitted completely
if there is no vertical room, as in the Plate 1a inset. All the blue
leafwords in a tan pathword box are drawn the same size, to present
equal visual salience, so some of the longer words are horizontally
elided as in the large box on the left in Plate 1a. The word draw-
ing strategy changes at higher zoom levels. At the local level, the
task is reading a single definition graph, so the box space is more
equally divided among words as in Plates 1b and 1e.

Although mouse dragging offers direct fine control over panning
and zooming, the main navigation method is a mouse click inside
any enclosure box, which triggers an animated transition [12]. The
zoom level is computed so that the box is vertically framed within
the window and there is enough horizontal space to draw every
word string completely with no ellipsis.

6 Perceptual channels

The visual encoding of abstract information into perceptual chan-
nels is one of the central issues of information visualization [8, 9].
Section 4 describes the use of quantitative spatial position to en-
code plausibility and proximity to encode association. We also al-
low exploration of the dataset through the selective highlighting of
constellations of boxes and edges. The four constellation categories
are shown in the color plates: paths in Plates 1a, 1c, 2a, 2c; defini-
tion graphs in Plates 1d, 2a; word senses in Plates 1e and 2a, and
relation types in Plate 1f.

Although no other perceptual channel alone is as salient as spa-
tial position, combining several of them has proven to be very ef-
fective at creating visual popout to distinguish a foreground from a
background visual layer [14]. The background layer with its many
edge crossings is visible at all times for context, but is unobtrusive
since the edges have low saturation and brightness. We emphasize
the foreground layer by increasing both saturation and brightness.
In the case of lines, we also increase the size, for the synergistic
result that the hue differences in wide lines are much more discrim-
inable than in the unhighlighted narrow ones.

The colored text background boxes use grouping and enclosure
to encode the hierarchical relationship between pathwords and defi-
nition graphs. These boxes also provide a colored area large enough
for effective hue discrimination and to maximize the legibility of the
black label text. The long slanted lines between master and proxy
instances of the same word sense encode association with a con-
nection cue. The short axis-aligned lines between words in a single
definition graph are visually distinguishable from the long proxy
lines by the orientation channel.

Finally, we use hue as a nominal variable, to distinguish between
the types of enclosure boxes and the types of relation lines. Each
of the eight relation types is color coded with with hues 45 de-
grees apart on the HSB color wheel, while the three hues for the
enclosure boxes (tan, green, and blue) were empirically chosen to
complement them. Our color scheme draws heavily on ideas from
Reynolds [10], who presented a set of color palettes to improve the
legibility of air traffic control displays.

7 Interactive visual emphasis

The previous section discusses the use of multiple perceptual chan-
nels to bring a particular subset of the data to the emphasized fore-

ground visual layer. This interactive visual emphasis is similar in
spirit to the dynamic queries of previous information visualization
systems such as FilmFinder [1]. Our lightweight hover mode al-
lows quick visual inspection with no need to navigate. In hover
mode, moving the mouse over a link marks it visually and shows
full details about its origin and destination in an upper status bar.
Hovering over a word will temporarily draw it at maximum size so
that it is legible even from the overview position, and visually mark
all shared instances of that word, as in Plates 1a and 2c.

Our newpie flipper interaction technique is a translucent, popup,
minimal screen footprint visual interface that exploits the scrolling
mouse. Holding a mouse button down and dragging the cursor into
a slice of the radial display picks a category type, and then scrolling
the wheel with the button still held down selects instances in that
category. The popup display is shown in Plate 2b. Visual feedback
is provided by both the selective highlighting visible in the main
window through the translucent popup, and auxiliary information in
a lower status bar. The sensory feedback of actively holding down
the mouse button during scrolling minimizes mode errors [13], and
the popup radial display was inspired by pie menus [2].

8 Discussion

The target users of our system were three computational linguists
involved in the development of MindNet. This extremely small user
population allowed us to count on using the latest hardware and
gave us the opportunity to follow a user centered design approach as
much as possible given their time constraints. The current version
of Constellation has evolved in response to detailed user feedback
on several previous paper and software prototypes. We relied on
informal task analyses of the various iterations instead of formal
user studies, since we had such a small target audience.

Our final layout algorithm is the result of many iterations as
we explored the tradeoff between legibility and the semantic use
of space on a finite resolution display. At the former extreme, we
could tile the window with a rectangular grid containing 300 words,
but there would be no spatial encoding whatsoever. At the latter ex-
treme, a very strict spatial encoding would allow an exact encoding
of the desired attributes, but vast amounts of navigation would be
required to actually read anything because of low information den-
sity. Our horizontal plausibility gradient is a middle ground where
more important words are allocated more room in the overview po-
sition. To compensate for our finite resolution, we offer easy nav-
igation with animated transitions and intelligent zooming, where
the relative amount of space devoted to words changes based on the
zoom level. Rapid visual emphasis through hovering is useful in
situations where navigation would be a cognitive burden.

The layout provides a great deal of structural information about
the paths and definitions which were returned by a MindNet query,
at the expense of many edge crossings. Our visual layering ap-
proach of using many perceptual channels in concert proved to be
quite effective at both avoiding false edge attachments and visual
emphasis. The psychophysical literature on color coding is exten-
sive, and we benefited from it by following recommendations of
Reynolds [10].

Our current implementation is a strong foundation, but further
polishing could make it a more productive tool for our target users.
Possibilities include adding incremental visual search capability, in-
creased support for finding high-connectivity “hotspot” word con-
stellations, and better integration with the main MindNet text views.
The Constellation visualization was tuned to show the relationships
between computed paths and their constituent definition graphs, so
it only addresses a subset of the potential visualization needs of its
target users. Additional visualization tools that support other tasks
could be built.



9 Related work

Although there are several information visualization systems for
visualizing relationships between or within documents, there are
fewer aimed at showing the relationships between words in a se-
mantic network.

The SemNet system [6] for visualizing a large knowledge
database used in linguistics tackles a problem similar to our own.
Fairchild et al advocate a 3D representation to avoid edge crossings,
and present several approaches for placement including mapping
functions, proximity placement and heuristics. Despite an effort to
rely solely on syntactic information, they acknowledge the utility
of exploiting semantic information to achieve a more effective vi-
sualization.

The Visual Thesaurus [3] is a more recent attempt to show con-
nections between words. Its simple spatial layout algorithm does
not scale past a few dozen words, and the constant motion of the
scene makes it ill-suited for extended analysis.

There are many graph drawing systems of varying degrees of
generality [4]. One of the more flexible and popular two dimen-
sional layout systems isdot [7], which we found useful for pro-
totyping some of our early ideas. However, its main focus is to
provide a visually pleasing graph using only graph topology, with a
strong emphasis on hierarchy and only minimal user steering pos-
sibilities. Our goal in Constellation was to explicitly use domain-
specific information in the spatial layout.

10 Conclusion

Constellation is an interactive visualization system for linguistic
queries. The key visual encoding choices are the spatial position
of nodes and edges, and the creation of visual layers using several
other auxiliary perceptual channels. We present a special-purpose
graph layout algorithm that constructs a semantically structured
space with a left to right plausibility gradient and a top to bottom
path flow. The selective highlighting of boxes and edges creates a
visually salient foreground layer distinct from the unobtrusive back-
ground layer. We exploit the scrolling mouse with a newpie flipper
interaction technique for selecting instances of a constellation cate-
gory. Intelligent zooming helps us achieve high word readability at
global, intermediate, and local scales.

Although Constellation was designed for a small target audience,
our design principles are relevant for many information visualiza-
tion systems. The interactive visual emphasis capability is as fun-
damental to the dataset exploration as the interactive navigation,
and these interactions are as important as the base spatial layout for
understanding the full dataset.
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