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Quadtrees: Hierarchical Grids

Steve Oudot

From S. Har-Peled's notes, Chapter 2



Outline

Examples and preliminary results.
(deterministic)
Static setting: compressed quadtrees.

Dynamic setting: skip-quadtrees. > (randomized)

Adaptive meshing: balanced quadtrees. > (deterministic)



A tirst example (point location)

Goal: given a planar map M that partitions [0, 1[*, preprocess M such that, for any
query point g € [0,1]?, the region containing ¢ is found in sublinear time.
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A tirst example (point location)

Goal: given a planar map M that partitions [0, 1[*, preprocess M such that, for any
query point g € [0,1]?, the region containing ¢ is found in sublinear time.
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- Vq € [0, 1[%, walk down T to find leaf
v € L that contains g, then check tri-

angles that intersect L],,.
= size O(|L|), time O(h)

regular grid : size ©(22"), time O(1)

/

Q can we do better?



A tirst example (point location)

Goal: given a planar map M that partitions [0, 1[*, preprocess M such that, for any

query point g € [0,1]?, the region containing ¢ is found in sublinear time.
‘ (0, 0)
‘ (0.1, 0 (0,0.1) (o)@i)
Ag\‘
: th‘iﬂl\ + .
"':fi‘:g!! RN
et S L L .1 S LA . L
gd"‘_‘ level i forms a 27 *-regular grid of [0, 1[
] T

-—— put nodes in hash-table

. \‘ Q”A Vq € [0, 1[?, binary search on height:
Let 2 = hmax+hmin/2;
)-.‘ if ;‘)z<q) # NULL, the/n search between 7 and hmax;

else search between hmin and z;

= O(log h) .

e



Another example (range searching)

Goal: given a finite point set P C [0, 1[%, preprocess P such that, for any query
rectangle » C [0,1]%, r N P is found in time O(|r N P)).
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Another example (range searching)

Goal: given a finite point set P C [0, 1[%, preprocess P such that, for any query
rectangle » C [0,1]%, r N P is found in time O(|r N P)).

X X X XX

. d b

1 point per leaf (= |P| leaves)
= |T'| < h|L| = h|P]|.

Query: go from root to leaves, stopping
each time r N, = 0.
= O(|rNT|) <O(hlrNL|)

Q Boundon h?



Various bounds

Lemma Let P C [0,1[* be finite. Assume wlog diam(P) = max{d(p, q|p,q €
P} Z 1/2. Then, h = O(log (I)(P)), where (I)(P) — diam(P)/min{d(p,q)|p,q€P}.

p(0.0fL11,0.0101)

®
g(0.1001,0.0101)

Def Vp,q € P, let h(p, q) be the small-
est ¢ s.t. v;(p) # vi(q).

Vi, vi(p) = (27" (2D, 27" [2"Dy )

Prop Vp,q € [0,1]%, h(p,q) =
min{—[log(pzVgz)|, —[log(pyVay) |}
< mm{— ﬂog |p$_q$|7 — [log |Py_Qy|}
= —[log rriax{\pm — qx \1, Py — ay|}]

Observation: for every internal node v
of T, |Ll, N P| > 2

= l(v) < h(p,q) — 1, Vp,q € L,

= h < 5 — logmin{d(p, q)|p,q € P}
< 2 +log ®(P)



Various bounds

Lemma Let P C [0,1[* be finite. Assume wlog diam(P) = max{d(p, q|p,q €
P} Z 1/2. Then, h = O(log (I)(P)), where (I)(P) — diam(P)/min{d(p,q)|p,q€P}.

p(0.0fL11,0.0101)
®

q(0.1001,0.0101)

Corollary
data structure size: O(|P|log ®(P))

construction time: O(|P|log ®(P))
query time: O(loglog ®(P))

Q Can we do better?
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every internal node has > 2 sons

= |T| <2|L| —1=2|P| -1

Q how to construct T’ efficiently?

Q how to locate a point efficiently?
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.. every internal node has > 2 sons

= |T| <2|L|—-1=2|P| -1
Q how to construct T’ efficiently?
Q how to locate a point efficiently?
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Compressed quadtrees (construction)

Note Computing the uncompressed quadtree can take unbounded time

Quadratic algorithm:

1. For all pairs of points (p,q) € P?, find O, , = O, ) = Oy, (g)
where 1 = h(p,q) — 1.

— Upq Must be a node of compressed quadtree T’
— every node of T is a v, for some pair (p,q) € P?

= this step computes the exact list of the nodes of T’

2. For each node v in the list, find its most recent ancestor (in the
list) and connect v to it.

Note a node is stored only once in the list, although it may have
been found multiple times in step 1 (use hash-table).



Compressed quadtrees (construction)

More subtle algorithm: let k = [Pl/10.
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- Let [ = 2ll°e™) > 7/5 Place the
pts of P on UGy, and find cell ¢
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Compressed quadtrees (construction)

More subtle algorithm: let k = |P|/10. - Compute D, s.t.
Topt (P k) <17 < 27ro5t( P, k).

- Let [ = 2ll°e™) > 7/5 Place the
pts of P on UGy, and find cell ¢
with max number of points.

Pn=PnNec, Py =P\ c.

P
[>T :>\Pm\_25_%.

| < 2ropi(P k) = |P| < 221
- Recursive call on P, and P, 4.

Locate any p € Py, in Ty, and
hang root of 7;, onto the node.

= O(|P|log |P|)
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Note If T unbalanced, then query time = Q(|P|).
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- starting from root of 1', keep going to son with
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Compressed quadtrees (pt location)

Note If T unbalanced, then query time = Q(|P|).

— Finger tree construction:

Preprocessing: compute sizes of subtrees of 7'

- starting from root of 1', keep going to son with
highest number, until subtree has size at most |7/2.

- Update numbers of parents of the separator node.
- Recursive call on all subtrees.

- Hang finger trees of subtrees to separator node.

— Construction time: O(|T|log |T'|) = O(|P|log |P|).

— Finger tree has same size as 1" and is balanced,
hence its height is O(log |T'|).

= pt location time: O(log |T). 3
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Note Compressed quadtrees can be updated efficiently under
point insertion /deletion, but not finger trees.
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Def A gradation of P is a subsampling se-
quence (Sm, Sm—-1,---,52,51) such that:

(i) S1 = P,

(ii) S; = pts of S;—1 picked with proba. 1/2,
(i) |Sm| =1 < |Sm-1].
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Dynamic quadtrees

Note Compressed quadtrees can be updated efficiently under
point insertion /deletion, but not finger trees.

Def A gradation of P is a subsampling se-
quence (Sm, Sm—-1,---,52,51) such that:

(i) S1 = P,

(ii) S; = pts of S;—1 picked with proba. 1/2,
(i) |Sm| =1 < |Sm-1].

Prop Vi, E[|S;|] = 2~

- E[|S:[] = BE[|S.[]] = sE[|Si—1]] = -
E[|S1]] = 57

2t—1"-

2?,1

In particular, for £ = [11log|P||, we have

P P
HSK'” |2k| < 211|log||P| — |p1|10

= By Markov's inequality, Pr(m > k) =
Pr(|Sx| > 1) < E(|Sk|) <

|P|1O

=- with high proba., m = O(log |P|). 9
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Dynamic quadtrees

Note Compressed quadtrees can be updated efficiently under
point insertion /deletion, but not finger trees.
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Dynamic quadtrees

Note Compressed quadtrees can be updated efficiently under
point insertion /deletion, but not finger trees.
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Dynamic quadtrees

Note Compressed quadtrees can be updated efficiently under
point insertion /deletion, but not finger trees.

Def Given gradation (Sy,,--,S1 = P), build
compressed quadtrees T;(S;) and connect the

internal nodes of S; to their instances in .S;_1.
= hierarchy of compressed quadtrees.




Dynamic quadtrees

Note Compressed quadtrees can be updated efficiently under
point insertion /deletion, but not finger trees.

Pt location Given ¢ € [0, 1[?, locate q in T}y,
then follow link of latest internal node v,, to
Tyn—1, then locate g in T},,_1 from v,,, ---
locate q in T7 from vs.
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Dynamic quadtrees

Note Compressed quadtrees can be updated efficiently under
point insertion /deletion, but not finger trees.

Pt location Given ¢ € [0, 1[?, locate q in T}y,
then follow link of latest internal node v,, to
Ty—1, then locate g in T,,_1 from v, ---,
locate q in T7 from vs.

Backward analysis Let v be last node vis-
ited in T;. Let v1 = v,v2,--- ,v, be path to
root. V3, U; := S5; N v; \U;| > 7, and
HUJ M Sf,;_|_1’ <1l<& V; € TZ'].

Let V; =1 iffv; ¢ Tiy1 —

E[V;] = Pr(V; = 1) = Pr(|U; N Sia| < 1) =

1 Uil 1 U~ 145

Eltime spent in T;] < » E[V;] =} . it — O(1).

j 27

= E[location time| = O(log | P|).




Dynamic quadtrees

Note Compressed quadtrees can be updated efficiently under
point insertion /deletion, but not finger trees.

Pt insertion Given ¢ € [0, 1],

- locate ¢ in (T},,--- ,T1) and store path.

- insert q in T} by splitting last node of path.

- toss coin: if neg. result, then done. Else, add
g to S2 and insert it in T using last node of
location path in 75.

- Iterate process, until coin toss gives neg. result
(create new layers if necessary).




Dynamic quadtrees

Note Compressed quadtrees can be updated efficiently under
point insertion /deletion, but not finger trees.

Pt insertion Given q € [0, 1],

- locate ¢ in (T},,--- ,T1) and store path.

- insert q in T} by splitting last node of path.

- toss coin: if neg. result, then done. Else, add
g to S2 and insert it in T using last node of
location path in 75.

- Iterate process, until coin toss gives neg. result
(create new layers if necessary).

Analysis Outside location path, time spent
per layeris O(1). Since q raised w/ proba. % per
layer, E|max. layer reached] = > . =% = O(1).

1 21

= El[insertion time] = O(log | P|).

=- Eliterative construction time| = O(|P|log|P)).
9




Dynamic quadtrees

Note Compressed quadtrees can be updated efficiently under
point insertion /deletion, but not finger trees.

Pt deletion Given p € P,

- locate p in (T, --- ,T1) and store path.

- delete q from leaves of the Tj.

- recursively remove empty nodes from the T;
and transform internal nodes with only 1 pt into
leaves (plus remove empty layers).

Analysis Only the nodes of the location path
are to be considered for deletion or status
change. If the instance of v in 1} is deleted,
then its parent node in Tj is still non-empty,
hence only v and its parent have to be updated
= O(1) update time per layer.

=- E|deletion time| = O(log | P|).




Dynamic quadtrees (derandomization)

[D. Eppstein, M. Goodrich, J. Sun, SCG 2005] (deterministic quadtrees)

[J. Munro, T. Papadakis, R. Sedgewick, SODA 1992] (deterministic skip-lists)

; @
— o % —1—|I' [,

ldea:

- Put S1 = P inlist L1, ordered according to 17.

- build 1-2-3 deterministic skip-list for L1: Vi >
1, there are > 1 and < 3 cells in L;_1 between
any consecutive cells of L;. = O(log | P|) layers.

-V, S; =" PN L;". Build compressed quadtree
T; for S; — same order of S; in L; and T;.

- add bi-directed pointers between pts of §; in
Li and Ti.

= search, insertion, deletion times: O(log(n)).
10




Balanced quadtrees

Adaptive mesh generation Given P C|0, 1[* finite, construct the smallest

possible triangulation T' of ]0, 1[*, with bounded minimum angle, s.t. every
point of P is a vertex of 1.
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Balanced quadtrees

Adaptive mesh generation Given P C|0, 1[* finite, construct the smallest
possible triangulation T' of ]0, 1[*, with bounded minimum angle, s.t. every

point of P is a vertex of 1.
Strategy:

- compute compressed quadtree

> Tp of P — O(|P|log |P]).

° - uncompress Ip

® - refine Tp so that, Vp € P, the
1-ring neighb. of p contains no pt
of P\ {p} (V cell, use pointers to

adjacent cells in 8-connectivity).
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Balanced quadtrees

Adaptive mesh generation Given P CJ0,1[* finite, construct the smallest
possible triangulation T' of ]0, 1[*, with bounded minimum angle, s.t. every

point of P is a vertex of 1.
Strategy:

- compute compressed quadtree
Tp of P — O(|P|log|P|).

XV /\ - uncompress Ip
- refine Tp so that, Vp € P, the

1-ring neighb. of p contains no pt
> of P\ {p} (V cell, use pointers to

N < adjacent cells in 8-connectivity).

- Insert 1-ring neighbs. in T’» and

refine 1'p so that it is balanced.

/ - snap nearest vertices onto pts of P.

/ - triangulate cells (3 cases: unsplit
bound., split bound., moved vertex).
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Balanced quadtrees

Adaptive mesh generation Given P C|0, 1[* finite, construct the smallest
possible triangulation T' of ]0, 1[*, with bounded minimum angle, s.t. every

point of P is a vertex of 1.
Strategy:

- compute compressed quadtree

Tp of P — O(|P|log |P)).

- uncompress Ip

- refine T'p so that, Vp € P, the

1-ring neighb. of p contains no pt
of P\ {p} (V cell, use pointers to

< adjacent cells in 8-connectivity).

- Insert 1-ring neighbs. in T’» and

refine 1'p so that it is balanced.

- snap nearest vertices onto pts of P.

- triangulate cells (3 cases: unsplit
bound., split bound., moved vertex).

= time: O(|P|log|P|+ |output|) 11




Take-home message

Quadtrees vs. uniform grids: space-time trade-off.

Effective location data structure in low dimensions, both
in static (compressed quadtrees) and dynamic (skip-
quadtrees) settings.

Main advantages: easy to implement, good average be-
haviour in practice (time and space).

Downside: fundamentally anisotropic (cf. point location
among triangles, mesh generation, etc.).

Very useful for approximation (cf. snap-rounding).
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