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• Examples and preliminary results.

• Static setting: compressed quadtrees.

• Dynamic setting: skip-quadtrees.

• Adaptive meshing: balanced quadtrees.

(deterministic)

(randomized)

(deterministic)



A first example
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CS468 – Quadtrees: Hierarchical Grids

q

Goal: given a planar map M that partitions [0, 1[2, preprocess M such that, for any
query point q ∈ [0, 1]2, the region containing q is found in sublinear time.

(point location)



explain why quadtree can be interesting vs. uniform grids: example of big triangle and small triangles
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CS468 – Quadtrees: Hierarchical Grids

- triangulate each region

- build quadtree T whose leaves
intersect at most 9 triangles

Goal: given a planar map M that partitions [0, 1[2, preprocess M such that, for any
query point q ∈ [0, 1]2, the region containing q is found in sublinear time.

(0, 0)

(0, 0)

(point location)



explain why quadtree can be interesting vs. uniform grids: example of big triangle and small triangles

lexicographical order
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CS468 – Quadtrees: Hierarchical Grids

- triangulate each region

- build quadtree T whose leaves
intersect at most 9 triangles

Goal: given a planar map M that partitions [0, 1[2, preprocess M such that, for any
query point q ∈ [0, 1]2, the region containing q is found in sublinear time.
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(0, 0) (0.1, 0)

(point location)



explain why quadtree can be interesting vs. uniform grids: example of big triangle and small triangles

lexicographical order
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CS468 – Quadtrees: Hierarchical Grids

- triangulate each region

- build quadtree T whose leaves
intersect at most 9 triangles

Goal: given a planar map M that partitions [0, 1[2, preprocess M such that, for any
query point q ∈ [0, 1]2, the region containing q is found in sublinear time.

(0, 0)

(0, 0) (0.1, 0.1)(0, 0.1)(0.1, 0)
(0, 0.11) (0.01, 0.11) (0.1, 0.11) (0.11, 0.11)

(0, 0.1) (0.01, 0.1) (0.1, 0.1) (0.11, 0.1)

(0, 0.01) (0.01, 0.01) (0.1, 0.01) (0.11, 0.01)

(0, 0) (0.01, 0) (0.1, 0) (0.11, 0)

(point location)
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(0, 0)

(0, 0) (0.1, 0.1)(0, 0.1)(0.1, 0)

node vcell �v

(point location)



lexicographical order
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q

Goal: given a planar map M that partitions [0, 1[2, preprocess M such that, for any
query point q ∈ [0, 1]2, the region containing q is found in sublinear time.
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(0, 0)

(0, 0) (0.1, 0.1)(0, 0.1)(0.1, 0)

- ∀q ∈ [0, 1[2, walk down T to find leaf
v ∈ L that contains q, then check tri-
angles that intersect �v .
⇒ size O(|L|), time O(h)

(point location)

Q can we do better?

regular grid : size Θ(22h), time O(1)



morally, we chop off the digits of qx and qy after the (i + 1)th → give an explicit example

the recursive lexicographical order gives a total order on the nodes of T

give example with q = (0.10101, 0.1101) → v0 = (0.1, 0.1), v1 = (0.1, 0.11), v2 = (0.101, 0.11)

= O(log log n) if T balanced

lexicographical order

A first example
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CS468 – Quadtrees: Hierarchical Grids

q

Goal: given a planar map M that partitions [0, 1[2, preprocess M such that, for any
query point q ∈ [0, 1]2, the region containing q is found in sublinear time.
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(0, 0)

(0, 0) (0.1, 0.1)(0, 0.1)(0.1, 0)

(point location)

- level i forms a 2−i-regular grid of [0, 1[2

⇒ ∀i, vi(q) =
`
2−ib2iqxc, 2−ib2iqyc

´
- put nodes in hash-table

- ∀q ∈ [0, 1[2, binary search on height:
Let i = hmax+hmin/2;
if vi(q) 6= NULL, then search between i and hmax;
else search between hmin and i;

⇒ O(log h)



Another example
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Goal: given a finite point set P ⊂ [0, 1[2, preprocess P such that, for any query
rectangle r ⊆ [0, 1]2, r ∩ P is found in time O(|r ∩ P |).

(range searching)

r



Q: que gagne-t-on par rapport a une grille reguliere? R: la taille du quadtree reduit est O(|P | log φ(P )), contre O(φ2(P )) pour une grille reguliere.
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Q: que gagne-t-on par rapport a une grille reguliere? R: la taille du quadtree reduit est O(|P | log φ(P )), contre O(φ2(P )) pour une grille reguliere.

Another example

3

Goal: given a finite point set P ⊂ [0, 1[2, preprocess P such that, for any query
rectangle r ⊆ [0, 1]2, r ∩ P is found in time O(|r ∩ P |).

(range searching)

1 point per leaf (⇒ |P | leaves)
⇒ |T | ≤ h|L| = h|P |.



# of nodes of T that intersect r

# of leaves of T that intersect r

Q: que gagne-t-on par rapport a une grille reguliere? R: la taille du quadtree reduit est O(|P | log φ(P )), contre O(φ2(P )) pour une grille reguliere.

Another example

3

Goal: given a finite point set P ⊂ [0, 1[2, preprocess P such that, for any query
rectangle r ⊆ [0, 1]2, r ∩ P is found in time O(|r ∩ P |).

(range searching)

r 1 point per leaf (⇒ |P | leaves)
⇒ |T | ≤ h|L| = h|P |.

Query: go from root to leaves, stopping
each time r ∩�v = ∅.
⇒ O(|r ∩ T |) ≤ O(h|r ∩ L|)

Q Bound on h?



Various bounds
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Lemma Let P ⊂ [0, 1[2 be finite. Assume wlog diam(P ) = max{d(p, q|p, q ∈
P} ≥ 1/2. Then, h = O(log Φ(P )), where Φ(P ) = diam(P )/min{d(p,q)|p,q∈P}.

Def ∀p, q ∈ P , let h(p, q) be the small-
est i s.t. vi(p) 6= vi(q).

Prop ∀p, q ∈ [0, 1]2, h(p, q) =

min{−dlog(px
.
∨qx)e,−dlog(py

.
∨qy)e}

≤ min{−dlog |px−qx|,−dlog |py−qy |}
= −dlog max{|px − qx|, |py − qy |}e
≤ −dlog 1√

2
d(p, q)e = 1

2
− log d(p, q)

p(0.0111, 0.0101)

q(0.1001, 0.0101)

Observation: for every internal node v
of T , |�v ∩ P | ≥ 2

⇒ l(v) ≤ h(p, q)− 1, ∀p, q ∈ �v

⇒ h ≤ 1
2
− log min{d(p, q)|p, q ∈ P}

≤ 3
2

+ log Φ(P )

∀i, vi(p) =
`
2−ib2ipxc, 2−ib2ipyc

´



Various bounds

4

Lemma Let P ⊂ [0, 1[2 be finite. Assume wlog diam(P ) = max{d(p, q|p, q ∈
P} ≥ 1/2. Then, h = O(log Φ(P )), where Φ(P ) = diam(P )/min{d(p,q)|p,q∈P}.

p(0.0111, 0.0101)

q(0.1001, 0.0101)

Corollary
data structure size: O(|P | log Φ(P ))
construction time: O(|P | log Φ(P ))
query time: O(log log Φ(P ))

Q Can we do better?



Compressed quadtrees

5

Pb Bounds on complexity depend on Φ(P ).
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ATTENTION: encode level in each node

Compressed quadtrees

5

every internal node has ≥ 2 sons

⇒ |T | ≤ 2|L| − 1 = 2|P | − 1

Q how to construct T efficiently?

Q how to locate a point efficiently?



Since some nodes are missing along the path from the root to a leaf, we cannot perform a binary search on the height.

ATTENTION: encode level in each node

Compressed quadtrees

5

every internal node has ≥ 2 sons

⇒ |T | ≤ 2|L| − 1 = 2|P | − 1

Q how to construct T efficiently?

Q how to locate a point efficiently?



Compressed quadtrees
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(construction)

Note Computing the uncompressed quadtree can take unbounded time

Quadratic algorithm:

1. For all pairs of points (p, q) ∈ P 2, find �vpq = �vi(p) = �vi(q),
where i = h(p, q)− 1.

→ vpq must be a node of compressed quadtree T

→ every node of T is a vpq for some pair (p, q) ∈ P 2

⇒ this step computes the exact list of the nodes of T

2. For each node v in the list, find its most recent ancestor (in the
list) and connect v to it.

Note a node is stored only once in the list, although it may have
been found multiple times in step 1 (use hash-table).



Compressed quadtrees

7

(construction)

More subtle algorithm: let k = |P |/10.



Compressed quadtrees
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(construction)

More subtle algorithm: let k = |P |/10. - Compute Dr s.t.
ropt(P, k) ≤ r ≤ 2 ropt(P, k).



No disk of radius l
2 ≤ ropt(P, k) contains more than k pts of P , thus no square of sidelength l

2 contains more than k pts of P , hence no square of sidelength l contains more than 4k pts of P

|Dr ∩ P | ≥ k, and Dr intersects at most 5× 5 cells ⇒ one cell contains at least k
25 pts of P

Compressed quadtrees
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(construction)

More subtle algorithm: let k = |P |/10. - Compute Dr s.t.
ropt(P, k) ≤ r ≤ 2 ropt(P, k).

- Let l = 2blog rc ≥ r/2. Place the
pts of P on UGl, and find cell c
with max number of points.

Pin = P ∩ c, Pout = P \ c.

l ≥ r
2 ⇒ |Pin| ≥ k

25 = |P |
250 .

l ≤ 2 ropt(P, k) ⇒ |Pin| ≤ 4|P |
5 .
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(construction)

More subtle algorithm: let k = |P |/10. - Compute Dr s.t.
ropt(P, k) ≤ r ≤ 2 ropt(P, k).

- Let l = 2blog rc ≥ r/2. Place the
pts of P on UGl, and find cell c
with max number of points.

Pin = P ∩ c, Pout = P \ c.

l ≥ r
2 ⇒ |Pin| ≥ k

25 = |P |
250 .

l ≤ 2 ropt(P, k) ⇒ |Pin| ≤ 4|P |
5 .

- Recursive call on Pin and Pout.



this may require some adaptation in the case where the lowest node v of Tout that contains the pt of Pin is a leaf: in this case, v has to be merged with the root of Tin. Otherwise, the root of Tin is simply another son of v.

every operation above (except for the recursive) takes O(|P |) time. Moreover, the recursive calls are done on disjoint subsets of P of size at most 249|P |
250 . Hence, the total running time C(|P |) is at most k;n + C(|Pin|) + C(|Pout|) ≤ k n + k′|Pin| log |Pin|+ k′|Pout| log |Pout| ≤ k′|P | log |P | for sufficiently large k′.

No disk of radius l
2 ≤ ropt(P, k) contains more than k pts of P , thus no square of sidelength l

2 contains more than k pts of P , hence no square of sidelength l contains more than 4k pts of P

|Dr ∩ P | ≥ k, and Dr intersects at most 5× 5 cells ⇒ one cell contains at least k
25 pts of P

Compressed quadtrees

7

(construction)

More subtle algorithm: let k = |P |/10. - Compute Dr s.t.
ropt(P, k) ≤ r ≤ 2 ropt(P, k).

- Let l = 2blog rc ≥ r/2. Place the
pts of P on UGl, and find cell c
with max number of points.

Pin = P ∩ c, Pout = P \ c.

l ≥ r
2 ⇒ |Pin| ≥ k

25 = |P |
250 .

l ≤ 2 ropt(P, k) ⇒ |Pin| ≤ 4|P |
5 .

- Recursive call on Pin and Pout.

Locate any p ∈ Pin in Tout, and
hang root of Tin onto the node.

⇒ O(|P | log |P |)



Compressed quadtrees
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(pt location)

Note If T unbalanced, then query time = Ω(|P |).



Compressed quadtrees
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(pt location)

Note If T unbalanced, then query time = Ω(|P |).

→ Finger tree construction:

3

5

7

9

11

13

15

1

1

1

1

1
1

1

1 Preprocessing: compute sizes of subtrees of T .
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(pt location)

Note If T unbalanced, then query time = Ω(|P |).

→ Finger tree construction:

3

5

7

9

11

13

15

- starting from root of T , keep going to son with
highest number, until subtree has size at most |T |/2.

1

1

1

1

1
1

1

1 Preprocessing: compute sizes of subtrees of T .



Compressed quadtrees
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(pt location)

Note If T unbalanced, then query time = Ω(|P |).

→ Finger tree construction:

3

5

7

- starting from root of T , keep going to son with
highest number, until subtree has size at most |T |/2.

1

1

1

1

1
1

1

1

- Update numbers of parents of the separator node.

2

4

6

8

Preprocessing: compute sizes of subtrees of T .



Compressed quadtrees

8

(pt location)

Note If T unbalanced, then query time = Ω(|P |).

→ Finger tree construction:

- starting from root of T , keep going to son with
highest number, until subtree has size at most |T |/2.

- Update numbers of parents of the separator node.

- Recursive call on all subtrees.

Preprocessing: compute sizes of subtrees of T .



separator node is disconnected from its parent

Compressed quadtrees

8

(pt location)

Note If T unbalanced, then query time = Ω(|P |).

→ Finger tree construction:

- starting from root of T , keep going to son with
highest number, until subtree has size at most |T |/2.

- Update numbers of parents of the separator node.

- Recursive call on all subtrees.

- Hang finger trees of subtrees to separator node.

Preprocessing: compute sizes of subtrees of T .

→ Construction time: O(|T | log |T |) = O(|P | log |P |).

→ Finger tree has same size as T and is balanced,
hence its height is O(log |T |).

⇒ pt location time: O(log |T |).



Dynamic quadtrees

9

Note Compressed quadtrees can be updated efficiently under
point insertion/deletion, but not finger trees.



Dynamic quadtrees
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Note Compressed quadtrees can be updated efficiently under
point insertion/deletion, but not finger trees.

Def A gradation of P is a subsampling se-
quence (Sm, Sm−1, · · · , S2, S1) such that:
(i) S1 = P ,
(ii) Si = pts of Si−1 picked with proba. 1/2,
(iii) |Sm| = 1 < |Sm−1|.

S1
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Note Compressed quadtrees can be updated efficiently under
point insertion/deletion, but not finger trees.

Def A gradation of P is a subsampling se-
quence (Sm, Sm−1, · · · , S2, S1) such that:
(i) S1 = P ,
(ii) Si = pts of Si−1 picked with proba. 1/2,
(iii) |Sm| = 1 < |Sm−1|.

S1

S2



Dynamic quadtrees

9

Note Compressed quadtrees can be updated efficiently under
point insertion/deletion, but not finger trees.

Def A gradation of P is a subsampling se-
quence (Sm, Sm−1, · · · , S2, S1) such that:
(i) S1 = P ,
(ii) Si = pts of Si−1 picked with proba. 1/2,
(iii) |Sm| = 1 < |Sm−1|.

S1

S2

S3



and hence also in expectation... (classical exercise of proba.)

Dynamic quadtrees

9

Note Compressed quadtrees can be updated efficiently under
point insertion/deletion, but not finger trees.

Def A gradation of P is a subsampling se-
quence (Sm, Sm−1, · · · , S2, S1) such that:
(i) S1 = P ,
(ii) Si = pts of Si−1 picked with proba. 1/2,
(iii) |Sm| = 1 < |Sm−1|.

S1

S2

S3

S4

Prop ∀i, E[|Si|] =
|Si−1|

2

⇒ E[|Si|] = E[E[|Si|]] = 1
2
E[|Si−1|] = · · · =

1
2i−1 E[|S1|] = |P |

2i−1 .

In particular, for k = d11 log |P |e, we have

E[|Sk|] = |P |
2k ≤ |P |

211 log |P | = 1
|P |10

⇒ By Markov’s inequality, Pr(m ≥ k) =

Pr(|Sk| ≥ 1) ≤ E(|Sk|)
1

≤ 1
|P |10 .

⇒ with high proba., m = O(log |P |).



Dynamic quadtrees

9

Note Compressed quadtrees can be updated efficiently under
point insertion/deletion, but not finger trees.

S1

Def Given gradation (Sm, · · · , S1 = P ), build
compressed quadtrees Ti(Si)
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Def Given gradation (Sm, · · · , S1 = P ), build
compressed quadtrees Ti(Si)
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Note Compressed quadtrees can be updated efficiently under
point insertion/deletion, but not finger trees.

S1

S2

S3

Def Given gradation (Sm, · · · , S1 = P ), build
compressed quadtrees Ti(Si)



Dynamic quadtrees

9

Note Compressed quadtrees can be updated efficiently under
point insertion/deletion, but not finger trees.

S1

S2

S3

S4

Def Given gradation (Sm, · · · , S1 = P ), build
compressed quadtrees Ti(Si)



Note: the root, whether leaf or internal node, is always connected

Dynamic quadtrees

9

Note Compressed quadtrees can be updated efficiently under
point insertion/deletion, but not finger trees.

S1

S2

S3

S4

Def Given gradation (Sm, · · · , S1 = P ), build
compressed quadtrees Ti(Si) and connect the
internal nodes of Si to their instances in Si−1.
⇒ hierarchy of compressed quadtrees.



Dynamic quadtrees

9

Note Compressed quadtrees can be updated efficiently under
point insertion/deletion, but not finger trees.

S1

S2

S3

S4

q Pt location Given q ∈ [0, 1[2, locate q in Tm,
then follow link of latest internal node vm to
Tm−1, then locate q in Tm−1 from vm, · · · ,
locate q in T1 from v2.



The time spent in Ti is the number of consecutive 1s in the sequence of Vj , starting at j = 1, so it is at most the number of Vj that are = 1.

Pr(|Uj ∩ Si| ≤ 1) = Pr(|Uj ∩ Si| = 0) + Pr(|Uj ∩ Si| = 1) = 1

2
|Uj |

+ |Uj | 1

2
|Uj |−1

1
2

(all coin tosses independent, and for only one of them to be positive, need to choose a slot among |Uj |, and to have |Uj | − 1 negative tosses ( 1

2
|Uj |−1 ) and one positive toss ( 1

2
).

E[Vj ] = 0.Pr(Vj = 0) + 1.Pr(Vj = 1).

root of Ti = root of T1

v parent of leaf of Ti containing q

Dynamic quadtrees

9

Note Compressed quadtrees can be updated efficiently under
point insertion/deletion, but not finger trees.

S1

S2

S3

S4

q Pt location Given q ∈ [0, 1[2, locate q in Tm,
then follow link of latest internal node vm to
Tm−1, then locate q in Tm−1 from vm, · · · ,
locate q in T1 from v2.

Backward analysis Let v be last node vis-
ited in Ti. Let v1 = v, v2, · · · , vr be path to
root. ∀j, Uj := Si ∩ �vj → |Uj | ≥ j, and
[|Uj ∩ Si+1| ≤ 1 ⇔ vj ∈ Ti].
Let Vj = 1 iff vj /∈ Ti+1 →
E[Vj ] = Pr(Vj = 1) = Pr(|Uj ∩ Si+1| ≤ 1) =

1

2
|Uj |

+
|Uj |

2
|Uj |−1

1
2

=
1+|Uj |

2
|Uj |

≤ 1+j
2j .

E[time spent in Ti] ≤
P

j E[Vj ] =
P

j
j+1
2j = O(1).

⇒ E[location time] = O(log |P |).



The leaf contains exactly one point p, thus only one split is to be done. To detect level of new node, compute h(p, q).

Dynamic quadtrees

9

Note Compressed quadtrees can be updated efficiently under
point insertion/deletion, but not finger trees.

S1

S2

S3

S4

Pt insertion Given q ∈ [0, 1[2,
- locate q in (Tm, · · · , T1) and store path.
- insert q in T1 by splitting last node of path.
- toss coin: if neg. result, then done. Else, add
q to S2 and insert it in T2 using last node of
location path in T2.
- iterate process, until coin toss gives neg. result
(create new layers if necessary).

q



the location path stays at a given layer as long as possible (until it reaches parent of leaf that contains q) ⇒ at most one split is necessary.

ATTENTION: q can be raised above the highest level, hereby increasing m

pts of P are inserted in data structure one after the other, iteratively.

The leaf contains exactly one point p, thus only one split is to be done. To detect level of new node, compute h(p, q).

Dynamic quadtrees

9

Note Compressed quadtrees can be updated efficiently under
point insertion/deletion, but not finger trees.

S1

S2

S3

S4

Pt insertion Given q ∈ [0, 1[2,
- locate q in (Tm, · · · , T1) and store path.
- insert q in T1 by splitting last node of path.
- toss coin: if neg. result, then done. Else, add
q to S2 and insert it in T2 using last node of
location path in T2.
- iterate process, until coin toss gives neg. result
(create new layers if necessary).

Analysis Outside location path, time spent
per layer is O(1). Since q raised w/ proba. 1

2
per

layer, E[max. layer reached] =
P

i
i
2i = O(1).

⇒ E[insertion time] = O(log |P |).

⇒ E[iterative construction time] = O(|P | log |P |).

q



the grand-parent of v still has a same number (≥ 2) of non-empty children.

Dynamic quadtrees

9

Note Compressed quadtrees can be updated efficiently under
point insertion/deletion, but not finger trees.

S1

S2

S3

S4

Pt deletion Given p ∈ P ,
- locate p in (Tm, · · · , T1) and store path.
- delete q from leaves of the Ti.
- recursively remove empty nodes from the Ti

and transform internal nodes with only 1 pt into
leaves (plus remove empty layers).

Analysis Only the nodes of the location path
are to be considered for deletion or status
change. If the instance of v in Ti is deleted,
then its parent node in Ti is still non-empty,
hence only v and its parent have to be updated
⇒ O(1) update time per layer.

⇒ E[deletion time] = O(log |P |).

p



Between levels i and i + 1, at least half of the cells are lost.

Dynamic quadtrees

10

(derandomization)

[D. Eppstein, M. Goodrich, J. Sun, SCG 2005] (deterministic quadtrees)

S1

S2

S3

S4

Idea:

- build 1-2-3 deterministic skip-list for L1: ∀i >
1, there are ≥ 1 and ≤ 3 cells in Li−1 between
any consecutive cells of Li. ⇒ O(log |P |) layers.

- Put S1 = P in list L1, ordered according to T1.

- ∀i, Si =”P ∩ Li”. Build compressed quadtree
Ti for Si → same order of Si in Li and Ti.

- add bi-directed pointers between pts of Si in
Li and Ti.

L1

L2

⇒ search, insertion, deletion times: O(log(n)).

[J. Munro, T. Papadakis, R. Sedgewick, SODA 1992] (deterministic skip-lists)



Balanced quadtrees

11

Adaptive mesh generation Given P ⊂]0, 1[2 finite, construct the smallest
possible triangulation T of ]0, 1[2, with bounded minimum angle, s.t. every
point of P is a vertex of T .



Balanced quadtrees

11

Adaptive mesh generation Given P ⊂]0, 1[2 finite, construct the smallest
possible triangulation T of ]0, 1[2, with bounded minimum angle, s.t. every
point of P is a vertex of T .



the erased nodes (due to compression) are marked by dotted lines

Balanced quadtrees

11

Adaptive mesh generation Given P ⊂]0, 1[2 finite, construct the smallest
possible triangulation T of ]0, 1[2, with bounded minimum angle, s.t. every
point of P is a vertex of T .

Strategy:
- compute compressed quadtree
TP of P → O(|P | log |P |).



this process is to ensure a construction time of O(|P | log |P |)+size of output, which may not clearly be achieved by the direct approach, which guarantees only an O(|P | log Φ(P )) construction time.

the erased nodes (due to compression) are marked by dotted lines

Balanced quadtrees

11

Adaptive mesh generation Given P ⊂]0, 1[2 finite, construct the smallest
possible triangulation T of ]0, 1[2, with bounded minimum angle, s.t. every
point of P is a vertex of T .

Strategy:
- compute compressed quadtree
TP of P → O(|P | log |P |).
- uncompress TP



maintain priority queue of cells, ordered according to their levels

this process is to ensure a construction time of O(|P | log |P |)+size of output, which may not clearly be achieved by the direct approach, which guarantees only an O(|P | log Φ(P )) construction time.

the erased nodes (due to compression) are marked by dotted lines

Balanced quadtrees

11

Adaptive mesh generation Given P ⊂]0, 1[2 finite, construct the smallest
possible triangulation T of ]0, 1[2, with bounded minimum angle, s.t. every
point of P is a vertex of T .

Strategy:
- compute compressed quadtree
TP of P → O(|P | log |P |).

- refine TP so that, ∀p ∈ P , the
1-ring neighb. of p contains no pt
of P \ {p} (∀ cell, use pointers to
adjacent cells in 8-connectivity).

- uncompress TP



maintain priority queue of cells, ordered according to their levels

this process is to ensure a construction time of O(|P | log |P |)+size of output, which may not clearly be achieved by the direct approach, which guarantees only an O(|P | log Φ(P )) construction time.

the erased nodes (due to compression) are marked by dotted lines

Balanced quadtrees

11

Adaptive mesh generation Given P ⊂]0, 1[2 finite, construct the smallest
possible triangulation T of ]0, 1[2, with bounded minimum angle, s.t. every
point of P is a vertex of T .

Strategy:
- compute compressed quadtree
TP of P → O(|P | log |P |).

- refine TP so that, ∀p ∈ P , the
1-ring neighb. of p contains no pt
of P \ {p} (∀ cell, use pointers to
adjacent cells in 8-connectivity).

- insert 1-ring neighbs. in TP

- uncompress TP



after this stage, around each pt of P there is a protection zone, made of the 1-ring neighb. of p, where all nodes are unsplit and have same level.
here, balanced means that no adjacent cell (in 4-connectivity) of a given cell has level different by two or more units.

maintain priority queue of cells, ordered according to their levels

this process is to ensure a construction time of O(|P | log |P |)+size of output, which may not clearly be achieved by the direct approach, which guarantees only an O(|P | log Φ(P )) construction time.

the erased nodes (due to compression) are marked by dotted lines

Balanced quadtrees

11

Adaptive mesh generation Given P ⊂]0, 1[2 finite, construct the smallest
possible triangulation T of ]0, 1[2, with bounded minimum angle, s.t. every
point of P is a vertex of T .

Strategy:
- compute compressed quadtree
TP of P → O(|P | log |P |).

- refine TP so that, ∀p ∈ P , the
1-ring neighb. of p contains no pt
of P \ {p} (∀ cell, use pointers to
adjacent cells in 8-connectivity).

- uncompress TP

- insert 1-ring neighbs. in TP and
refine TP so that it is balanced.



every cell has ≥ 1 displaced vertex
after this stage, around each pt of P there is a protection zone, made of the 1-ring neighb. of p, where all nodes are unsplit and have same level.

here, balanced means that no adjacent cell (in 4-connectivity) of a given cell has level different by two or more units.

maintain priority queue of cells, ordered according to their levels

this process is to ensure a construction time of O(|P | log |P |)+size of output, which may not clearly be achieved by the direct approach, which guarantees only an O(|P | log Φ(P )) construction time.

Balanced quadtrees

11

Adaptive mesh generation Given P ⊂]0, 1[2 finite, construct the smallest
possible triangulation T of ]0, 1[2, with bounded minimum angle, s.t. every
point of P is a vertex of T .

Strategy:
- compute compressed quadtree
TP of P → O(|P | log |P |).

- refine TP so that, ∀p ∈ P , the
1-ring neighb. of p contains no pt
of P \ {p} (∀ cell, use pointers to
adjacent cells in 8-connectivity).

- uncompress TP

- snap nearest vertices onto pts of P .

- insert 1-ring neighbs. in TP and
refine TP so that it is balanced.



every cell has ≥ 1 displaced vertex
after this stage, around each pt of P there is a protection zone, made of the 1-ring neighb. of p, where all nodes are unsplit and have same level.

here, balanced means that no adjacent cell (in 4-connectivity) of a given cell has level different by two or more units.

maintain priority queue of cells, ordered according to their levels

this process is to ensure a construction time of O(|P | log |P |)+size of output, which may not clearly be achieved by the direct approach, which guarantees only an O(|P | log Φ(P )) construction time.

Balanced quadtrees

11

Adaptive mesh generation Given P ⊂]0, 1[2 finite, construct the smallest
possible triangulation T of ]0, 1[2, with bounded minimum angle, s.t. every
point of P is a vertex of T .

Strategy:
- compute compressed quadtree
TP of P → O(|P | log |P |).

- refine TP so that, ∀p ∈ P , the
1-ring neighb. of p contains no pt
of P \ {p} (∀ cell, use pointers to
adjacent cells in 8-connectivity).

- uncompress TP

- snap nearest vertices onto pts of P .

- insert 1-ring neighbs. in TP and
refine TP so that it is balanced.

- triangulate cells (3 cases: unsplit
bound., split bound., moved vertex).



every cell has ≥ 1 displaced vertex
after this stage, around each pt of P there is a protection zone, made of the 1-ring neighb. of p, where all nodes are unsplit and have same level.

here, balanced means that no adjacent cell (in 4-connectivity) of a given cell has level different by two or more units.

maintain priority queue of cells, ordered according to their levels

this process is to ensure a construction time of O(|P | log |P |)+size of output, which may not clearly be achieved by the direct approach, which guarantees only an O(|P | log Φ(P )) construction time.

Balanced quadtrees

11

Adaptive mesh generation Given P ⊂]0, 1[2 finite, construct the smallest
possible triangulation T of ]0, 1[2, with bounded minimum angle, s.t. every
point of P is a vertex of T .

Strategy:
- compute compressed quadtree
TP of P → O(|P | log |P |).

- refine TP so that, ∀p ∈ P , the
1-ring neighb. of p contains no pt
of P \ {p} (∀ cell, use pointers to
adjacent cells in 8-connectivity).

- uncompress TP

- snap nearest vertices onto pts of P .

- insert 1-ring neighbs. in TP and
refine TP so that it is balanced.

- triangulate cells (3 cases: unsplit
bound., split bound., moved vertex).

⇒ time: O(|P | log |P |+ |output|)



Take-home message
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• Quadtrees vs. uniform grids: space-time trade-off.

• Effective location data structure in low dimensions, both
in static (compressed quadtrees) and dynamic (skip-
quadtrees) settings.

• Main advantages: easy to implement, good average be-
haviour in practice (time and space).

• Downside: fundamentally anisotropic (cf. point location
among triangles, mesh generation, etc.).

• Very useful for approximation (cf. snap-rounding).


