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Introduction

Problem:
– Proximity problems:

● Nearest neighbour
● Furthest neighbour
● Diameter
● ...

– Approximate versions for faster running time
● Approximation factor: c = 1 + ε

– Reduction to Approximate Nearest Neighbour Search
● Best known (randomized) running time: Õ(d n1/(1 + ε)) per 

query/update in a dynamic setting [Indyk-Motwani STOC '98]



  

Problems

● Approximate Furthest Neighbour
● Approximate Diameter
● Approximate Discrete Centre

– Approximate Line Centre
● Approximate Bottleneck Matching
● Approximate Minimum Weight Matching
● Approximate Metric Facility Location



  

Contribution

Subquadratic running time

for all the problems



  

Outline

● (Warm-up exercise) √2-approximation algorithm for 
Furthest Neighbour Search
– Can be used to obtain √2-approximations for Diameter 

and Discrete Centre problems
● (1 + ε)-approximation algorithm for Diameter

– Also gives (1 + ε)-approximation for Furthest Neighbour
● 2(1 + ε)-approximate Bottleneck Matching
● (2 + O(ε))-approximate Minimum Weight Matching



  

c-Furthest Neighbour Search
A √2-approximation



  

c-Furthest Neighbour Search

● FNS: Given a set P ⊂ Rd and a query point q, return 
the element of P furthest from q

● The approximate version (c-FNS): Return a point of 
P that c-approximates the furthest neighbour
– Precisely, return p such that

d(q, p)  ≥  (1/c) max
p'  ∈ P

 d(q, p')

● We look for a (√2 + 1/nθ(1))-approximation



  

Other problems reducible to c-FNS

● Given: an n-point set P  R⊂ d

● Approximate Discrete Centre Problem (c-DCP): 
Find s  ∈ P such that:
max

p  ∈ P
 d(p, s)  ≤  c min

s  ∈ P
 max

p  ∈ P
 d(p, s)

● Approximate Diameter Problem: Find s  ∈ P such 
that
d(p, q)  ≥  (1/c) max

p, q  ∈ P
 d(p, q)



  

c-FNS: The Reduction

● From c'-Approximate Minimum Enclosing Ball 
(c'-MEB): Given P  R⊂ d, find s  R∈ d such that

  max
p  ∈ P

 d(p, s)  ≤  c mins  R∈ d max
p  ∈ P

 d(p, s)

Also known as: 
c'-Approximate Continuous 
Centre Problem

Solution in
Õ(d3 n log 1/ε) time

Solution



  

Reduction Method
● Assume we could compute the exact minimum 

enclosing ball B(O*, r*) for P
● There is a subset X of P such that

– X    ⊂ S(O*, r*)
– |X|  ≤  d + 2
– O*    conv(∈ X)

● Hyperplane hq passes through O* and is orthogonal 
to q – O*

● Return any point of X on the side of hq opposite to q
– such a point MUST exist and be a √2-approximation



  

Graphically...
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Caveats
● Can't compute exact minimum enclosing ball

– So compute an approximation (upto factor 1 + 1 / (nθ(1)√d)) – 
introduces only log factors in running time

– X is all points within O(1/nθ(1)) threshold
● X may be of size Ω(n)

– So perturb points slightly (by random vectors of norm 
O(1/nθ(1)) – the “smoothed complexity” of X is O(d log n)

● Running time:
– Construction: bounded by that of c'-MEB: Õ(d3n)
– Query: O(d2 log n) (lin. search in X for point furthest from q)



  

Lower Bound?

Can we do better than c = √2 as fast?

– Unlikely, because...
● On a random point set, a c-approximation for FNS (c < √2) 

would yield a constant-factor approximation for nearest 
neighbour within same time bounds

● This problem was considered by Yianilios [SODA '00] and 
seems very difficult to achieve in time Õ(dθ(1))



  

(1 + ε)-Approximate Diameter 
and Furthest Neighbour Search



  

(1 + ε)-approximating Diameter and 
Furthest Neighbour Search

● Answer (1 + ε)-Diameter/FNS queries by 
using Õ(1) (1 + ε)-NNS queries

● Preprocessing time: Õ(d n1 + 1/(1 + ε))
● We will look at only the diameter problem 

for simplicity.



  

Method
● Compute an approximate minimum enclosing 

ball B(O, r)
● Construct a series of k “shells”, each of radius 

1 / (1 + α) times that of its predecessor. The 
first shell is S(O, r).
– α will be specified later
– k is O(1 / α)

● Round each point to nearest shell
● Construct (1 + ε)-NNS data structure for each 

shell



  

Graphically...
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Method (contd)

● For each point p  ∈ P and each shell S
i

– Reflect p in O and promote to S
i
 to get the “antipode” p'

– Find (approximate) nearest neighbour q of p' from points 
on S

i

● This gives a “candidate diameter pair” (p, q)
● Return the pair among the candidate pairs from all 

the shells that is furthest apart
– This is a (1 + ε)-approximation to the diameter



  

Graphically...
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Running Time

● Set α = 1 / (c log n)
● There are nk c-NNS queries

– So running time  =  Õ(nT), where T is the running time of 
c-NNS

                               =  Õ(d n1 + 1/(1 + ε))



  

Approximate Bottleneck Matching



  

Approximate Bottleneck Matching

● P is a subset of Rd with 2n points
● Perfect Matching: Partition of P into disjoint pairs
● “Bottleneck Cost”: Distance between furthest pair in 

matching
● Bottleneck Matching Problem: Find perfect 

matching with minimum bottleneck cost
– Approximate version: we'll compute a 2(1 + ε) 

approximation



  

Graphically...

Bottleneck



  

“Short Hop Graph”

● Let G(r) be the graph with V = P and E = set of pairs 
that are r-close
– “short hop graph”?

● Let r* be smallest r for which each connected 
component has an even number of vertices

r



  

Bounds

● Lemma 1 (lower bound): The cost c* of the 
optimal matching is at least r*

● Lemma 2 (upper bound): Let T be a tree on a 
vertex set V of even cardinality 2m. Let l be the 
length of the longest edge of T. We can construct a 
perfect matching on V with bottleneck cost at most 
2l. Given T, construction time is O(m).
– Gives method of computing perfect matching with 

bottleneck cost at most 2r*  ≤  2c*



  

Reduction to NNS
● Compute a spanning forest {T

1
,... , T

k
} of P such that

– Each edge has length at most r*(1 + ε)
– Each tree T

i
 has an even number of vertices

● Can be done by running Kruskal's MST algorithm 
until each connected component is even, with n log n 
calls to (an approximate algo for) k-Chromatic 
Dynamic Closest Pair
– k-CDCP: Given a dynamic set of coloured points, find 

closest pair with different colours



  

Reduction to NNS (contd)
● Eppstein [DCG '95 etc] reduces (1 + ε)-k-CDCP to (1 

+ ε)-NNS via (1 + ε)-2-CDCP
– Polylogarithmic overhead

● Now apply method of Lemma 2 to find perfect 
matching with bottleneck cost at most 2(1 + ε) c*

● Running time: Õ(d n1 + 1/(1 + ε))



  

Minimum-Weight Matching

Improving the Goemans-Williamson Method for 
approximate MWM



  

Minimum-Weight Matching
● Goemans-Williamson Method for 2-approximation

– Active component: odd vertices
– Inactive component: even vertices
– Grow balls around vertices in active components until 

two balls collide
– Add edge between centres of colliding balls to solution
– Merge colliding components and continue

● Resulting forest weighs at most twice MWM
● Trivial to convert forest to matching



  

Graphically...



  

Graphically...



  

Graphically...



  

Graphically...



  

Graphically...



  

Graphically...



  

Graphically...



  

Minimum-Weight Matching
● Running time can be improved by use of an 

Approximate Multichromatic NNS data structure
● Question: Given a set of n coloured points X, a 

number r, and a coloured query point q, is there a 
point in X with colour different from q, which is 
r(1 + ε)-close to q?

q
r



  

Minimum-Weight Matching
● Solution: Use a set of 2[1 + log n] Approximate 

NNS data structures
– N

i
(b) is a (1 + ε)-NNS structure for all points whose 

colours have bit b in ith position
– q has colour C, C

i
 is ith bit of C

– Search for (approximate) nearest neighbour of q in each 
N

i
(1 - C

i
)

– Return closest such neighbour


