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Well-Separatedness

• Definition

X and Y are well separated if they can be enclosed withing two disjoint d-dimensional
balls of radius r, such that the distance between the centers of the balls is at least αr
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• Definition

A well-separated pair decomposition (WSPD) is a set PS,α = {(X1, Y1), . . . , (Xm, Ym)}
of pairs of subset so that each pair is well-separated and for any two distinct points

x, y ∈ S there exists a pair (Xi, Yi) which separates them.
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• Definition

A well-separated pair decomposition (WSPD) is a set PS,α = {(X1, Y1), . . . , (Xm, Ym)}
of pairs of subset so that each pair is well-separated and for any two distinct points

x, y ∈ S there exists a pair (Xi, Yi) which separates them.

• Properties

• Can be constructed in O(n log n + αdn) time

• Contains O(αdn) pairs
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• Due to Callahan and Kosaraju (Fair-Split Tree)

• Can use a quadtree

• Algorithm

• Take cubes (u, v), if they are well separated, add the pair and

terminate

• If not, call function on (w, v) where w are the children of u
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• Due to Callahan and Kosaraju (Fair-Split Tree)

• Can use a quadtree

• Algorithm

• Take cubes (u, v), if they are well separated, add the pair and

terminate

• If not, call function on (w, v) where w are the children of u

u
v

w

Always take the children of the larger cell!

Constructing a WSPD



Number of cells is O( 1
εd

)

Box sizes are (1 + ε), (1 + ε)2, (1 + ε)3, . . .

Number of cells in a ball

• Place grid cells around point to fill up the ball of radius r



• Definition

For any collection C of quadtree boxes

1. with O(|C|) nodes

2. O(log |C|) depth

3. Taking O(|C| log |C|) time to construct

• Properties

Each cell is the difference between

and inner quadtree box and outer

quadtree box

Balanced Box Decomposition Tree
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• Construct WSPD PS,8

• For each pair, P = (X, Y ) ∈ PS,8

– Place a set of balls with radius 2i` for −2 ≤ i ≤ dlog(1/ε) + 1e
– For each ball b take all quadtree boxes which intersect it and are smaller than rbε/(16d)

– Store in BBD along with a representative point

Algorithm: Single Representative
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Lemma 3.1. Let S be a set of n points in Rd and let 0 < ε ≤ 1/2 be a real parameter. Let x1

be a point inside a d-cube c of size (ε/(4d))|x1y1|, where y1 denotes the nearest neighbor of x1.

If y2 is an (ε/4)-NN of some point x2 inside c, then y2 is an ε-NN of x1.

Any ε/4 NN is good
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Lemma 3.1. Let S be a set of n points in Rd and let 0 < ε ≤ 1/2 be a real parameter. Let x1
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• Query point q

• Notation
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q is in cell c
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• P = (X, Y )

• Query point q

• Notation

q is in cell c

y ∈ S is NN of q

x is repc

⇒ x is a ε-NN of q

Specifically, look at pair in
WSPD which separates x and y
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y

(1, ε)-Approximate Voronoi Diagram
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Case 3: |qy′| < `/4
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If we return x, either it is the nearest neighbor of q or an ε-NN of q
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(1, ε)-Approximate Voronoi Diagram

Choosing representatives: x is a ε/4-NN to any point in c



Space Bounds

Time Bounds

• O(n) pairs in WSPD

• O( 1
εd

) cells per ball

• O(log(1
ε)) balls per pair

• ⇒ O( n
εd

log(1
ε)) cells

BBD tree is of depth log( n
εd

log(1
ε)) = log(n/ε)

• Construct WPSD PS,8

• For each pair, P = (X, Y ) ∈ PS,8

– Place a set of balls with radius 2i` for

−2 ≤ i ≤ dlog(1/ε) + 1e
– For each ball b take all quadtree boxes

which intersect it and are smaller than

rbε/(16d)

– Store in BBD along with a representative

point

Algorithm

Time and Space Bounds



• Construct WSPD PS,4

• For each pair, 3 ≤ i ≤ dlog β + 2e

• Keep all overlapping cells not bigger than ∆b = rb/(32γd)

• Store in BBD tree along with t > 1 representatives

Idea:If we allow the more representatives, need fewer cells

Algorithm: Multiple Representatives
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r

γr

b1

b2

NNq(R) ≤ (1 + ε)NNq(S ∩ b2)

NNq(R) ≤ (1 + ε)NNq(S ∩ b1)

|R| =
1 + O

 1√
εγ

d−1

Concentric Ball Lemma
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γs

s

bc

βs

S ∩ γbc ⊆ b′c

βb′c ∩ c = ∅

Why does this work?

If there was a point within γs not in

βs then there would be a WSPD pair

to force the cell to split

Separation Lemma



• Choose R′ consisting of O(1/(εγ(d−1)/2)) points so that

NNq(R
′) ≤ (1 + ε)NNq(S ∩ γbc)

• If |S ∩ γbc| ≤ 1 ⇒ R′′ = S ∩ γbc

• Else R′′ Consists of O(1/(εγ)(d−1)/2) points such that

NNq(R
′′) ≤ (1 + ε)NNq(S ∩ b′c) ≤ (1 + ε)NNq(S ∩ γbc)

Choosing Representatives



• Choose R′ consisting of O(1/(εγ(d−1)/2)) points so that

NNq(R
′) ≤ (1 + ε)NNq(S ∩ γbc)

• If |S ∩ γbc| ≤ 1 ⇒ R′′ = S ∩ γbc

• Else R′′ Consists of O(1/(εγ)(d−1)/2) points such that

NNq(R
′′) ≤ (1 + ε)NNq(S ∩ b′c) ≤ (1 + ε)NNq(S ∩ γbc)

⇒ R = R′ ∪R′′

Choosing Representatives



• Choose R′ consisting of O(1/(εγ(d−1)/2)) points so that

NNq(R
′) ≤ (1 + ε)NNq(S ∩ γbc)

• If |S ∩ γbc| ≤ 1 ⇒ R′′ = S ∩ γbc

• Else R′′ Consists of O(1/(εγ)(d−1)/2) points such that

NNq(R
′′) ≤ (1 + ε)NNq(S ∩ b′c) ≤ (1 + ε)NNq(S ∩ γbc)

⇒ R = R′ ∪R′′

γbc

Choosing Representatives



• Choose R′ consisting of O(1/(εγ(d−1)/2)) points so that
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• Choose R′ consisting of O(1/(εγ(d−1)/2)) points so that

NNq(R
′) ≤ (1 + ε)NNq(S ∩ γbc)

• If |S ∩ γbc| ≤ 1 ⇒ R′′ = S ∩ γbc

• Else R′′ Consists of O(1/(εγ)(d−1)/2) points such that

NNq(R
′′) ≤ (1 + ε)NNq(S ∩ b′c) ≤ (1 + ε)NNq(S ∩ γbc)

⇒ R = R′ ∪R′′

γbc

βbc
• O(nγd log γ) cells

• O(1/(εγ)(d−1)/2) number of
representatives

Choosing Representatives



`

r1

r2

b1

b2

q

NNq(R) ≤ (1 + ε)NNq(S ∩ b2)

|R| =
(
1 + O

(√
r1r2

`
√

ε

))d−1

Disjoint Ball Lemma



• Size of quadtree boxes can increase linearly with the WSPD distance
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Now

∆b = r2
b/(256`γd)

Number of cells - number of representatives tradeoff
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• Size of quadtree boxes can increase linearly with the WSPD distance

Before
∆b = rb/(32γd)

Now

∆b = r2
b/(256`γd)

• Bounds

Size: (O(1/(εγ)(d−1)/2), ε)-approximate Voronoi diagram with O(nγd) cells

Query Time: O(log(nγ) + 1/(εγ)(d−1)/2)

Tradeoff Parameter γ: 2 ≤ γ ≤ 1/ε

Get fewer number of cells

O(γd log γ) → O(γd)

Number of cells - number of representatives tradeoff



• Because any two points are well-separted in some pair choosing some close
point is good enough

• Find representatives that are close to points

• Querying requires finding smallest quadtree cell

• With more representatives we need smaller separation and can use larger
cells

Summary



• Definition
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