Approximate Nearest Neighbor Problem:
Improving Query Time

CS468, 10/9/2006

Outline

e Reducing the "constant” from O (e_d) to O (e_(d_l)/Q) in query time
e Need to know ¢ ahead of time

— Preprocessing time and storage feature O(e~%), O(e~(4=1/2) etc.

Outline

Reducing the " constant” from O (¢7%) to O (¢~(4=1/2) in query time
Need to know € ahead of time

— Preprocessing time and storage feature O(e~%), O(e~(4=1/2) etc.

Timothy M. Chan. Approximate Nearest Neighbor Queries Revisited.
Discrete and Computational Geometry 1998.

— Decomposition of space into cones

— BBD-tree for range searching in R2=* + point location in R*

Kenneth Clarkson. An Algorithm for Approximate Closest-point Queries.
SoCG 1994.

— Additional log(p/€) in space complexity

— Polytope approximation in R9*1

Chen's Algorithm: Motivation

(1 + €)-ANN among (sorted) points in a narrow cone

o7 ® . o ° O(logn) by binary search

Need a data structure that returns a sorted points given g and a cone direction

Chen's Algorithm: Motivation

(1 + €)-ANN among (sorted) points in a narrow cone

o7 ® . o ° O(logn) by binary search

Need a data structure that returns a sorted points given g and a cone direction

Uses the BBD-tree data structure

Given a query point ¢ € R? and a radius r
one can find O(logn) cells of the BBD-tree
which contain B(q,r)
and are contained in B(q, 2r).

his takes O(logn) time

Use for approximate range searching in R9~1

Conic ANN (with a Hint)

Input: Query point ¢ and a 2-approximation r to the NN distance
Output: A points s such that

g —s|| < (1+¢€)|lg — Dl

where p is the NN inside a cone with apex ¢ and angle § = /¢/16

Note: s need not be in the conel
Note: The cone is fixed (not a part of input, mod. translation to q)

Main (1 + ¢)-ANN Algorithm

Uses the "conic-ANN with a hint" as a subrotine
Query (given only q)

e Obtain r by [Arya and Mount 1998]

e (et one point per data structure, return the one closest to ¢

Main (1 + ¢)-ANN Algorithm

Uses the "conic-ANN with a hint” as a subrotine

Query (given only q)

e Obtain r by [Arya and Mount 1998]

e (et one point per data structure, return the one closest to ¢

Preprocessing

o "Tile” R? with O(e~(4=1)/2)

/ " floating”

CONeEs

of angle 6 = ©(4/¢)

e Build a "conicc-ANN" data structure for each cone

Main (1 + ¢)-ANN Algorithm

Uses the "conic-ANN with a hint" as a subrotine
Query (given only q)

e Obtain r by [Arya and Mount 1998]

e (et one point per data structure, return the one closest to ¢

Preprocessing .
/ "floating”

o "Tile" R? with O(e~(*~1)/?) cones|of angle § = O(V/e)

e Build a "conicc-ANN" data structure for each cone
Correctness \
/D
o« true NN

' (1)-ANN (returned from

that cone’s data structure)
/\
)

Main (1 + ¢)-ANN Algorithm

Uses the "conic-ANN with a hint" as a subrotine
Query (given only q)

e Obtain r by [Arya and Mount 1998]

e (et one point per data structure, return the one closest to ¢

Preprocessing .
/ "floating”

o "Tile" R? with O(e~(*~1)/?) cones of angle § = O(y/e)

e Build a "conicc-ANN" data structure for each cone

Correctness \ s Query time
\/
' (L +-€)-ANN (returned from 1 of cones] [conic query]

that cone’s data structure)
/\
)

Conic-ANN Data Structure

For preprocessing given only direction of the cone (wlog: d-axis) and angle 9

Conic-ANN Data Structure

For preprocessing given only direction of the cone (wlog: d-axis) and angle 9
Query Algorithm (given ¢ and)
Approximate range query on the set of projections
{p' =[p1 p2 - -pa_1]’, p € P} with B(q,dr)
e returns O(logn) BBD-nodes (cells) in O(logn) time

O(logn) binary searches
Return the point s such that |sg — g4 is min

Conic-ANN Data Structure

For preprocessing given only direction of the cone (wlog: d-axis) and angle 9
Query Algorithm (given ¢ and)
Approximate range query on the set of projections
{p' =[p1 p2 - -pa_1]’, p € P} with B(q,dr)
e returns O(logn) BBD-nodes (cells) in O(logn) time

O(logn) binary searches
Return the point s such that |sg — g4 is min

Correctness (proof for ||g — s|| < (1 + €)||g — pl|)

Sqa — qa| < |pa—qa] < ||lp—q
8" — q'| < 20r < 46||p — 4]

|s —ql| < V1+1682%|p—ql| = (1 +¢€)|lp — gl

51 0 20T

Conic-ANN Data Structure

For preprocessing given only direction of the cone (wlog: d-axis) and angle 9
Query Algorithm (given ¢ and)
Approximate range query on the set of projections
{p' =[p1 p2 - -pa_1]’, p € P} with B(q,dr)
e returns O(logn) BBD-nodes (cells) in O(logn) time

O(logn) binary searches A d-axis
Return the point s such that |sg — g4 is min

Correctness (proof for ||g — s|| < (1 + €)||g — pl|)

Sqa — qa| < |pa—qa] < ||lp—q
8" — q'| < 20r < 46||p — 4]

[s —ql| < V1+166%|]p —q|| = (1 +€)|[p — gl a

@
Data structure or 207
BBD-tree on the projection set
For every tree node v the associated list of points is sorted in the d coordinate

Conic-ANN Analysis

Construction (preprocessing)

BBD-tree O(nlogn) +sorting O(nlogn) = O(nlogn)

Query

Approximate range query O(logn) + bin. searches O(log® n) = O(log® n)
Improving query time by exploiting correlation [Lueker and Willard]

O(logn) nodes

Summary and Remarks

Variant with projecting to d — 2 dimensions

e BBD tree + planar point location

Rough (= d/?) approximation algorithms

e Polynomial dependence on d

Clarkson’s Algorithm: Iterative Improvement

Exact nearest neighbor problem

Data structure For each site s, a (small) list L of other sites such that

for any query point q
if s is not the nearest neighbor of g, then L, contains a site closer to q

Clarkson’s Algorithm: Iterative Improvement

Exact nearest neighbor problem
Data structure For each site s, a (small) list L of other sites such that

for any query point q
if s is not the nearest neighbor of g, then L, contains a site closer to q

Algorithm

s <— arbitrary site
while 3t € Ls : ||t —q|| <||s —q|| do s « 1
return s

Clarkson’s Algorithm: Iterative Improvement

Exact nearest neighbor problem
Data structure For each site s, a (small) list L of other sites such that

for any query point q
if s is not the nearest neighbor of g, then L, contains a site closer to q

Algorithm

s <— arbitrary site
while 3t € Ls : ||t —q|| <||s —q|| do s « 1
return s

Note
The same L valid for all ¢!

Not Useful for Exact NN

Reason 1: space complexity £2(n?)

For all s, Ls has to include all Delaunay neighbors of s

For d > 2, Delaunay triangulation may have
Q(n?) edges

Not Useful for Exact NN

Reason 1: space complexity £2(n?)
For all s, Ls has to include all Delaunay neighbors of s

For d > 2, Delaunay triangulation may have
Q(n?) edges

Proof:
t Delaunay neighbor of s, but t € L,
t i1s the only site closer to g than s

Not Useful for Exact NN

Reason 1: space complexity £2(n?)
For all s, Ls has to include all Delaunay neighbors of s

For d > 2, Delaunay triangulation may have
Q(n?) edges

Proof:
t Delaunay neighbor of s, but t € L,
t i1s the only site closer to g than s

Reason 2: query time (n)

No "sufficient progress’ guarantee, may have to visit all sites

s 52 .-' o q
! [: ' ®
: ': ®S3 ". \

Not Useful for Exact NN

Reason 1: space complexity £2(n?)
For all s, Ls has to include all Delaunay neighbors of s

For d > 2, Delaunay triangulation may have
Q(n?) edges

Proof:
t Delaunay neighbor of s, but t € L,
t i1s the only site closer to g than s

Conclusion
No improvement over the trivial algorithm!

Reason 2: query time (n)

No "sufficient progress’ guarantee, may have to visit all sites

s 52 .-' o q
: ® 5 : ' °
: ': ®S3 ". \

Modification for ANN

Data structure For each site s, a (small) list Ls of other sites such that

for any query point q
if sis not a (1 + €)-ANN of g,
then L contains a site (1 + ¢/2)-closer to q

! I}
1 ' ’
1 ' ;
I ' . I}
] 1 !
1 1 1
1 1
1
1 .
' ! .
1
| S - .
¢ - -
1
1 1 1
1 1 1
1

® '- \ Py
\
1 \
1
! \
' \
\ \
\ \

Modification for ANN

Data structure For each site s, a (small) list Ls of other sites such that

for any query point q
if sis not a (1 + €)-ANN of g,
then L contains a site (1 + ¢/2)-closer to q

,” ”,' . ,ll b
:' / .
' S . :' q
'/ o : :
'. | t
o ' "‘ ®
‘ 1+e€

[lg—=sll™,
14€/2

\
\ \
\ N\

Algorithm (simple version)
s «— arbitrary site
while 3t € L : |lg —t[| < H95 do s — ¢
return s

Skip list approach

Query Algorithm

[Arya and Mount 1993]

Skip list approach

Query Algorithm

[Arya and Mount 1993]

Ry ® ¢) ® ®
® y o ¢ o ° o ® ° PS *

B e % ® 0 ° e 0o 0o o 0®
Ro =S5 e . : . : : . :.' e : °

Skip list approach

Query Algorithm

[Arya and Mount 1993]

Rl o 0. ® o ®
® o o ¢ ® o () ®
B e e ® 0 ® g 0000 o & , o
Ro =S5 e . . : . : R :.‘ ..:. °

Skip list approach

Query Algorithm

[Arya and Mount 1993]

B / * . /
e

Skip list approach

Query Algorithm

[Arya and Mount 1993]

e / /
e BT

Query Algorithm

Skip list approach [Arya and Mount 1993]

R3 / ’) /
o °
Ro / ¢ ° o ° /
° o °
° ° ®
° ° °
R ° * ° ° ° ° o ®e Q o
o ® o ® ® o [)
©o_ 0 o © 4, o 0 o o o 0 o
Ra = S ¢ > ® ® ¢ [*
’ o © '. .. o ¢ o : ® .. ° o ° ® ¢’
Algorithm
o start withany tx_1 € Rg_1 [using naive algorithm]
o for j=K—2K—3,....0 ,/

— |find £; =(1 + €)-ANN of ¢ in R; starting from ¢,

e return {g

Query Time Analysis

Suppose that any node’s list size is at most ¢
Observation: Query time = ¢- number of visited nodes

Compare with a regular path

e Visit nodes in the order of proximity to g, then go to the lower level

Query Time Analysis

Suppose that any node’s list size is at most ¢
Observation: Query time = ¢- number of visited nodes

Compare with a regular path

e Visit nodes in the order of proximity to g, then go to the lower level

Claim: Our path visits at most 2K nodes more

Query Time Analysis

Suppose that any node’s list size is at most ¢
Observation: Query time = ¢- number of visited nodes

Compare with a regular path

e Visit nodes in the order of proximity to g, then go to the lower level

Claim: Our path visits at most 2K nodes more

I . .',‘f.‘!tjﬂ ° e
® °
1+e/2)°>14+e = gt <|lg—1]
Pr[regular path Iength ~ Clog n] < O(n_c) [distribution of points across levels]

[starting search point]

Query Time Analysis

What about any ¢?

Skip list
n possible search targets
Probability of failure n- O(n=¢) = O(n=(¢—1)

Query Time Analysis

What about any ¢?

Skip list
n possible search targets
Probability of failure n- O(n=¢) = O(n=(¢—1)

Only n°(? ” combinatorially distinct” regular paths
e If ¢; and g2 incude the same distance ordering on the mput

sites, their regular paths are the same

e Arrangement of (g’) bisecting hyperplanes has

((g)) < (n*)* =n*

d-dimensional cells

Query Time Analysis

What about any ¢?

Skip list
n possible search targets
Probability of failure n- O(n=¢) = O(n=(¢—1)

Only n°(? ” combinatorially distinct” regular paths
e If ¢; and g2 incude the same distance ordering on the mput

sites, their regular paths are the same

e Arrangement of (g’) bisecting hyperplanes has

((g)) < (n*)* =n*

d-dimensional cells
Setting C' = 2d + ("

Prlregular path length < O(d)logn] = O(n™%")

Weighted Voronoi Diagrams

Goal For each site s, compute L such that
Vg € R

vbes: [lg-bl|> sl wieLy: |lg—] > el

[s is an (1 + €)-ANN of ¢] [no "improvement” in L]

Weighted Voronoi Diagrams

Goal For each site s, compute L such that

Vg € R
Vbe S |lg—bl| > el & VteLs: [lg—tl| > 1]
[s is an (1 + €)-ANN of ¢] [no "improvement” in L]
[s, b, € fixed] [s, t, € fixed]
b S
-------------- ®--------® o oo/
Q(b, €) qk/ Q(t,e/2)
o - .
Tlls 1 bl oy lls —]
e(24¢€) e(24€/2
~ 2(1+€) > 2 (1te/2)
|s — bl (e /2)(2+€/2)H3 t||

e(2+¢€)

Weighted Voronoi Diagrams

Goal For each site s, compute L such that

Vg € R
Vbe S |lg—bl| > el & WtelLs: |lg—t|| > 1
[s is an (1 + €)-ANN of g¢] [no "improvement” in L]
Vbe S: qe Q(b,e) = Vte Ls: g€ Q(t,e/2)
[s, b, € fixed] [s, t, € fixed]
b s
-------------- o -------® o oo/
Q(b,€) q\/ Q(t,e/2)
Y, - .
Tlls 1 bl oy lls — |
e(2+e€) e(24€/2
- 2(1+e) > N 2(1+e/2)
|s — bl (e /2)(2+€/2)H3 t||

e(2+¢€)

Weighted Voronoi Diagrams

Goal For each site s, compute L such that

Vg € R
Vbe S |lg—bl| > el <= Vte Ls: |lg—t]| > '1'1;'2'
[s is an (1 + €)-ANN of ¢] [no "improvement” in L]
Vbe S: qe Q(b,e) = Vte Ls: g€ Q(t,e/2)
1 Qb,e) 2 [N Q(t,¢/2)
beS tELg
[s, b, € fixed] m[s t, € fixed]
b S
-------------- ®-------® o oo/
/ Q(b,) qk/ Q(t.¢/2)
oq / *
- -~
oI5 70l areaylls =t
~ 2(1+e) > N 2(1+e/2)
|s — bl (e /2)(2+€/2)H3 t||

Linearization (" Lifting")

A point inside/outside a sphere in R%?

0

A point above/below a hyperplane in R4T*7?

Example for d=1
A

y = |lq||?

D/

Linearization (" Lifting")

A point inside/outside a sphere in R%?

0

A point above/below a hyperplane in R4T*7?

Example for d=1
A

y = |lq||?

D/

Linearization (" Lifting")

A point inside/outside a sphere in R%?

0

A point above/below a hyperplane in R4T*7?

Example for d=1
A

y = |lq||?

oW

D/

Q(b,e) ={g €R: [lg—s]| < (1 +¢)|lg — b[|}

/&%26

P(b,e) ={(q,y) : ay>2(q,b) — |6’} n{(q,v) : v=|lq]|*}
Ly A RS

H (b, €), halfspace in R4T1 ¥, standard paraboloid in R4+!
(note: contains the origin) (note: independent of b, ¢)

Final Formulation

Paraboloid
U ={(q,y): y=]|lqll*}

—[[b]]?/c

Final Formulation

Paraboloid

VU ={(¢;y): y=Ilall*}

Halfspaces

H(b,e) ={(q,y) : ay > 2(b,q) — ||b||?} [can compute using S and ¢]
forallbe S

SR
query points for which s is

a (14 €)-ANN

Final Formulation

Paraboloid

v ={(¢,9): v =4/}

Halfspaces

H(b,e) =1{(q,y) : ay > 2(b,q) — ||b||*} [can compute using S and €]
forallbe S

Halfspaces

Gt =¢/2) ={(g,y) : o'y >2(t,q)— [[¢||?}) [unkqown]

for all t € Lg

Goal

It suffices to make sure that S q

K

Preprocessing

initialize the weight of all sites to 1

repeat

pick a (weighted) random sample R C S of size Cicdlogc

if (| G(t,e/2)NW¥ C () H(b,e¢)
teR beS

return R
else

v = a violating vertex of (| G(t,e/2)NWY
teR

double the weight of V ={t € S\ R: v & G(t,¢/2)}

The sample size depends on ¢, the optimal size of L

Next we bound c using polytope approximation

Size of L,

Exhibit a list of size O (e7(471)/2]og £), where p =

maXs tes ||s—1t||
ming tes ||s—t||

Lemma For any convex and compact set P C R? contained in the
unit sphere and any € € (0, 1), there is a polytope P’ O P with at
most O(e(4=1)/2) facets which is in the e-neighborhood of P.

Note Always "outer’ approximation

Size of L,

Exhibit a list of size O (e_(d_1>/2 log f) where p =

maXs tes ||s—1t||
ming tes ||s—t||

Lemma For any convex and compact set P C R? contained in the
unit sphere and any € € (0, 1), there is a polytope P’ O P with at
most O(e(4=1)/2) facets which is in the e-neighborhood of P.

Note Always "outer’ approximation

Recall We need an "inner’ approximation
of this

.
K s
S H(b,e), be S

Size of L.

Want an "inner” approximation of this

Size of L,

Want an "inner” approximation of this using only these hyperplanes as potential facets

\ y
W

q

"stretching”
~ 2 times

Size of L,

Want an "inner” approximation of this using only these hyperplanes as potential facets

\ y
W

q

e @

"stretching”
~ 2 times

\/

Goal: Subsample (as much as possible) the
hyperplanes on the right so that

Size of L,

Dudley approximation

P

> € (in DudIey’s»Theorem)
q

Straightforward application of Dudley’'s Theorem does not work!

The value of € dictated by the smallest scale

Size of L,

Solution: height-dependent slicing, per-slice Dudley approximations

Y

vertical slice

Slices have 1

e geometrically increasing height

e ''constant’ gap

A > % rgf163§<||b||2
dz:%dz—l

do = % min ||b]|?
0 4lgggll |

Size of L,

Number of slices
m = O(log(p/a))
Recall: p — spread

Key fact

Complexity (number of facets) of
approximation O(e~(4=1)/2) per
slice

Red and blue projections into the g-hyperplane within one slice are at least a factor
of 1 + € apart, so the same ¢ can be used in all approximations

Clarkson’s Algorithm: Summary

Improved query time at the expense of specifying ¢ in advance
O(e=(4=1)/2) instead of O(e~)
Express the condition on Ly in the form of P(S,¢) D Q(Ls,€/2)

Preprocessing by iterative random sampling from S and checking the
containment condition

Query procedure using

— top-down search on a skip list

— Iterative improvement algorithm within one level

