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S. Har-Peled’s notes, Chapters 6 and 7

Approximate Voronoi Diagrams

CS468, Mon. Oct. 30th, 2006

Presentation by Maks Ovsjanikov
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Outline

• Preliminaries

• Problem Statement

• ANN using PLEB

• Bounds and Improvements

– Near Linear Space

– Linear Space

• ANN in Rd using compressed quad-trees

(Previous Lecture)}
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Preliminaries

Holds in any metric space:
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 d(q, u) ≥ d(u,v)
ε

d(q, v) ≥ d(u,v)
ε

=⇒ d(q, v)

d(q, u)
≤ 1 + ε

Preliminaries

d(q, u) = αd(u, v)

d(q, v) ≤ d(q, u) + d(u, v) = (1 + 1
α)d(q, u)

=⇒ d(q,v)
d(q,u) ≤ (1 + 1

α) ≤ (1 + ε) if α ≥ 1
ε

Holds in any metric space:
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 d(q, u) ≥ d(u,v)
ε

d(q, v) ≥ d(u,v)
ε

=⇒ d(q, v)

d(q, u)
≤ 1 + ε

Preliminaries

d(q, u) = αd(u, v)

d(q, v) ≤ d(q, u) + d(u, v) = (1 + 1
α)d(q, u)

=⇒ d(q,v)
d(q,u) ≤ (1 + 1

α) ≤ (1 + ε) if α ≥ 1
ε

Holds in any metric space:

Similarly:

d(q, v) = αd(u, v)

=⇒ d(q,u)
d(q,v) ≤ (1 + 1

α) ≤ (1 + ε) if α ≥ 1
ε
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 d(q, u) ≥ d(u,v)
ε

d(q, v) ≥ d(u,v)
ε

=⇒ d(q, v)

d(q, u)
≤ 1 + ε

Preliminaries

Moral:

Any of the far away points is a (1 + ε) closest neighbor
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Problem Statement:

For a given ε, find a (1 + ε) Aproximate Voronoi Diagram:

Partition of space into regions with one representative ri per region, such that
for any point q in region i, ri is a (1 + ε) nearest neighbor of q
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Problem Statement:

For a given ε, find a (1 + ε) Aproximate Voronoi Diagram:

Partition of space into regions with one representative ri per region, such that
for any point q in region i, ri is a (1 + ε) nearest neighbor of q

Constraints:

• bounded construction time and space (complexity)

• Cover all space

• sub-linear (1+ε) NN queries
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ANN using PLEB
Reduce (1 + ε)-ANN queries to target ball queries
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ANN using PLEB
Reduce (1 + ε)-ANN queries to target ball queries

1) Construct balls of radius (1 + ε)i around each point, for i = 1..∞
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ANN using PLEB
Reduce (1 + ε)-ANN queries to target ball queries

1) Construct balls of radius (1 + ε)i around each point, for i = 1..∞
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ANN using PLEB
Reduce (1 + ε)-ANN queries to target ball queries

q

For any query point q, return the center p of the smallest ball that contains it:
d(q, n) > (1 + ε)i−1, and d(q, p) ≤ (1 + ε)i < (1 + ε) · d(q, n)

=⇒ always get a (1 + ε)-Nearest Neighbor

(1 + ε)5

> (1 + ε)4
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ANN using PLEB
Reduce (1 + ε)-ANN queries to target ball queries

Problems:

• Unbounded Number of Balls

• Not clear how to preform target ball queries efficiently

– Partition the space into regions of influence
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Bounding the number of balls

Intuition:
* For a given pair u and v, we only care if min d(q, {u, v}) ∈ [d(u,v)

ε+2 , d(u,v)
ε ]
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Bounding the number of balls

Intuition:
* For a given pair u and v, we only care if min d(q, {u, v}) ∈ [d(u,v)

ε+2 , d(u,v)
ε ]

• if min d(q, {u, v}) > d(u,v)
ε =⇒ either u or v are (1 + ε) NN
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Bounding the number of balls

Intuition:
* For a given pair u and v, we only care if min d(q, {u, v}) ∈ [d(u,v)

ε+2 , d(u,v)
ε ]

* Do not need to grow balls of radius smaller than d(u,v)
4 or larger than 2d(u,v)

ε

• if min d(q, {u, v}) > d(u,v)
ε =⇒ either u or v are (1 + ε) NN

• if min d(q, {u, v}) < d(u,v)
ε+2 =⇒ q has a unique (1 + ε) NN

u

v

d(q, u) < d(u,v)
ε+2

q
d(q, v) > (1− 1

ε+2)d(u, v)

> (ε + 1)d(q, u)
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Bounding the number of balls

Intuition:
* For a given pair u and v, we only care if min d(q, {u, v}) ∈ [d(u,v)

ε+2 , d(u,v)
ε ]

* Do not need to grow balls of radius smaller than d(u,v)
4 or larger than 2d(u,v)

ε

• if min d(q, {u, v}) > d(u,v)
ε =⇒ either u or v are (1 + ε) NN

• if min d(q, {u, v}) < d(u,v)
ε+2 =⇒ q has a unique (1 + ε) NN

u

v

d(q, u) < d(u,v)
ε+2

q
d(q, v) > (1− 1

ε+2)d(u, v)

> (ε + 1)d(q, u)

Method 1:

for every pair of points {u, v}, construct enough balls to cover [d(u,v)
4 , 2d(u,v)

ε ] on u, v
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Bounding the number of balls

Intuition:
* For a given pair u and v, we only care if min d(q, {u, v}) ∈ [d(u,v)

ε+2 , d(u,v)
ε ]

* Do not need to grow balls of radius smaller than d(u,v)
4 or larger than 2d(u,v)

ε

• if min d(q, {u, v}) > d(u,v)
ε =⇒ either u or v are (1 + ε) NN

• if min d(q, {u, v}) < d(u,v)
ε+2 =⇒ q has a unique (1 + ε) NN

u

v

d(q, u) < d(u,v)
ε+2

q
d(q, v) > (1− 1

ε+2)d(u, v)

> (ε + 1)d(q, u)

Method 1:

for every pair of points {u, v}, construct enough balls to cover [d(u,v)
4 , 2d(u,v)

ε ] on u, v

Overall: O(n2 logε+1(
2C
ε − C

4 )) = O(n2 log(7C
ε )

log(ε+1)) = O(n21
ε log(1

ε)) balls

Note: log(1 + ε) = ε− ε2/2 + ε3/3− .... = O(ε) in most cases
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Bounding the number of balls

Interval Near-Neighbor data structure
given a range of distances [a, b], and a set of points P , answers:

1. dP (q) > b

2. dP (q) < a with a witness

3. otherwise, finds a point p ∈ P , s.t. dP (q) ≤ d(p, q) ≤ (1 + ε)dP (q)
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Bounding the number of balls

Interval Near-Neighbor data structure
given a range of distances [a, b], and a set of points P , answers:

1. dP (q) > b

2. dP (q) < a with a witness

3. otherwise, finds a point p ∈ P , s.t. dP (q) ≤ d(p, q) ≤ (1 + ε)dP (q)

Can be realized by a set of balls of radius a(1 + ε)i for i = 0...M − 1, where M = dlog1+ε(b/a)e and a
ball of radius b around every point in P
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Bounding the number of balls

Interval Near-Neighbor data structure
given a range of distances [a, b], and a set of points P , answers:

1. dP (q) > b

2. dP (q) < a with a witness

3. otherwise, finds a point p ∈ P , s.t. dP (q) ≤ d(p, q) ≤ (1 + ε)dP (q)

Can be realized by a set of balls of radius a(1 + ε)i for i = 0...M − 1, where M = dlog1+ε(b/a)e and a
ball of radius b around every point in P

Contains O(n1
ε log(b/a)) balls. Takes at most 2 target ball queries if 1 or 2 hold, and

* O(log(M)) = O(log log(b/a)
ε ) otherwise
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Bounding the number of balls

A data structure to answer (1 + ε)-ANN queries on general points

(Sariel Har-Peled: A Replacement for Voronoi Diagrams of Near Linear Size. FOCS 2001: 94-103)

Build a tree, with an Interval Near Neighbor structure associated with each node
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Bounding the number of balls
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(Sariel Har-Peled: A Replacement for Voronoi Diagrams of Near Linear Size. FOCS 2001: 94-103)

Build a tree, with an Interval Near Neighbor structure associated with each node
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Bounding the number of balls

A data structure to answer (1 + ε)-ANN queries on general points

(Sariel Har-Peled: A Replacement for Voronoi Diagrams of Near Linear Size. FOCS 2001: 94-103)

Build a tree, with an Interval Near Neighbor structure associated with each node

Recursively find min r such
that there are dn/2e connected
components

10

7

I(P, r, 2c̄µnr/ε, ε/4), r = 10, n = 6

I(P, r, 2c̄µnr/ε, ε/4), r = 7, n = 3
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Bounding the number of balls

A data structure to answer (1 + ε)-ANN queries on general points

(Sariel Har-Peled: A Replacement for Voronoi Diagrams of Near Linear Size. FOCS 2001: 94-103)

Build a tree, with an Interval Near Neighbor structure associated with each node

Recursively find min r such
that there are dn/2e connected
components

10

7

I(P, r, 2c̄µnr/ε, ε/4), r = 10, n = 6

I(P, r, 2c̄µnr/ε, ε/4), r = 7, n = 3

12

I(P, r, 2c̄µnr/ε, ε/4), r = 12, n = 3

For each component find
a representative and recur-
sively build the outer tree



10-1

Bounding the number of balls

A data structure to answer (1 + ε)-ANN queries on general points

(Sariel Har-Peled: A Replacement for Voronoi Diagrams of Near Linear Size. FOCS 2001: 94-103)

I(P, r, 2c̄µnr/ε, ε/4), r = 10, n = 6

I(P, r, 2c̄µnr/ε, ε/4), r = 7, n = 3

I(P, r, 2c̄µnr/ε, ε/4), r = 12, n = 3

Given a query point q:

1) q is outside R descend into the outer tree

q
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Bounding the number of balls

A data structure to answer (1 + ε)-ANN queries on general points

(Sariel Har-Peled: A Replacement for Voronoi Diagrams of Near Linear Size. FOCS 2001: 94-103)

I(P, r, 2c̄µnr/ε, ε/4), r = 10, n = 6

I(P, r, 2c̄µnr/ε, ε/4), r = 7, n = 3

I(P, r, 2c̄µnr/ε, ε/4), r = 12, n = 3

Given a query point q:

2) if q is inside r descend into the cluster

q
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Bounding the number of balls

A data structure to answer (1 + ε)-ANN queries on general points

(Sariel Har-Peled: A Replacement for Voronoi Diagrams of Near Linear Size. FOCS 2001: 94-103)

I(P, r, 2c̄µnr/ε, ε/4), r = 10, n = 6

I(P, r, 2c̄µnr/ε, ε/4), r = 7, n = 3

I(P, r, 2c̄µnr/ε, ε/4), r = 12, n = 3

Given a query point q:

3) otherwise I will return a
(1 + ε

4)-NN

q
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Bounding the number of balls

A data structure to answer (1 + ε)-ANN queries on general points

(Sariel Har-Peled: A Replacement for Voronoi Diagrams of Near Linear Size. FOCS 2001: 94-103)

I(P, r, 2c̄µnr/ε, ε/4), r = 10, n = 6

I(P, r, 2c̄µnr/ε, ε/4), r = 7, n = 3

I(P, r, 2c̄µnr/ε, ε/4), r = 12, n = 3

Given a query point q:

Because of rounding up, after each step, continue on set containing ≤ n/2 + 1 points
=⇒ number of steps ≤ log3/2 n
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Bounding the number of balls

I(P, r, 2c̄µnr/ε, ε/4), r = 10, n = 6

I(P, r, 2c̄µnr/ε, ε/4), r = 7, n = 3

I(P, r, 2c̄µnr/ε, ε/4), r = 12, n = 3

1) q is outside R descend into the outer tree

2) if q is inside r descend into the cluster

3) otherwise I will return a
(1 + ε

4)-NN

Note that:

• last step is always 3)

• no error is incurred in 2)

• diameter of a cluster ≤ 2nr =⇒ error in 1) is at most (1 + ε
c̄µ)

Thus, overall error is bounded by:

(1+
ε

4
)

log3/2 n∏
i=1

(1+
ε

c̄µ
) ≤ exp(

ε

4
)

log3/2 n∏
i=1

exp(
ε

c̄µ
) ≤ exp

 ε

4
+

log3/2 n∑
i=1

ε

c̄µ

 ≤ exp (ε/2) ≤ (1+ε)

if µ = dlog3/2 ne, c̄ = 4 and ε < 1
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Bounding the number of balls

I(P, r, 2c̄µnr/ε, ε/4), r = 10, n = 6

I(P, r, 2c̄µnr/ε, ε/4), r = 7, n = 3

I(P, r, 2c̄µnr/ε, ε/4), r = 12, n = 3

(Sariel Har-Peled: A Replacement for Voronoi Diagrams of Near Linear Size. FOCS 2001: 94-103)

Overall Number of Balls:

Since

• the depth of the tree is at most log3/2 n

• each node ν has I(Pν, r, 2c̄µnr/ε, ε/4) with M = n log n balls

we get an immediate bound of
O(M log M) = O(n log(n) log(n log n)) = O(n log2 n)
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Bounding the number of balls

I(P, r, 2c̄µnr/ε, ε/4), r = 10, n = 6

I(P, r, 2c̄µnr/ε, ε/4), r = 7, n = 3

I(P, r, 2c̄µnr/ε, ε/4), r = 12, n = 3

Overall Number of Balls:

Since

• the depth of the tree is at most log3/2 n

• each node ν has I(Pν, r, 2c̄µnr/ε, ε/4) with M = n log n balls

we get an immediate bound of
O(M log M) = O(n log(n) log(n log n)) = O(n log2 n)

However, can achieve O(n log n) by considering the connection with the Cluster Tree

S. Sen, N. Sharma, Y. Sabharwal: Nearest Neighbors Search using Point Location in Balls with applications to approximate
Voronoi Decompositions Journal of Computer and System Sciences, Volume 72(6) , September 2006, Pages 955-977.

2

1

3

4

5

6
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Overall Number of Balls:

Since

• the depth of the tree is at most log3/2 n

• each node ν has I(Pν, r, 2c̄µnr/ε, ε/4) with M = n log n balls

we get an immediate bound of
O(M log M) = O(n log(n) log(n log n)) = O(n log2 n)
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Bounding the number of balls

I(P, r, 2c̄µnr/ε, ε/4), r = 10, n = 6

I(P, r, 2c̄µnr/ε, ε/4), r = 7, n = 3

I(P, r, 2c̄µnr/ε, ε/4), r = 12, n = 3

Overall Number of Balls:

Since

• the depth of the tree is at most log3/2 n

• each node ν has I(Pν, r, 2c̄µnr/ε, ε/4) with M = n log n balls

we get an immediate bound of
O(M log M) = O(n log(n) log(n log n)) = O(n log2 n)

However, can achieve O(n log n) by considering the connection with the Cluster Tree

1

2

3

4

5

6

2

1

3

4

5

6
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Bounding the number of balls

I(P, r, 2c̄µnr/ε, ε/4), r = 10, n = 6

I(P, r, 2c̄µnr/ε, ε/4), r = 7, n = 3

I(P, r, 2c̄µnr/ε, ε/4), r = 12, n = 3

Overall Number of Balls:

Since

• the depth of the tree is at most log3/2 n

• each node ν has I(Pν, r, 2c̄µnr/ε, ε/4) with M = n log n balls

we get an immediate bound of
O(M log M) = O(n log(n) log(n log n)) = O(n log2 n)

However, can achieve O(n log n) by considering the connection with the Cluster Tree

1

2

3

4

5

6

rloss(p) = radius of the ball around p, when p
ceases to be a root

rloss(2)
2

1

3

4

5

6
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1

2

3

4

5

6

Bounding the number of balls
I(P, r, 2c̄µnr/ε, ε/4), r = 10, n = 6

I(P, r, 2c̄µnr/ε, ε/4), r = 7, n = 3
I(P, r, 2c̄µnr/ε, ε/4), r = 12, n = 3

Apart from the outer trees, going down
the (1 + ε) ANN tree is equivalent to
disconnecting edges of the MST tree

q

2

1

3

4

5

6
The subtrees of a node are disjoint in edges

=⇒ can charge at least 1 edge to each child.

Namely: if nν is the number of children of ν

|Pν| = O(nν) and
∑

ν∈D nν = O(n)

Thus, total number of balls:∑
ν∈D

O
(nν

ε
log

µnν

ε

)
= O

(
n

ε
log

n log n

ε

)
= O

(n

ε
log

n

ε

)
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Construction Time

Construction time will be dominated by constructing the tree D

Can be constructed directly from the cluster tree but this takes time O(n2) time
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In Rd the cluster tree can be (2n− 2)-approximated by a HST in O(n log n) time:

1. construct a 2-spanner of P of size O(n) in O(n log n) time

2. construct an HST that (n− 1) approximates the spanner in O(n log n) time
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Construction Time

Construction time will be dominated by constructing the tree D

Can be constructed directly from the cluster tree but this takes time O(n2) time

In Rd the cluster tree can be (2n− 2)-approximated by a HST in O(n log n) time:

1. construct a 2-spanner of P of size O(n) in O(n log n) time

2. construct an HST that (n− 1) approximates the spanner in O(n log n) time

Only possible in Rd, in general no HST can be computed in subquadratic time

2

1

3

4

5

6
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Construction Time

Construction time will be dominated by constructing the tree D

Can be constructed directly from the cluster tree but this takes time O(n2) time

In Rd the cluster tree can be (2n− 2)-approximated by a HST in O(n log n) time:

1. construct a 2-spanner of P of size O(n) in O(n log n) time

2. construct an HST that (n− 1) approximates the spanner in O(n log n) time

Only possible in Rd, in general no HST can be computed in subquadratic time

2

1

3

4

5

6

24

6

9

12

18

1 2 3 4 5 6
1

2

3

4

1.5
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Construction Time

In Rd the cluster tree can be (2n− 2)-approximated by a HST in O(n log n) time:

1. construct a 2-spanner of P of size O(n) in O(n log n) time

2. construct an HST that (n− 1) approximates the spanner in O(n log n) time

24

6

9

12

18

1 2 3 4 5 6

To compensate for the approximation factor, grow more balls:
Instead of I(P, r, 2c̄µnr/ε, ε/4) construct I(P, r/(2n), 2c̄µnr/ε, ε/4)
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Construction Time

In Rd the cluster tree can be (2n− 2)-approximated by a HST in O(n log n) time:

1. construct a 2-spanner of P of size O(n) in O(n log n) time

2. construct an HST that (n− 1) approximates the spanner in O(n log n) time

24

6

9

12

18

1 2 3 4 5 6

To compensate for the approximation factor, grow more balls:
Instead of I(P, r, 2c̄µnr/ε, ε/4) construct I(P, r/(2n), 2c̄µnr/ε, ε/4)

Instead of O(n
ε log b

a) = O(n
ε log n) will have:

O(n
ε log nr

r
n

) = O(n
ε log n2) = O(n

ε log n) balls at every node
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Construction Time

In Rd the cluster tree can be (2n− 2)-approximated by a HST in O(n log n) time:

1. construct a 2-spanner of P of size O(n) in O(n log n) time

2. construct an HST that (n− 1) approximates the spanner in O(n log n) time

24

6

9

12

18

1 2 3 4 5 6

To compensate for the approximation factor, grow more balls:
Instead of I(P, r, 2c̄µnr/ε, ε/4) construct I(P, r/(2n), 2c̄µnr/ε, ε/4)

Instead of O(n
ε log b

a) = O(n
ε log n) will have:

O(n
ε log nr

r
n

) = O(n
ε log n2) = O(n

ε log n) balls at every node

Same asymptotic space and time complexity
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Answering ANN queries

Haven’t made our life easier, since answering target ball queries is a difficult problem
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b≈ is (1 + ε) approximation of b = b(p, r), if

b ⊆ b≈ ⊆ b(p, r(1 + ε)
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Answering ANN queries

Haven’t made our life easier, since answering target ball queries is a difficult problem

Don’t need exact balls

(1 + ε) ball

r

(1 + ε)r

b≈ is (1 + ε) approximation of b = b(p, r), if

b ⊆ b≈ ⊆ b(p, r(1 + ε)

Consider Interval Near Neighbor structure on approximate balls:

If I≈(P, r, R, ε/16) is a (1 + ε/16) approximation to I(P, r, R, ε/16)

If for point q, I≈(P, r, R, ε/16) returns a ball (p, α), α ∈ [r, R] =⇒ p is (1 + ε/4)-ANN to q:

r(1 + ε/16)i ≤ dP (q) ≤ d(p, q) ≤ r(1 + ε/16)i+1(1 + ε/16) ≤ (1 + ε/4)r
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Fast ANN in Rd

For a given ball, b(p, r), construct a grid centered at p, with cell-size 2i, s.t.
√

d2i ≤ (εr)
16

Call, b≈ the set of cells that intersect b(p, r)

The distance between 2 points in a d-dimensional cell of size α is at most
√∑d

i=1 α2 =
√

dα

b≈ is a (1 + ε/16) approximate ball, and contains O
(

rd

(εr)d

)
= O

(
1
ε

d
)

cells
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Fast ANN in Rd

• Fix the origin, and construct grid-cells from there

• If there are 2 cells with the same size, pick the one, corresponding to the smallest ball

• Thus construct an approximate I-(1 + ε/16) data structure C
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Finding the smallest ball containing q ⇐⇒ finding the smallest grid-cell containing q
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Fast ANN in Rd

• Fix the origin, and construct grid-cells from there

• If there are 2 cells with the same size, pick the one, corresponding to the smallest ball

• Thus construct an approximate I-(1 + ε/16) data structure C

Finding the smallest ball containing q ⇐⇒ finding the smallest grid-cell containing q

Encode all the cells of C into a compressed quad-tree, such that each cell appears as a node

• Construction takes O(|C| log |C|) time

• Finding the appropriate node in C takes O(log |C|) time

• If information about smallest ball is propagated down the tree, answering a query takes O(log |C|)
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Fast ANN in Rd

• Fix the origin, and construct grid-cells from there

• If there are 2 cells with the same size, pick the one, corresponding to the smallest ball

• Thus construct an approximate I-(1 + ε/16) data structure C

Finding the smallest ball containing q ⇐⇒ finding the smallest grid-cell containing q

Encode all the cells of C into a compressed quad-tree, such that each cell appears as a node

• Construction takes O(|C| log |C|) time

• Finding the appropriate node in C takes O(log |C|) time

• If information about smallest ball is propagated down the tree, answering a query takes O(log |C|)

Recall that we had a data structure with O(n
ε log n

ε ) balls. Each ball is approximated by O( 1
εd

) cells
⇒ The overall complexity of the quad-tree is O(N), where N = O( n

εd+1 log n
ε ).

By noticing that there are many balls of similar sizes, we reduce the complexity to:

• Construction: O(nε−d log2(n/ε) time

• Storage: O(nε−d log(n/ε) space

• Point location query: O(log(n/ε))


