Approximate Nearest Neighbors
via Point Location Among Balls



Method of Har-Peled

(improved version from notes)

* Reduce(1+¢)-ANN query on n points to point
location in equal balls (PLEB) queries

- Preprocessing space 0(glog%”)

- Preprocessing time O (log §>

- Query time 0(10g§>



Notation

dP (q) Distance from point g to nearest neighbor point in set P

U (P,r) Union of balls of radius r about points in P

NNbr (P,r)  “NearestNeighbor"data structure o
Returns TRUE and a witness point if query point g is in U
and FALSE otherwise

(P.r)

balls

?(P .7, R, 5) “Interval Nearest Neighbor” dgta structure for points in set P,
over range [r, R], with approximation error &
Indicates if d,(¢)is outside range [r, R] or returns the ball centered
at the point (1+¢)-ANN to g



Reduction from ANN to PLEBs

* Build a tree D

- Each node v has an interval NNbr data structure I

- Use I to decide how to traverse the tree when
search reaches node v



Constructing D

* Given set P of n points in metric space M



Constructing D

* Find the ball radius r such that v (r,») has

'n/2] connected components

balls

r=0 Connected Components: 8



Constructing D

* Find the value of r such that v,,.(P.r) has [n/2]
connected components

r=0.25 Connected Components: 8



Constructing D

* Find the value of r such that v,,.(P.r) has [n/2]
connected components

r=0.5 Connected Components: 6

e Jo & e



Constructing D

* Find the value of r such that v,,.(P.r) has [n/2]
connected components

r =0.65 Connected Components: 4

fo SO



Constructing D

* Recursively build a sub tree for each connected
component and add as child of root node v

P




Outer Child

* Choose one representative from each
connected component to be in set Q

)

I SO




Outer Child

* Recursively build a tree over points in Q and
hang it on on node v

* This child of v is the 6 uter child”

g@ & e ‘




Constructing D

* Build the interval NNbr data structure for node v

I =I(P,r,R,el4)
1% \-v_/

e v a

point set search range [r, R]  approximation error

Let R=2cunrle

Where L& ¢ are parameters that will be defined later...




Answering a query using D

* Given query point g, use ] to decide between
three cases




Answering a query using D

Case 1:

- 1 returns (1+¢)ANN and search terminates




Answering a query using D

Case 2: d,(q)<r

- Recurse into child corresponding to connected
component containing g




Answering a query using D

Case 3: d,(q9)>R,

- Recurse into outer child




algorithm terminates

* If at step i we consider a set of size n
then at step i+1 we consider a set of size

n._ < ni/2 + 1

* Thus search halts after number of steps

steps <log . (n)



Algorithm is correct

* Same result as target ball query on all
constructed balls

* Approximation error

- From node v to a connected component child
* No approximation error
- From node v to the “outer child”: 1+¢/(cp)

- From the interval NNbr search: 1+e/4



Approximation error

r<(1+5) I] 0+
4 i=1 cu
log, , (n)
ce
<exp(—) (__) set u:[log3/2n] and € large enough so that...
i=1 CIJ
log,, (n)
3 3
<exp(—+ —)
4 i=1 5“
3
<exp(—-)
2
<l+e¢

Thus result of a query on d is (1+¢&)-ANN to query point g



Query time

* As search proceeds down tree D

- at most two NNbr queries are performed at a node
and we traverse O(log n) nodes

- at last node the 7 data structure performs
O(log (log(=)/e))=0(log~) NNbr queries

- Query time is O(log E>



Efficient Construction

* Construction space/time is currently o(»*
* Use HST of P to t-approximate metric M

* Use correspondence between subtrees in HST
and connected components to find the ball
radius r that gives [»/2] connected components

In

* Results in construction spaceftime o(-log—)



* What have we done?

* Reduced an ANN query to multiple NNbr
gueries

* But NNbr queries seem hard to solve efficiently

- Solution: Use deformed “approximate balls”

- Same bounds hold for the extension to
“approximate balls”



Questions



