

Approximate Nearest Neighbors

Sariel Har Peled: Notes

Arya, Mount, Netenyahu, Silverman, Wu An
Optimal Algorithm for Approximate Nearest
Neighbor Searching in Fixed Dimensions

Approximate Nearest Neighbors

● What we want
– O(n log n) preprocess
– O(n) space
– O(log n) time query

● Possible in 1 and 2D
● Not really in 3D

Lets Approximate

● Return a point within distance (1+ε)r
● Can achieve the bounds several ways
● First

– compute rough approximation
– use it to set scale for final solution

● Second
– build a tree which solves the problem

Ring Separator Tree

in

ou
t

ou
t in in

ou
t

ou
t in

ou
t in

ou
t in

ou
t in

Ring Separator Tree

● Answer (1+4/t)-ANN queries in O(height)
● Check if rep is closest, if so update closest
● Recurse on correct side of halfway ball

Error Bounds

● Closest: rt/2
● Returned: 2r+rt/2

Construction

● Find circle containing
n/c points

Construction

● Grid of side

● Number of points

● Set
● Ring has n/2 points

L= r
16d

4Ldn
c

c=2 4Ld

Construction

● Put ring in largest
gap

● Size 2r/n

The Upshot

● Can preprocess in O(n log n) time
● Query time is O(log n)
● (4n+1) approximation!
● Amazingly, this is good enough

Bounded Distance

● Normal quadtree gives
● Why?

– Approximation and r eliminates small cells (ε/4)r
– Bound number of cells visited by last level
– Do some algebra to get bound...

O
1

d
log

A Complete Algorithm

● Build
– a compressed quadtree/finger tree
– a ring separator tree

● Compute approximate value, R
● Start from

– nodes of size approximately R
– and closer than R to query point

Arya and Mount

● O(dn log n) time
● O(dn) space

● O(cd,ε log n) time ANN

– where cd,ε ≤ d(1+6d/ε)d

● Can find k NN
● Any Minkowski metric
● Preprocessing does not depend on ε or metric

Overview

● Build BBD tree
● Locate leaf containing q
● Try nearby nodes in order of distance
● Stop when no node is close enough

Tree types

● KD reduce number of points each level
● Quadtree reduces size
● BBD does both

– either KD-like split
– or shrink

Properties

● Bounded aspect ratio
– bound number of cells intersecting a volume

● Stickiness
– control number of nearby cells

● Inner boxes not cut by children
– so everything packs

An Important Trick

● Maintain 3 sorted lists of points (x,y,z)
● Have links between lists
● Allows

– removal of first k points in time k
– O(d) time determination of min bounding box

Computing Shrinks

● Compute a set of splits
– until have n/c in a rectangle
– trivially sticky

● Problems
– doesn't respect nesting
– may have to split many times

Computing Shrinks II

● Alway cut min enclosing box
– constant time
– always remove points
– make sure it respects stickyness

● Include parent inner rectangle
– go until it is cut out

Computing Shrinks 2

● More flexible
● Shrink roughly as before

Tweaks

● Collapse trivial splits/shrinks
– now no sequence of trivial splits

● Assign one point to each leaf
– even to empty shrink cells

Properties

● Bounded occupancy
● Point near each leaf
● Can do point location in O(d log n) time
● Packing constraint
● Distance enumeration

Proof of Packing

● Ball of radius r
– intersects (1+6r/s)d leaves of size s

● Trivial packing argument except for shrinks
– use stickiness to replace outer boxes

ANN using BBD

● Number of leaves visited is O((1+6d/ε)d)
● r is distance to last non-terminating leaf
● r(1+ε)≤dist(q,p)
● Can't have visited cell smaller than rε/d

– this cell must have a point closer than r(1+ε)
● Use packing argument from before

Experimental Results

● Choices
– shrink only when necessary
– leaves held 5-8 points

● Results
– Slightly slower than Kd trees for even data
– Much faster for clustered data (10x or so)
– Slightly slower than Kd trees for surfaces (20%)

10 1 .1 .01 .001

0

2.5

5

7.5

10

12.5

15

17.5

20

22.5

Surface Data

BBD
Kd

