Dimensionality Reduction
Techniques for

Proximity Problems
Piotr Indyk, SODA 2000

CS 468 | Geometric Algorithms Bart Adams

Talk Summary

Core algorithm:

Applied to:

" c-nearest neighbor search algorithm (c-NNS)

» c-furthest neighbor search algorithm (c-FNS)

Talk Overview

Introduction
c-Nearest Neighbor Search

c-Furthest Neighbor Search

Conclusion

Talk Overview

c-Nearest Neighbor Search
c-Furthest Neighbor Search

Conclusion

Problem Statement

We are dealing with proximity problems

(n points, dimension d)

P P
- Pe o
° °
IRA ® o
o ¢ ° o 4°
° °
nearest neighbor search furthest neighbor search

(NNS) (FNS)

Problem Statement

High dimensions: curse of dimensionality

* time and/or space exponential in d

Use approximate algorithms

NNS ¢-FNS

Problem Statement

Problems with (most) existing work in high d

®» randomized Monte Carlo

" incorrect answers possible

Randomized algorithms in low d
" Las Vegas

" always correct answer

—> can’t we have Las Vegas
algorithms for high d!

Hamming Metric

Hamming Space of dimension d
» points are bitvectors {0, 1}
d = 3:000,001,010,011, 100,101,110, 111

* hamming distance d(x, y)

" # positions where x and y differ
Remarks
» simplest high-dimensional setting

" oeneralizes to larger alphabets X

¥ ={a,B,7,6,...}

Dimensionality Reduction

Main idea

" map from high to low Q0001 ootoo101

dimension

¢ °
" preserve distances 11100111 00111101

" solve problem in low
dimension space

— improved performance 011y 001
at the cost of

L °
approximation error 101 CO

Talk Overview

Introduction

c-Furthest Neighbor Search

Conclusion

Las Vegas 1+&-NNS

Probabilistic NNS

" for Hamming metric

" approximation error 1+¢

" always returns correct answer

Recall: ¢NNS can be reduced to (r, R)-PLEB

" 50 we will solve this problem

Las Vegas 1+&-NNS

Main outline i

{0,1}¢ into {a,B,7,5,...}O0B 11001001101010001

= dimension O(R) l

symbols a,f,Y,0,... as ,_Q
binary codes of length O(log n) o
= dimension O(R log n) l

Rlogn
» divide into sets of size O(log 1) /OOOHMH
" solve each subproblem
OI1 001 111

= take best found solution —

log n

Las Vegas 1+&-NNS

Main outline i

{0,1}¢ into {a,B,7,5,...}O0B 11001001101010001

* dimension O(R) l

R
I_A_\
oyy

|

Rlogn

000111111

29N

OI1r 001 111
——

log n

Hashing

Find a mapping f: {0,1}% — ©P

* fis non-expansive

d(f(z), f(y)) < Sd(z,y)

» fis (¢, R)-contractive (almost non-contractive)

d(z,y) =2 R = d(f(z), f(y)) = SR(1 — ¢)

Hashing

* f(x) is defined as concatenation

f= fh1 (le)th(CE) e fh|%| (.CU)

" one f,(x) is defined using a hash function

h(z) = ax modP, P =2 a € [P]

" in total there are P such hash functions, i.e.,

H| =P

Hashing

Mapping fh(x) 00101011

* map each bit z, %N\
into bucket h(z) 11 -1 00 0011

" sort bits in h(2)h(4) R(0)A(5) h(1)R(3)h(6)A(T)
ascending order l
of 7’s

" concatenate all v o la|l 6 C
bits within each
bucket to one l

symbol Yo

Hashing

d-dimensional 00101011
small alphabet %N\
11 |- 00 0011

R-dimensional

large alphabet v Ja] 9 ¢

PR-dimensional e l g
large alphabet

Hashing

With S = |#H|, one can prove that

" fis non-expansive

d(f(z), f(y)) < Sd(z,y)

— proof: for each difference bit,
f can generate at most |H| =S
difference symbols.

Hashing

With S = |H|, Piotr Indyk states that one can
prove that

» fis (¢, R)-contractive
d(z,y) > R = d(f(z), f(y)) = SR(1 — ¢

— however, recall that A(xz) = ax modP, P = %

— it is known that Pr[h(z) = h(y)] < RL/G

— (g, R)-contractive only holds with a certain
(large) probability (?)

Las Vegas 1+&-NNS

d

A

11001001101010001

|

symbols a,f,Y,0,... as i

binary codes of length O(log n) o

= dimension O(R log n) l
R logn

Main outline

000111111

LA

OIr 001 111
——

log n

Coding

Each symbol a from ¥ mapped to a binary
word C(a) of length [, so that

Example ([=8)
a — Cla) = 01000101
B— C(B)= 11011111

Coding

[t can be shown, or also seen by intuition, that
this mapping is
" pon-expansive

" almost non-contractive

Also, the resulting mapping ¢ = C o f
(hashing + coding) is
" pon-expansive

" 3]lmost non-contractive

Las Vegas 1+&-NNS

d

A

11001001101010001

|

R
!_A_\
oYy

|

R logn

Main outline

000111111
» divide into sets of size O(log 1) /

" solve each subproblem L

= take best found solution 1H4
og n

Divide and Conquer

Partition the set of coordinates into random

sets S1,..., Sk of size s = O(logn)

Project g on coordinate sets
g(x)
One of the projections 000111111

should be /
| 011
9(z)s,

" non-expansive

001 111
()!52 ($>|S3

" almost non-contractive

Divide and Conquer

Solve NNS problem on each sub-problem g(z),s,
* dimension log n
" easy problem

= can precompute all solutions with O(n) space
O(2'°¢") = O(n)

Take best solution as answer

Resulting algorithm is 1+& approximate
(lots of algebra to prove)

Las Vegas 1+&-NNS

Main outline i

{0,1}¢ into {a,B,7,5,...}O0B 11001001101010001

= dimension O(R) l

symbols a,f,Y,0,... as ,_Q
binary codes of length O(log n) o
= dimension O(R log n) l

Rlogn
» divide into sets of size O(log 1) /OOOHMH
" solve each subproblem
OI1 001 111

= take best found solution —

log n

Extensions
Basic algorithm can be adapted

» 3+gapproximate deterministic algorithm

» make step 3 (divide and conquer) deterministic

= other metrics

" embed lii into O(%)—dimensional Hamming
metric (A is diameter/closest pair ratio)

= embed lg into llO(d2)

Talk Overview

Introduction

c-Nearest Neighbor Search

Conclusion

FNS to NNS Reduction

Reduce (1+€)-ENS to (1+&/6)-NNS
" for € € |0, 2]

" in Hamming spaces

c-FNS

Basic Idea

For p,q € {0,1}¢
d(p,q) = d — d(p, q)
p = 110011 p = 110011
g = 101011 g = 010100

d(p,q) =2=6—4 d(p,q) =4=6—2

Exact ENS to NNS

Set of points Pin {0,1}*

p furthest neighbor of ¢ in P
Y

p is nearest neighbor of gin P

— exact versions of NNS and
ENS are equivalent

Approximate FNS to NNS

Reduction does not preserve approximation

" p FN of q, with d(q,p) = R
= therefore p (exact) NN of ¢
= p’' NN of g
d(q,p’) = cd(q,p) = c(d — R)
" therefore
d(g,p) __ R

d(q,p’) = d—c(d—R)
" 50, if we want p’ to be ¢-FN of ¢

/ R
¢ 2 Te(d=FR)

Approximate FNS to NNS

Reduction does not preserve approximation
" 50, if we want p’ to be ¢-FN of ¢
/ R
¢ 2 Te(d=FR)
" or, equivalently,

R RS

" 50, the smaller d/ R, the better the reduction

— apply dimensionality reduction

to decrease d/ R

Approximate FNS to NNS

With a similar hashing and coding technique,
one can reduce d/ R and prove:

There is a reduction of
(1+€)-FNS to (1+g/6)-NNS
for € € [0, 2].

Conclusion

Hashing can be used effectively to overcome
the “curse of dimensionality”.

Dimensionality reduction used for two
different purposes:

» Las Vegas c-NNS: reduce storage
= ENS — NNS: relate approximation factors

