
Dimensionality Reduction
Techniques for

Proximity Problems
Piotr Indyk, SODA 2000

CS 468 | Geometric Algorithms Bart Adams

Talk Summary

Core algorithm: dimensionality reduction
using hashing

Applied to:

c-nearest neighbor search algorithm (c-NNS)

c-furthest neighbor search algorithm (c-FNS)

Talk Overview

Introduction

c-Nearest Neighbor Search

c-Furthest Neighbor Search

Conclusion

Talk Overview

Introduction
Problem Statement

Hamming Metric

Dimensionality Reduction

c-Nearest Neighbor Search

c-Furthest Neighbor Search

Conclusion

Problem Statement

We are dealing with proximity problems
(n points, dimension d)

q

p

P

nearest neighbor search

(NNS)

P

furthest neighbor search

(FNS)

q

p

Problem Statement

High dimensions: curse of dimensionality
time and/or space exponential in d

Use approximate algorithms

q

c-NNS

r
cr

q

c-FNS

rp0
p

p p0

Problem Statement

Problems with (most) existing work in high d
randomized Monte Carlo

incorrect answers possible

Randomized algorithms in low d
Las Vegas

always correct answer

→ can’t we have Las Vegas
algorithms for high d?

Hamming Metric

Hamming Space of dimension d
points are bit-vectors

hamming distance
positions where x and y differ

Remarks
simplest high-dimensional setting

generalizes to larger alphabets Σ

{0, 1}d
d = 3 : 000, 001, 010, 011, 100, 101, 110, 111

d(x, y)

Σ = {α, β, γ, δ, . . .}

Dimensionality Reduction

Main idea
map from high to low
dimension

preserve distances

solve problem in low
dimension space

00110101 00100101

0011110111100111

011 001

110
101

→ improved performance
at the cost of
approximation error

Talk Overview

Introduction

c-Nearest Neighbor Search

c-Furthest Neighbor Search

Conclusion

Las Vegas 1+ε-NNS

Probabilistic NNS
for Hamming metric

approximation error 1+ε
always returns correct answer

Recall: c-NNS can be reduced to (r, R)-PLEB
so we will solve this problem

Las Vegas 1+ε-NNS

Main outline
1. hash {0,1}d into {α,β,γ,δ,…}O(R)

dimension O(R)

2. encode symbols α,β,γ,δ,… as
binary codes of length O(log n)

dimension O(R log n)

3. divide and conquer
divide into sets of size O(log n)

solve each subproblem

take best found solution

11001001101010001

αγγ

000111111

011 001 111

d

R

R log n

log n

Las Vegas 1+ε-NNS

Main outline
1. hash {0,1}d into {α,β,γ,δ,…}O(R)

dimension O(R)

2. encode symbols α,β,γ,δ,… as
binary codes of length O(log n)

dimension O(R log n)

3. divide and conquer
divide into sets of size O(log n)

solve each subproblem

take best found solution

11001001101010001

αγγ

000111111

011 001 111

d

R

R log n

log n

Hashing

Find a mapping

f is non-expansive

f is (ε,R)-contractive (almost non-contractive)

f : {0, 1}d → ΣD

d(f(x), f(y)) ≤ Sd(x, y)

d(x, y) ≥ R⇒ d(f(x), f(y)) ≥ SR(1− ²)

Hashing

f(x) is defined as concatenation

one fh(x) is defined using a hash function

in total there are P such hash functions, i.e.,

f = fh1(x)fh2(x) . . . fh|H|(x)

h(x) = ax modP, P = R
² , a ∈ [P]

|H| = P

Hashing

Mapping fh(x)
map each bit xi
into bucket h(i)

sort bits in
ascending order
of i’s

concatenate all
bits within each
bucket to one
symbol

00101011

h(0)h(5)h(2)h(4) h(1)h(3)h(6)h(7)

11 00 0011-

γ δ ζα

γαδζ

Hashing

00101011

h(0)h(5)h(2)h(4) h(1)h(3)h(6)h(7)

11 00 0011-

γ δ ζα

ααηγ . . . γαδζ . . . δξαδ

d-dimensional
small alphabet

R-dimensional
large alphabet

PR-dimensional
large alphabet

Hashing

With , one can prove that

f is non-expansive

d(f(x), f(y)) ≤ Sd(x, y)

S = |H|

→ proof: for each difference bit,
f can generate at most
difference symbols.

|H| = S

Hashing

With , Piotr Indyk states that one can
prove that

f is (ε,R)-contractive

S = |H|

d(x, y) ≥ R⇒ d(f(x), f(y)) ≥ SR(1− ²)

h(x) = ax modP, P = R
²

→ however, recall that

→ it is known that Pr[h(x) = h(y)] ≤ 1
R/²

→ (ε,R)-contractive only holds with a certain
(large) probability (?)

Las Vegas 1+ε-NNS

Main outline
1. hash {0,1}d into {α,β,γ,δ,…}O(R)

dimension O(R)

2. encode symbols α,β,γ,δ,… as
binary codes of length O(log n)

dimension O(R log n)

3. divide and conquer
divide into sets of size O(log n)

solve each subproblem

take best found solution

11001001101010001

αγγ

000111111

011 001 111

d

R

R log n

log n

Coding

Each symbol α from Σ mapped to a binary
word C(α) of length l, so that

d(C(α), C(β)) ∈ [(1−²)l2 , l2]

α → C(α) = 01000101

β → C(β) = 11011111

Example (l=)

l = O(log |Σ|²2)

Coding

It can be shown, or also seen by intuition, that
this mapping is

non-expansive

almost non-contractive

Also, the resulting mapping

(hashing + coding) is
non-expansive

almost non-contractive

g = C ◦ f

Las Vegas 1+ε-NNS

Main outline
1. hash {0,1}d into {α,β,γ,δ,…}O(R)

dimension O(R)

2. encode symbols α,β,γ,δ,… as
binary codes of length O(log n)

dimension O(R log n)

3. divide and conquer
divide into sets of size O(log n)

solve each subproblem

take best found solution

11001001101010001

αγγ

000111111

011 001 111

d

R

R log n

log n

Divide and Conquer

Partition the set of coordinates into random
sets of size

Project g on coordinate sets

One of the projections
should be

non-expansive
almost non-contractive

S1, . . . , Sk

000111111

011 001 111
g(x)|S1 g(x)|S2 g(x)|S3

g(x)

s = O(logn)

Divide and Conquer

Solve NNS problem on each sub-problem
dimension log n
easy problem
can precompute all solutions with O(n) space

Take best solution as answer

Resulting algorithm is 1+ε approximate
(lots of algebra to prove)

O(2logn) = O(n)

g(x)|Si

Las Vegas 1+ε-NNS

Main outline
1. hash {0,1}d into {α,β,γ,δ,…}O(R)

dimension O(R)

2. encode symbols α,β,γ,δ,… as
binary codes of length O(log n)

dimension O(R log n)

3. divide and conquer
divide into sets of size O(log n)

solve each subproblem

take best found solution

11001001101010001

αγγ

000111111

011 001 111

d

R

R log n

log n

Extensions

Basic algorithm can be adapted

3+ε-approximate deterministic algorithm
make step 3 (divide and conquer) deterministic

other metrics
embed into -dimensional Hamming
metric (∆ is diameter/closest pair ratio)
embed into

ld1 O(∆d²)

ld2 l
O(d2)
1

Talk Overview

Introduction

c-Nearest Neighbor Search

c-Furthest Neighbor Search

Conclusion

FNS to NNS Reduction

Reduce (1+ε)-FNS to (1+ε/6)-NNS
for

in Hamming spaces

q

c-FNS

r

² ∈ [0, 2]

p p0

Basic Idea

For p, q ∈ {0, 1}d

d(p, q) = d− d(p, q̄)

p = 110011

q = 101011

d(p, q) = 2 = 6− 4

p = 110011

q̄ = 010100

d(p, q̄) = 4 = 6− 2

Exact FNS to NNS

Set of points P in {0,1}d

p furthest neighbor of q in P

p is nearest neighbor of in Pq̄

⇒
→ exact versions of NNS and

FNS are equivalent

P

q

p

q̄

Approximate FNS to NNS

Reduction does not preserve approximation
p FN of q, with

therefore p (exact) NN of

p’ c-NN of

therefore

so, if we want p’ to be c’-FN of q

q̄

c0 ≥ R
d−c(d−R)

q̄

d(q, p) = R

d(q̄, p0) = cd(q̄, p) = c(d− R)

d(q,p)
d(q,p0) =

R
d−c(d−R)

Approximate FNS to NNS

Reduction does not preserve approximation
so, if we want p’ to be c’-FN of q

or, equivalently,

so, the smaller d/R, the better the reduction

c0 ≥ R
d−c(d−R)

1
c0 ≤ d

R + (1− d
R)c

→ apply dimensionality reduction
to decrease d/R

Approximate FNS to NNS

With a similar hashing and coding technique,
one can reduce d/R and prove:

There is a reduction of

(1+ε)-FNS to (1+ε/6)-NNS
for . ² ∈ [0, 2]

Conclusion

Hashing can be used effectively to overcome
the “curse of dimensionality”.

Dimensionality reduction used for two
different purposes:

Las Vegas c-NNS: reduce storage

FNS → NNS: relate approximation factors

