Dimensionality Reduction Techniques for Proximity Problems

Piotr Indyk, SODA 2000

Talk Summary

Core algorithm: dimensionality reduction using hashing

Applied to:

c-nearest neighbor search algorithm (c-NNS)

c-furthest neighbor search algorithm (c-FNS)

Talk Overview

Introduction

c-Nearest Neighbor Search

c-Furthest Neighbor Search

Conclusion

Talk Overview

Introduction

- Problem Statement
- Hamming Metric
- Dimensionality Reduction

c-Nearest Neighbor Search c-Furthest Neighbor Search Conclusion

Problem Statement

We are dealing with proximity problems (n points, dimension d)

nearest neighbor search (NNS)

furthest neighbor search (FNS)

Problem Statement

High dimensions: curse of dimensionality

lacktriangle time and/or space exponential in d

Use approximate algorithms

Problem Statement

Problems with (most) existing work in high d

- randomized Monte Carlo
 - incorrect answers possible

Randomized algorithms in low d

- Las Vegas
 - always correct answer
- \rightarrow can't we have Las Vegas algorithms for high d?

Hamming Metric

Hamming Space of dimension d

- points are bit-vectors $\{0,1\}^d$ d = 3:000,001,010,011,100,101,110,111
- hamming distance d(x, y)
 - \blacksquare # positions where x and y differ

Remarks

- simplest high-dimensional setting
- lacksquare generalizes to larger alphabets Σ

$$\Sigma = \{\alpha, \beta, \gamma, \delta, \ldots\}$$

Dimensionality Reduction

Main idea

- map from high to low dimension
- preserve distances
- solve problem in low dimension space
- → improved performance at the cost of approximation error

Talk Overview

Introduction

c-Nearest Neighbor Search

c-Furthest Neighbor Search

Conclusion

Probabilistic NNS

- for Hamming metric
- approximation error 1+ε
- always returns correct answer

Recall: c-NNS can be reduced to (r, R)-PLEB

so we will solve this problem

Main outline

- 1. hash $\{0,1\}^d$ into $\{\alpha,\beta,\gamma,\delta,...\}^{O(R)}$
 - dimension O(R)
- 2. encode symbols $\alpha, \beta, \gamma, \delta, ...$ as binary codes of length $O(\log n)$
 - dimension $O(R \log n)$
- 3. divide and conquer
 - divide into sets of size $O(\log n)$
 - solve each subproblem
 - take best found solution

Main outline

- 1. hash $\{0,1\}^d$ into $\{\alpha,\beta,\gamma,\delta,...\}^{O(R)}$
 - dimension O(R)
- 2. encode symbols $\alpha, \beta, \gamma, \delta, ...$ as binary codes of length $O(\log n)$
 - dimension $O(R \log n)$
- 3. divide and conquer
 - divide into sets of size $O(\log n)$
 - solve each subproblem
 - take best found solution

Find a mapping $f: \{0,1\}^d \to \Sigma^D$

 \blacksquare f is non-expansive

$$d(f(x), f(y)) \le Sd(x, y)$$

• f is (ε, R) -contractive (almost non-contractive)

$$d(x,y) \ge R \Rightarrow d(f(x), f(y)) \ge SR(1 - \epsilon)$$

• f(x) is defined as concatenation

$$f = f_{h_1}(x) f_{h_2}(x) \dots f_{h_{|\mathcal{H}|}}(x)$$

• one $f_h(x)$ is defined using a hash function

$$h(x) = ax \ mod P, \ P = \frac{R}{\epsilon}, \ a \in [P]$$

 \blacksquare in total there are P such hash functions, i.e.,

$$|\mathcal{H}| = P$$

Mapping $f_h(x)$

- map each bit x_i into bucket h(i)
- sort bits in ascending order of *i*'s
- concatenate all bits within each bucket to one symbol

d-dimensional small alphabet

R-dimensional large alphabet

PR-dimensional large alphabet

With $S = |\mathcal{H}|$, one can prove that

 \blacksquare f is non-expansive

$$d(f(x), f(y)) \le Sd(x, y)$$

 \rightarrow proof: for each difference bit, f can generate at most $|\mathcal{H}| = S$ difference symbols.

With $S = |\mathcal{H}|$, Piotr Indyk states that one can prove that

• f is (ε, R) -contractive

$$d(x,y) \ge R \Rightarrow d(f(x),f(y)) \ge SR(1-\epsilon)$$

- \rightarrow however, recall that $h(x) = ax \ mod P, P = \frac{R}{\epsilon}$
- \rightarrow it is known that $Pr[h(x) = h(y)] \leq \frac{1}{R/\epsilon}$
- \rightarrow (ϵ ,R)-contractive only holds with a certain (large) probability (?)

Main outline

- 1. hash $\{0,1\}^d$ into $\{\alpha,\beta,\gamma,\delta,...\}^{O(R)}$
 - dimension O(R)
- 2. encode symbols $\alpha, \beta, \gamma, \delta, ...$ as binary codes of length $O(\log n)$
 - dimension $O(R \log n)$
- 3. divide and conquer
 - divide into sets of size $O(\log n)$
 - solve each subproblem
 - take best found solution

Coding

Each symbol α from Σ mapped to a binary word $C(\alpha)$ of length l, so that

$$d(C(\alpha), C(\beta)) \in \left[\frac{(1-\epsilon)l}{2}, \frac{l}{2}\right] \qquad l = O(\frac{\log|\Sigma|}{\epsilon^2})$$

Example (
$$l=8$$
)

$$\alpha \rightarrow C(\alpha) = 01000101$$

$$\alpha \to C(\alpha) = 01000101$$

 $\beta \to C(\beta) = 110111111$

Coding

It can be shown, or also seen by intuition, that this mapping is

- non-expansive
- almost non-contractive

Also, the resulting mapping $g = C \circ f$ (hashing + coding) is

- non-expansive
- almost non-contractive

Main outline

- 1. hash $\{0,1\}^d$ into $\{\alpha,\beta,\gamma,\delta,...\}^{O(R)}$
 - dimension O(R)
- 2. encode symbols $\alpha, \beta, \gamma, \delta, ...$ as binary codes of length $O(\log n)$
 - dimension $O(R \log n)$
- 3. divide and conquer
 - divide into sets of size $O(\log n)$
 - solve each subproblem
 - take best found solution

Divide and Conquer

Partition the set of coordinates into random sets S_1, \ldots, S_k of size $s = O(\log n)$

Project g on coordinate sets

One of the projections should be

- non-expansive
- almost non-contractive

Divide and Conquer

Solve NNS problem on each sub-problem $g(x)_{|S_i}$

- dimension $\log n$
- easy problem
- can precompute all solutions with O(n) space

$$O(2^{\log n}) = O(n)$$

Take best solution as answer

Resulting algorithm is $1+\epsilon$ approximate (lots of algebra to prove)

Las Vegas 1+\varepsilon-NNS

Main outline

- 1. hash $\{0,1\}^d$ into $\{\alpha,\beta,\gamma,\delta,...\}^{O(R)}$
 - dimension O(R)
- 2. encode symbols $\alpha, \beta, \gamma, \delta, ...$ as binary codes of length $O(\log n)$
 - dimension $O(R \log n)$
- 3. divide and conquer
 - divide into sets of size $O(\log n)$
 - solve each subproblem
 - take best found solution

Extensions

Basic algorithm can be adapted

- 3+ε-approximate deterministic algorithm
 - make step 3 (divide and conquer) deterministic

- other metrics
 - embed l_1^d into $O(\frac{\Delta d}{\epsilon})$ -dimensional Hamming metric (Δ is diameter/closest pair ratio)
 - lacktriangle embed l_2^d into $l_1^{O(d^2)}$

Talk Overview

Introduction

c-Nearest Neighbor Search

c-Furthest Neighbor Search

Conclusion

FNS to NNS Reduction

Reduce $(1+\epsilon)$ -FNS to $(1+\epsilon/6)$ -NNS

- for $\epsilon \in [0,2]$
- in Hamming spaces

Basic Idea

For
$$p, q \in \{0, 1\}^d$$

$$d(p,q) = d - d(p,\bar{q})$$

$$p = 110011$$

$$q = 101011$$

$$d(p,q) = 2 = 6 - 4$$

$$p = 110011$$
 $\bar{q} = 010100$

$$\bar{q} = 010100$$

$$d(p,\bar{q}) = 4 = 6 - 2$$

Exact FNS to NNS

Set of points P in $\{0,1\}^d$

p furthest neighbor of q in P

p is nearest neighbor of $ar{q}$ in P

→ exact versions of NNS and FNS are equivalent

Approximate FNS to NNS

Reduction does not preserve approximation

- p FN of q, with d(q, p) = R
 - lacktriangle therefore p (exact) NN of $ar{q}$
- p' c-NN of \bar{q} $d(\bar{q},p')=cd(\bar{q},p)=c(d-R)$
- therefore

$$\frac{d(q,p)}{d(q,p')} = \frac{R}{d-c(d-R)}$$

• so, if we want p' to be c'-FN of q $c' \ge \frac{R}{d-c(d-R)}$

Approximate FNS to NNS

Reduction does not preserve approximation

• so, if we want p' to be c'-FN of q

$$c' \ge \frac{R}{d - c(d - R)}$$

or, equivalently,

$$\frac{1}{c'} \le \frac{d}{R} + (1 - \frac{d}{R})c$$

- lacksquare so, the smaller d/R, the better the reduction
- \rightarrow apply dimensionality reduction to decrease d/R

Approximate FNS to NNS

With a similar hashing and coding technique, one can reduce d/R and prove:

There is a reduction of
$$(1+\epsilon)$$
-FNS to $(1+\epsilon/6)$ -NNS for $\epsilon \in [0,2]$.

Conclusion

Hashing can be used effectively to overcome the "curse of dimensionality".

Dimensionality reduction used for two different purposes:

- Las Vegas c-NNS: reduce storage
- FNS \rightarrow NNS: relate approximation factors