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Abstract

In this paper we give approximation algorithms for several proximity problems in high di�
mensional spaces� In particular� we give the �rst Las Vegas data structure for �� � �	�nearest
neighbor with polynomial space and query time polynomial in dimension d and logn� where n is
the database size� We also give a deterministic 
�approximation algorithm with similar bounds�
this is the �rst deterministic constant factor approximation algorithm �with polynomial space	
for any norm� For the closest pair problem we give a roughly n��� time Las Vegas algorithm
with approximation factor O���� log ���	� this is the �rst Las Vegas algorithm for this problem�
Finally� we show a general reduction from the furthest point problem to the nearest neighbor
problem� As a corollary� we improve the running time for the �� � �	�approximate diameter

problem from n��O���� to n��O����
Our results are uni�ed by the fact that their key component is a dimensionality reduction

technique for Hamming spaces�

� Introduction

The proximity problems is a class of geometric problems which involve the notion of a distance
between points in a d�dimensional space� For example� the closest pair problem� furthest pair
�or diameter� problem and nearest neighbor search all belong to this class� If the dimension d
is low� these problems have very e�cient solutions �	
� 
� 	��� However� the running time and
or
space requirements of these algorithms grow exponentially with the dimension� This is unfortunate�
since the high�dimensional versions of the above problems are of major and growing importance
to a variety of applications� usually involving similarity search or clustering� some examples are
information retrieval� image and video databases� vector quantization� data mining and pattern
recognition� Therefore� a lot of recent research focused on approximate algorithms for these prob�
lems ��� 	�� �� 		� �� ��� this relaxation enables to overcome the �curse of dimensionality��

In this paper we present several new results for the aforementioned proximity problems� They
are uni�ed by the fact that their key component is a dimensionality reduction technique for Ham�
ming spaces �which we describe in more detail at the end of this Section��
Our results� The �rst problem we address is the c�nearest neighbor problem� In this problem
the goal is to construct �for a given set P of n points from Rd� a data structure� which given a
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query point q� �nds any c�approximate nearest neighbor of q in P � the latter is de�ned as any
point p� whose distance to q is bounded by c times the distance from q to its nearest neighbor
in P � Several algorithms have been proposed recently for this problem for the cases when the
similarity between points is measured by a dot�product ���� l� or l� norm �	�� �� 		� and l� norm ����
The intriguing common property of almost all of them ��� 	�� �� 		� is that they are randomized
Monte Carlo� i�e� have small probability of returning an incorrect answer �the solution of ��� is
deterministic� but unlike other solutions does not allow arbitrarily small approximation error��
This situation stands in the contrast with the state of the art in low�dimensional Computation
Geometry� where virtually almost all randomized algorithms are of Las Vegas type �i�e� whose
correctness is always guaranteed�� Thus one may ask if randomization� in particular of Monte
Carlo type� is an inherent property of algorithms for high�dimensional proximity problems� We
mention that from the practical perspective the Las Vegas algorithms o�er a signi�cant advantage
over the Monte Carlo ones �if their running times is comparable� for the following reason� it was
observed �	� �� that the average error incurred by the algorithms is much lower than predicted
by theoretical analysis� Therefore� one can signi�cantly speed them up by setting arti�cially high
upper bound for the error� However� a Monte Carlo algorithm cannot tell the di�erence between
the usual case when the error is small and a rare case when the error is high �so another trial
is needed�� Having an algorithm which always output correct answer would help to resolve this
problem�

Our �rst sequence of results addresses this issue� In particular� for the �	� ���nearest neighbor
problem in ld�� we show�

� a Las Vegas algorithm with polynomial �for �xed �� storage and query time poly�logn� d� 	����
for any � � �� this yields improvement over previous Monte Carlo algorithms of ��� 		� with
similar parameters �although with smaller dependence of the storage on ��

� a deterministic algorithm with similar time
space bounds� for � � �� this is the �rst deter�
ministic constant factor approximation algorithm with polynomial storage� for any lp norm�

The results can be generalized to ld�� however� the approximation factor gets multiplied by
p

�

We also give a subquadratic Las Vegas algorithm for O�	��approximate dynamic NNS in Ham�
ming space� this� in particular� gives a O�	��approximation algorithm for the Closest Pair problem�
We obtain it by combining the dimensionality reduction technique with the veri�cation procedure
for the Locality Sensitive Hashing algorithm ���� Our algorithm runs in time dn � n��� �for any
	 � � � �� and returns a O�	���log 	���	���approximate solution� We mention that although one
can obtain a subquadratic Las Vegas algorithm for closest pair by combining our Las Vegas nearest
neighbor algorithm with the technique of ���� the resulting dependence of the approximation factor
on 	�� would be exponential�

Our second type of results addresses the problem of approximating the diameter �i�e� furthest
pair� of a set of points in Hamming space�� Recently� ��� gave a Monte Carlo �	 � ���approximate
algorithm for this problem running in time O�n��O������ Here we improve it to O�n��O���� �see
page � for the exact running time of the algorithm�� moreover� our algorithm is much simpler�
Our result is obtained via a general reduction from ��Furthest Neighbor Search Problem �FNS� to
��c�Nearest Neighbor Problem �NNS�� The value of c is upper bounded by � for � � � �for � � �
we show a linear time algorithm in general metric spaces� and smaller than � for a large range of
values of �� Thus any further improvement for the approximate NNS yields an improvement for

�By standard embedding techniques �e	g	 see 
��
 this implies algorithms for l� and l� norms with the running
time multiplied by �O�d
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approximate FNS� in particular� a linear time algorithm for approximate closest pair problem �if
one exists� would imply a linear time algorithm for approximate diameter�
Our techniques� The main technique used in all of our results is dimensionality reduction in
Hamming spaces� Speci�cally� we use hashing to reduce the dimension to O�logn� and still preserve
the gap between �small� and �large� distances� Although techniques has been used earlier ��traces�
in �		� and Locality Sensitive Hashing in ����� we need to proceed more carefully� in particular� some
of our results require the hashing to be deterministic� It is interesting to note that the dimensionality
reduction serves very di�erent purposes depending on the application� for the Las Vegas NNS
algorithm� it allows us to reduce the storage� for the Locality Sensitive Hashing� it allows us to
reduce the error from log d to constant� for the Furthest Neighbor to Nearest Neighbor reduction�
it allows us to relate the approximation factors for these two problems� Thus we believe that
this technique will �nd further applications in designing e�cient algorithms for high dimensional
proximity problems�

Another technique introduced in this paper is �divide and conquer� on the dimensionality of the
space� In particular� we show how �in certain situations� to reduce the original problem to several
subproblems with smaller �and more tractable� dimensionality� Finally� we introduce a greedy set
cover algorithm for the veri�cation of correctness of Locality Sensitive Hashing data structure� the
rationale is that� since we cannot verify the correctness for all �d queries� we apply approximation
algorithm �which gives slightly worse bounds�� It is interesting if there are other relations between
NP�complete problems and proximity problems in high dimensions�

� Preliminaries

Notation� We use the following notation� For a metric space �X� d� and r � � we use B�p� r� to
denote the set of points in X within distance r from p� We use dH�x� y�� for x� y � �d� to denote
the Hamming distance between x and y �i�e� the number of positions on which x and y di�er�� We
often skip the subscript H if it is clear from the context which metric is used�

The formal de�nitions of the problems we address are as follows�

De�nition � �c�Nearest Neighbor Search Problem �c�NNS�� Given a set P � fp�� � � � � png
of points from some metric space �X� d�� devise a data structure which� given any q � X� produces
a point p � P such that d�q� p� � cminp��P d�q� p

���

In ��� it was shown that c�NNS can be reduced to the �de�ned below� �r� rc�PLEB problem�
The �binary�search type� reduction is deterministic and incurs only a polylog�n� overhead in the
running time and storage requirements� Therefore� in this paper we focus on solving the latter
problem� formally de�ned as follows�

De�nition 	 ��r� R��Point Location in Equal Balls ��r� R��PLEB�� Given n radius�r balls cen�
tered at P � fp�� � � � � png in a metric �X� d�� devise a data structure which for any query point q � X

does the following�
� if there exists p � P with q � B�p� r� then return yes and a point p� such that q � B�p�� R��

� if q �� B�p� R� for all p � P then return no�

� if for the point p closest to q we have r � d�q� p� � R� then return either yes or no�

De�nition 
 �c�Furthest Neighbor Search Problem �c�FNS�� Given a set P � fp�� � � � � png
of points from some metric space �X� d�� devise a data structure which� given any q � X� produces
a point p � P such that d�q� p� � 	�cmaxp��P d�q� p

���






As is in case of c�NNS problem� c�FNS can be reduced to its decision question similar to �r� R��
PLEB� but with balls B�p� r� replaced by their complement� Fortunately� the overhead of the
reduction is very small due to the fact that �as we show in this paper� the 
�FNS problem can be
solved in any metric space with O�n� preprocessing
storage and constant query time� Therefore� a
binary search reduction from c�FNS to its decision version incurs only constant overhead�

� Deterministic algorithm for approximate nearest neighbor

In this section we describe a deterministic algorithm for the approximate nearest neighbor problem�
The algorithm returns a point whose distance to the query point is at most 
� � times the distance
to its nearest neighbor� The algorithm works for Hamming metric� later we show that similar
results can be also obtained for l� norm and �with slightly worse approximation factor� for the l�
norm�

It is clear that we can focus on solving the �r� R��PLEB problem for R � �� � O����r� since
approximate NNS can be reduced to the former problem by using binary search� Our solution
consists of the following steps�

	� Hash the space f�� 	gd into �O�R� for some �large� alphabet �

�� Encode each symbol from � using a binary error�correcting code �with codeword length
O�logn�� obtaining a mapping into f�� 	gO�R logn�


� Divide the �binary� coordinates into groups of size O�logn� and solve the Nearest Neighbor
problem within each group� During the query processing return the best �closest to the query�
answer among all answers obtained from the subproblems�

Below we describe each step in detail�

Hashing� The goal of hashing is to obtain a mapping f � f�� 	gd � �D� such that

� f is non�expansive �i�e� for any x� y � f�� 	gd we have d�f�x�� f�y��� Sd�x� y�� where S is a
scaling factor

� f is ��� R��contractive �i�e� for any x� y � f�� 	gd such that d�x� y� � R we have d�f�x�� f�y���
SR�	� ���

Moreover� the value of D should be close to SR�
The mapping is obtained as follows� Let H be a family of hash functions h � �d�� �v� such that

for any x� y � �d� we have

Pr�h�x� � h�y�� � 	

R��

We can assume that P � R�� is a prime number �as otherwise we can always decrease � by a
constant factor so that this fact becomes true�� In this case a family of functions HP consisting of
functions h�x� � ax modP � a � �P �� is known to satisfy the above condition� Having H we compute
f�x� as follows� For each h � H we construct a mapping fh which for any x � f�� 	gd�

� maps each bit xi into �bucket� h�i�

� sorts all bits xi within each bucket in ascending order of i�s

�



� concatenates all bits within each bucket into one symbol �empty buckets are represented by
an additional special symbol� and outputs the resulting P �dimensional vector

The value of f is now de�ned as concatenation of all fh�x� for h � HP �
If we set the scaling factor S to jHj� then it is easy to see that the mapping f is both non�

expansive and ��contractive� The �rst property follows from the fact that each di�erence bit between
x and y creates at most S di�erence symbols between f�x� and f�y�� On the other hand� the low
probability of collision guaranteed by H implies the second property�

Coding� In this stage each element a from � �constructed implicitly by mapping the whole pointset
using f� is replaced by a binary word C�a� of length �� The words have the property that for each
pair of di�erent symbols a� b � � we have d�C�a�� C�b��� ��	���	� ����� 	����� from �	�� we know
that there exists �e�ciently constructible� code with � � O�j�j�	����� having this property� Since
the size of � is bounded by npoly�d� 	���� it follows that � � O��logn�log d�log 	�������� By using
f and C� the resulting mapping �say g� is clearly non�expansive and �	��	������contractive� Notice
that the dimension D� of the range of g is P � �� and the scaling factor S� � P ����� In particular it
implies that for a pair x� y s�t� d�x� y� � R we have d�g�x�� g�y��� R� � S��	����R� which is ��D���

Divide and conquer� During this stage we partition the set �D�� of coordinates of g�s range into
sets S� � � �Sk of size s � O�logn�� Ideally� we would like this partition to have the property that
the function gjSi �where yjA denotes the projection of y on the coordinate set A� is non�expansive
and 	�contractive for some small 	� Unfortunately� it is not di�cult to see that it is impossible
to achieve this goal for the whole domain of g �which is too big�� Therefore� we will only preserve
this property for all pairs of points from the pointset P � Speci�cally� we will set s � D�

R� t for
t � C��� log n� in which case �for su�cient constant C� a random partition guarantees that for all
x� y � P such that d�x� y� � R we have d�g�x�jSi� g�y�jSi� � t�	 � ��� The random choice can be
easily derandomized by using the method of conditional probabilities as follows� Assume that the
randomized algorithm �rst chooses s elements of S�� then s elements for S� and so on� For each pair
x� y � P let Ex�y denote the event �d�g�x�jSi� g�y�jSi� 
 t�	� ���� It is not di�cult to see that the
probability of Ex�y conditioned on a partial choice of partition has a hypergeometric distribution�
and therefore is easily computable� This implies that the method of conditional probabilities yields
polynomial time deterministic algorithm for constructing the required partition�

Having the partition� we proceed as follows� Let Pi � g�P �jSi � notice that Pi contains points
from f�� 	gs� For each i we build a data structure Di solving a nearest neighbor problem for Pi�
This is an easy task� since the dimensionality of the space is s � O�logn�� and therefore we can
precompute answers to all �s possible queries using polynomial �in n� space� The solution to the
PLEB problem is now computed by querying all Di�s and checking if the closest point found is
close enough to the query point�

It remains to be shown that this approach yields a 
 � O����approximate answer� Clearly�

it is su�cient to show that the last step �i�e� starting from f�� 	gD�

space� solves �R
������
� � R���

PLEB problem� Consider �an image of� a query point q � f�� 	gD�

and assume that there are

two points p� p� � f�� 	gD�

such that d�q� p� � R������
� and d�q� p�� � R�� By pigeonhole principle

we know that there exists Si such that d�qjSi � pjSi� � t�����
� � On the other hand� we know that

d�pjSi � p
�
jSi

� � t�	� ��� By triangle inequality

d�qjSi � p
�
jSi

� � d�pjSi � p
�
jSi

�� d�qjSi � pjSi�

� �d�p�jSi� qjSi�� d�pjSi� qjSi��� d�qjSi � pjSi� �
t�	� ��
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Therefore� the algorithm never returns p� if p exists� and thus it solves the �R
������
� � R���PLEB

problem�

By the above discussion we prove the following Theorem�

Theorem � For any � � � there exists a deterministic data structure solving the 
���NNS problem
in Hamming metric with poly�d� logn� 	��� query time and poly�d� 	���nO������ space�

Other metrics� The generalization to l� is immediate� as there exists a simple deterministic
embedding of a �nite subset P of ld� into O��d����dimensional Hamming metric� where � is the
diameter
closest pair ratio for P and the mapping preserves the distances up to a multiplicative
factor 	� �� Since the construction in ��� yields � � poly�d� logn�� the query time gets multiplied
only by a small factor�

The result for the l� norm follows from the existence of non�expensive embedding of ld� into

l
O�d��
� which contracts distances by at most a factor of

p

� By applying this embedding and then

applying the algorithm for l� we obtain a deterministic algorithm solving 

p

�NNS�

Las Vegas algorithm� Unfortunately� we do not know if
how it is possible to obtain a determin�
istic �	 � ���approximate algorithm for NNS� However� by using the techniques described below�
we can provide a randomized Las Vegas algorithm for this problem� More speci�cally� we present
an algorithm which builds a data structure which for every query q computes correctly its �	 � ���
approximate nearest neighbor� but �with very small probability� exceeds the poly�d� logn� 	��� time
bound� Notice� that it is su�cient that the algorithm either returns correct answer or �with very
small probability� returns a special don�t know symbol � � for some queries �in which case we can
apply linear search�� Thus �unlike the previous algorithms of ��� and �		�� each time the algorithm
returns an answer� we are 	��! certain about its correctness�

The data structure is built similarly as above� The only di�erence is that this time in the �divide
and conquer� step the partition S� � � �Sk is chosen at random� From the previous discussion we
know that for any query q and Si as above there is a high probability that for any point p� � P such
that d�g�q�� g�p��� � R� we have d�g�q�jSi� g�p

��jSi� � t�	� ��� If the latter inequality indeed holds
for all p�� the algorithm returns a correct answer� Otherwise� it may happen that the algorithm
returns �incorrectly� p� as an answer while it should have returned p� However� we can detect that
case by checking if d�g�q�jSi� g�p

��jSi� closely approximates d�q� p�� and returning � � if it is not the
case�

� Furthest to nearest neighbor reduction

In this section we describe another application of dimensional hashing� namely a reduction from
�	 � ���FNS to �	 � �����NNS �in Hamming spaces�� for � � ��� ��� For � � � the furthest neighbor
problem can be solved much more e�ciently in general metric spaces �as we show at the end of
this section� and therefore the case when � � � is not interesting�

The reduction is based on the following simple idea� Let p� q � f�� 	gd� then d�p� q� � d�d�p� q��
where q denotes a complement of q� This implies the following fact� if P is a set of points in f�� 	gd�
q � f�� 	gd and p � P is the nearest neighbor of q in P � then y is also a furthest neighbor of q in
P � Similarly� the furthest neighbor of a point is a nearest neighbor of its complement� Therefore�
the exact versions of furthest and nearest neighbor are essentially equivalent�

Unfortunately� it is not di�cult to observe that the above reduction does not necessarily preserve
approximation� Assume that the furthest neighbor p of q in P is within distance R from q� If we
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�nd an E�approximate nearest neighbor of q in P � then we can obtain a point p� � P such that
d�q� p�� � Ed�q� p� � E�d�R�� Therefore

d�q� p�

d�q� p��
� R

d� E�d�R�

Thus if we want to obtain an E��approximate algorithm for FNS� we need to choose E to make
sure that E� � R

d�E�d�R� � or equivalently

E � d� R�

d� R
�

	� ��

	� �

where R� � E�R� R � �d and R� � ��d�
It is easy to see that the relation between E and E� depends signi�cantly on the ratio of d to R�

the smaller it is� the more e�cient is the reduction� In order to reduce this ratio� we will apply the
dimensional hashing technique similarly to section 
� However� in order to obtain better bounds�
we will modify the �rst step �mapping f from f�� 	gd to �D� and replace the deterministic hashing
scheme by the following randomized procedure� for any x � f�� 	g and any dimension i � 	 � � �D�
the ith coordinate of f�x� is obtained by concatenating k randomly chosen bits of x �say from
positions i� � � � ik�� the indices i� � � � ik are chosen independently and uniformly at random with
replacement� It is not di�cult to see that for two points p� q such that d�p� q� � �d� the expected
value of d�f�p�� f�q� is �	� �	���k�D� By using Cherno� bound we can make sure than the actual
value of d�f�p�� f�q� di�ers from its expectation by only a factor of �	� �� when D � "�logn����
is large enough� for simplicity� we skip � �i�e� assume it is �� in the below calculations� Moreover�
in the following we will assume that �k � ��	� �since it turns out that the optimal values of �k
belong to ����� 	����� Therefore� we know that for � small enough the value of 	 � �	� ��k can be
approximated by �	� e��k��	� ���� for �� arbitrarily close to � depending on the value of �� We
can easily make � arbitrarily small by adding arbitrary number of dummy coordinates� all set to
zero� thus in the following we will assume d�f�p�� f�q�� � �	 � e��k�D �ignoring ��� By applying

error correcting codes this value goes down to ��e��k

� D� �again ignoring the arbitrarily small error
factor��

Denote �	 � e��k��� by �k���� By the above arguments we get that if we want to distinguish
between � and �� � ��E� in the FNS problem� we need

E � 	� �k��
��

	� �k���E ��
� 	 � e��

�k

	 � e��
�E�k

Let 
 � ��k� We will choose the value of 
 � 
�E�� as a function of E� in order to maximize the
upper bound expression for E� Let E � 	� � and E� � 	� ��� By numerical calculation we obtain
the function 
 as on Figure 	�a�� this yields the bound for ���� as presented on Figure 	�b��

Incidentally� it turns out that for a �round� value of �� � �� the optimal value of 
 can be
computed by hand� We spare the reader the details and just mention that it is equal to ln� 	 ����

and yields ���� � 	�� 	 ��	��� By combining this observation with the apparent fact� that the
ratio ���� is decreasing with ��� we obtain the following Theorem�

Theorem 	 There is a �randomized Monte Carlo� reduction of �	 � ���FNS problem for n points

in f�� 	gd to �	 � �����NNS problem for n points in f�� 	gpoly�d�logn����� for � � ��� ���

�See Figure �� we defer the formal proof to the �nal version of this paper	
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Figure 	�

We mention that the reduction works also in the dynamic situation� i�e� when the points are
added to and removed from the database� Also� it can be modi�ed to yield Las vegas reduction�

It was shown in ��� �� that there is a �	� ���NNS algorithm for n points in f�� 	gd with prepro�
cessing time
storage dn � n��������� and query time dn�������� By applying the above reduction
�using the 
 function from Figure 	� we obtain an algorithm for �	 � ���FNS with preprocessing
Dn� n������ and query time Dn���� for D � poly�d� logn� 	���� where � is depicted on Figure ��


�FNS in general metric spaces� The algorithm is very simple and proceeds as follows�
During the preprocessing the algorithm chooses arbitrary point p� � P and computes p� �
argmaxq�P d�p� q�� Now� in order to answer a query q� the algorithm computes i � argmaxi���� d�q� pi�
and returns pi�

The proof of correctness is as follows� Let q be query point and let p be its furthest neighbor�
Then

d�q� p� � d�p�� q� � d�p�� p� � d�p�� q� � d�p�� p�� � d�pi� q� � �d�pi� q� � 
d�pi� q�

It is easy to see that the analysis is tight� even on a line metric�

� Locality Sensitive Hashing

In this section we show how to obtain another Las Vegas algorithm for approximate NNS by applying
the Locality Sensitive Hashing �LSH� technique of ���� The approximation factor is bounded below
by a constant �i�e� is not arbitrarily close to 	�� however it uses much less storage than the
algorithm from the previous section� We start by describing the idea of LSH and a corresponding
Monte Carlo algorithm for NNS� Then we show that by using greedy set cover algorithm we can
verify the correctness of the LSH data structure and therefore obtain a Las Vegas algorithm�

Intuitively� the main idea of LSH is to solve proximity problems by using hash functions such
that the probability of collision is much higher for points close to each other than the ones which
are far apart� The formal de�nition is as follows�

#
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De�nition � ��
�� A family H � fh � S � Ug is called �r�� r�� p�� p���sensitive for D if for any
q� p � S

� if p � B�q� r�� then PrH�h�q� � h�p�� � p��

� if p �� B�q� r�� then PrH�h�q� � h�p�� � p��

Although it seems unlikely that LSH families exist for any metric� they do exists for some
speci�c ones� In particular� it is easy to observe the following Fact�

Fact � Let S � Hd and D�p� q� be the Hamming metric for p� q � H� Then for any r� � � �� the

family H � fhi � hi��b�� � � � bd�� � bi� i � 	 � � �ng is
�
r� r�	� ��� 	� r

d � 	� r�����
d

�
�sensitive�

The bene�t of LSH is that �as shown in ���� their existence for a given metric immediately
implies sublinear approximate nearest neighbor algorithm for that metric� as shown in the following
Theorem�

Fact 	 ��
�� Suppose there is a �r�� r�� p�� p���sensitive family H for D� Then there exists an
algorithm for �r�� r���PLEB under measure D which uses O�dn�n���� space and O�n�� evaluations
of the hash function for each query� where � � � lnp�

lnp��p�
�

It was shown in ��� that for the LSH function as in Fact 	 we can show � � �
� if � � 	� r�

r�
� 	�

Below we only describe the algorithm for PLEB using LSH� the proofs can be found in ����
For k speci�ed later� de�ne a function family G � fg � S � Ukg such that g�p� � �h��p�� � � � � hk�p���

where hi � H� Next� for an integer l we choose l functions g�� � � � � gl from G independently and
uniformly at random� For example� if we use functions from Fact 	� then essentially gi�p� � pjIi �
where Ii is a set of k coordinates sampled with replacement and pjI denotes a projection of p on
I � During preprocessing� we store each p � P in the bucket gj�p�� for j � 	� � � � � l� Since the total
number of buckets may be large� we retain only the non�empty buckets by resorting to hashing� If
any bucket contains more than one element� we retain only one �chosen arbitrarily�� To process
a query q� we search all buckets g��p�� � � � � gl�p�� Let p�� � � � � pt be the points encountered therein�
For each pj � if pj � B�q� r�� then we return yes and pj � else we return no�

�



Let Wb�q� � P � B�q� b�� and p� be the point in P closest to q� The parameters k and l are
chosen so as to ensure that with a constant probability there exists gj such that the following
properties hold�

	� gj�p�� 
� gj�q�� for all p� � Wr��q�� and

�� if p� � B�q� r�� then gj�p
�� � gj�q��

One can observe that if the properties �	� and ��� hold for some gj � the search procedure works
correctly�

The above algorithms are randomized and have constant probability of correct answer for any
�xed query q� However� we can ensure than �with probability 	� ��d� the data structure is correct
for all queries� This follows from the fact the total number of possible queries is �d� so we can run
O�d� data structures in parallel and always return the best answer� This approach multiplies the
storage and query time by O�d� and guarantees that with high probability the data structure is
correct for all q$s� In other words� with high probability the data structure has the property that
for any q such that there exists p � P with d�q� p� � r�� there exists Ii such that pjIi � qjIj and
for any p� � P such that d�q� p�� � r� we have p�jIi 
� qjIj � Below we show how to verify that the

data structure has this property for all p � P where d�q� p� � r where rlnd
r � r�� Then we apply

the dimensional hashing technique to reduce d to O�r� and in this way obtain a constant factor
approximation�

The �rst step �i�e� veri�cation� is done as follows� Consider any p � P � We need to make sure
that for any q � B�p� r� there exists Ii s�t� p occupies gjIi�q�� We will restate this problem in the
hitting�set language as follows� For any set � of coordinates we say that � hits Ii if Ii � � 
� ��
Let Ai denote all indices i which contain p� Notice that

there exists � with j�j � r which hits all Ii for i � Ap

if and only if

there exists q � B�p� r� such that no gi�q� contains p�

Therefore� it is su�cient to make sure that no small � hits all Ip � fIi� i � Apg� To this end we
apply the greedy set�cover algorithm� which constructs a cover for Ip by picking elements hitting
the largest number of Ii�s� By the result of �	�� we know that if there exist a hitting set of size at
most r� this procedure will �nd a set of size at most rlnd

r � As we know �with very high probability�
such a set does not exist� the greedy procedure will output a set larger than this bound� which
proves that no small set � exists� which implies that the data structure is correct�

� Open problems

Our research suggests several possibilities for improvements� In particular�

� give a deterministic �	� ���NNS algorithm with polynomial storage and sublinear query time

� give a deterministic �or at least Las Vegas� subquadratic �	 � ���approximate algorithm for
Closest Pair
Furthest Pair problem� for any � � �

� construct an explicit embedding of ld� into l
poly�d�
� with distortion 	 � � for arbitrarily small

� � �

� improve the reduction from FNS to NNS

� improve the upper bound for c�FNS in arbitrary metric spaces �or show c � 
 is tight�

	�
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