(April 2004)
IMA and DTC Report

Comparing Point Clouds

Facundo Mémoli and Guillermo Sapiro

Electrical and Computer Engineering
University of Minnesota
memoli,guille@ece.umn.edu

Abstract

Point clouds are one of the most primitive and fundamenteise representations. A popular source of point
clouds are three dimensional shape acquisition deviceh sgclaser range scanners. Another important field
where point clouds are found is in the representation of fdghensional manifolds by samples. With the increas-
ing popularity and very broad applications of this sourcedata, it is natural and important to work directly
with this representation, without having to go to the intediate and sometimes impossible and distorting steps
of surface reconstruction. A geometric framework for cormgamanifolds given by point clouds is presented
in this paper. The underlying theory is based on Gromov-idatf§ distances, leading to isometry invariant and
completely geometric comparisons. This theory is embeddeadprobabilistic setting as derived from random
sampling of manifolds, and then combined with results orrioest of pairwise geodesic distances to lead to a
computational implementation of the framework. The thigmaband computational results here presented are
complemented with experiments for real three dimensidmgbas.

1. Introduction sionality in this case, it is impossible to perform manifold

) o reconstruction, and the task needs to be performed directly
Point clouds are one of the most primitive and fundamental o, the raw data, meaning the point cloud.

manifold representations. One of the most popular sources

of point clouds are 3D shapes acquisition devices, such as 'he importance of this type of shape representation is
laser range scanners, with applications in many discigline leading to a recent increase in the fundamental study of poin
These scanners provide in general raw data in the form of clouds [1, 2,9, 12, 17, 32, 33, 41] (see also the papers men-
(noisy) unorganized point clouds representing surface sam tioned in the first paragraph and references therein). The
ples. With the increasing popularity and very broad appli- 90al of this work," inspired in part by [14] and the tools
cations of this source of data, it is natural and important to developed in [32, 41], is to develop a theoretical and com-
work directly with this representation, without having to g Putational framework to compare shapes (Riemannian man-
to the intermediate step of fitting a surface to it (step that ¢ ifolds) represented as point clouds.

add computational complexity and introduce errors). See fo As we have mentioned, a variety of objects can be repre-
example [4, 11, 13, 16, 21, 29, 30, 36, 37] for a few of the gented as point clouds RY. One is often presented with the
recent works with this type of data. Point clouds can also be ,pjem of deciding whether two of those point clouds, and
used as primitives for visualization, e.g., [5, 21, 40], ®lW  heir corresponding underlying objects or manifolds, eepr
as for editing [44]. sent the same geometric structure or rufjéct recognition

Another important field where point clouds are found and classification We are concerned with questions about

is in the representation of high-dimensional manifolds by
samples (see for example [2, 24, 41]). This type of high- 1 Tps is a short version of the work “A Theoretical and Computa

dimension.al .an.d general co-dimen.sion dgta appears in al- tional Framework for Isometry Invariant Recognition of faCloud
most all disciplines, from computational biology to image Data” by Mémoli and Sapiro, submitted, and also IMA and DTC
analysis to financial data. Due to the extremely high dimen- Reports.
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the underlying unknown structures (objects), which need to tions here introduced) and in [17, 41] to detect intrinsic su
be answered based on discrete and finite measures taken beface dimensionality.

tween their respective point clouds. In greater generality
we wonder what is the structural information we can gather
about the object itself by exploring the point cloud which
represents it.

In this paper, the fundamental approach used for isomet-
ric invariant recognition is derived then from ti&omov-
Hausdorff distancg19], which we now present. If two sets
(objects)X andY are subsets of a common bigger metric

Multidimensional scaling (MDS) for example has been SPac&Z,dz), and we want to compaiéto’ in order to de-
used to approach in part this general problem of object C|d¢ whether they are/represgnt the same ob!ect or not, then
recognition. Procedures based on MDS require that one @n idea one might come up with very early oniis that of com-
first computes the interpoint distance matrix for all the Puting theHausdorff distancéetween them (see for exam-
members of the point cloud (or for a representative selected PI€ [10, 23] for an extensive use of this for shape statistics
sub-set of them). If one is interested in comparing two and image comparison):
different objects, the problem is reduced to a comparison z A
between the corresponding interpoint distance matrides. | dye(X,Y) = maxfgfdz(x,Y),ig\[()dz(y,X))
the distance we use is the Euclidean one, these matrices
only provide information about their rigid similarity, and
(assuming they have the same size) if they are equal (up
to a permutations of the indices of all elements), we can
only conclude that there exists a rigid isometry (rotation,
reflection, translation) from one point cloud to the other.
After adding compactness considerations, we can also say
something about the true underlying (sampled) objects.
Being a bit more rigorous, let the point cloutls C § be
gj-coverings of the surface% in RS, fori = 1, 2 (this will be
formally definged belé)w). Then assuming there exists a rigid dggc(X,Y) A inf dgf(X,Y)
isometryt : R®> — R” such thatt(P1) = P», we can bound Zfg
the Hausdorff distance (which we will also formally define  \yheref : X — Z andg: Y — Z areisometric embeddings

But, what happens if we want to allow for certain defor-
mations to occur and still decide that the manifolds are the
same? More precisely, we are interested in being able to find
a distance between metric spaces thabliad to isomet-

ric transformations (“bends”). This will permit a truly ge-
ometric comparison between the manifolds, independently
of their embedding and bending position. Following [19],
we introduce th&romov-Hausdorff distandeetween Met-

ric Spaces

below) betweert(S;) and$; as follows: dy((1(S1),S) < (distance preserving) into the metric spacét turns out that
doc(1(S1), 1(P1)) + dyc(1(P1),P2) + dy(P2,S) = this measure of metric proximity between metric spaces is
dg¢(S1, P1) + dgc(T(P1), P2) + dgc (P2, S) < €1+ 0+ €2 well suited for our problem at hand and will allow us to give

And of course the same kind of bound holds for the Haus- 4 formal framework to address the isometric shape recogni-
dorff distance between the points clouds once we assume tjon problem (for point cloud data). However, this notion of
the underlying continuous objects are rigidly isometr&® s gjistance between metric spaces encodes the “metric” dispar
§2.1 below. ity between the metric spaces, at first glance, in a computa-
tionally impractical way. We derive below new results that
connect this notion of disparity with other more computa-
tionally appealing expressions.

If S and S, happen to be isometric, thereby allowing
for bends and not just rigid transformations, we wonder
whether we will be able to detect this by looking at (finite)
point cloudsP; sampled from each. This problem is much Since we have in mind specific applications and scenar-
harder to tackle. We approach this problem through a proba- ios such as those described above, and in particular sarface
bilistic model, in part because in principle, there mighisex and submanifolds of some Euclidean spr’e we assume
even for the same object, two different samplings that look that we are given as input pointenselysampled from the
quite dissimilar (under the discrete measures we can cope metric space (surface, manifold). This will manifest itsel
with computationally), for arbitrarily fine scales (seedwe). many places in the theory described below. We will present

) a way of computing a discrete approximation (or bound) to
Wllth the.help.of thg theory presented here we recast these dgs¢(,) based on the metric information provided by these
considerations in a rigorous framework and address the Casepbint clouds. Due to space limitations, the proofs are @it

where the distances considered to characterize each pointynq will be reported elsewhere.
cloud (object) are more general. We concentrate on the sit-
uation when we know the existence of an intrinsic notion
of distance for each object we sample. For the applications
of isometric invariant shape (surfaces) recognition, onetm  This section covers the fundamental theory behind the bend-
consider the distance as measured by paths constrained tang invariant recognition framework we develop. We use ba-
travel on the surface of the objects, better referred to as sic concepts of metric spaces, see for example [25] for a de-
geodesic distancd hese have been used in [14] for bending tailed treatment of this and [6, 19, 22, 26, 38, 39] for proofs
invariant recognition in 3D (without the theoretical fowd of Proposition 1 below.

2. Theoretical Foundations
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Definition 1 (Metric Space)A setM is a metric space if for
every pair of pointx, y € M there is a well defined function
dm (x,y) whose values are non-negative real numbers, suc
that (a)dw (x,y) = 0< x =Yy, and (b)dw (x,y) < du(y,2) +

dwm (z x) for anyx,y,z€ M. We calldy : M x M — RT U {0}

the metric or distance. For clarity we will specify a metric
space as the paiM, dy).

Definition 2 (Covering) For a pointx in the metric space
(X,dx) andr > 0, we will denote byBx(x,r) the set{z €
X dx(x,z) <r}. For a subsef of X, we use the notation
Bx (A,r) = UacaBx(a,r). We say that a s&@ C X is anR-
coveringof X if Bx (C,R) = X. We will also frequently say
that the sefA is an-covering ofX if A constitutes, for some
r > 0, a covering oiX by n-balls with centers in points @k

Definition 3 (Isometry) We say the metric spacéX, dx)

and(Y,dy) are isometric when there exists a bijective map-

ping @: X — Y such thatdx (x1,X2) = dy(@(x1),@(x2)) for

all x3,x2 € X. Such apis an isometry betweefX,dx) and

Proposition 1

1. Let(X,dx), (Y,dy) and(Z,dz) be metric spaces then
dgyc(X,Y) <dggc(X,Z) +dggc(Z,Y).

2. Ifdgg¢(X,Y)=0and(X,dx), (Y,dy) are compact metric
spaces, the(X,dx ) and(Y, dy) are isometric.

3. Let{xs,...,xn} C X be aR-covering of the compact met-
ric space(X, dx ), thendgg¢ (X, {X1,...,%n}) <R

4. For compact metric space$X,dx) and (Y,dy),
3ID(X) ~D(Y)| <dggc(X,Y) < 3max(D(X),D(Y)),

where D (X) 2 max, w ex dx (X, X') stands for the
diameter of the metric spacé

5. For bounded metric spacéX,dx) and (Y,dy) (x €
X,yey),

sup= aix (%, W(y)) — v (v, 9(%))|

dSﬂ'f(XaY): Xy 2

inf
P:X—=Y
Py - X

From these properties, we can easily prove the following
important result:

Corollary 1 Let X andY be compact metric spaces. Let
moreoverXm be ar-covering ofX (consisting ofm points)
andY y be ar’-covering ofY (consisting ofn’ points). Then

|dga¢(X,Y) = dggc(Xm, V)| < 141
We can then say that if we could compudgs(,) for

2.1. Intermezzo: The Rigid Isometries Case

h When we are trying to compare two subsgtsandY of

a larger metric spacg, the situation is less complex. The
Gromov-Hausdorff distance boils down to a somewhat sim-
pler Hausdorff distance between the sets. In more detail,
one must computdé';'{g'd (X,Y) 2 infeds (X, @(Y)), where

@ : Z — Zranges over all self-isometries @f If we know

an efficient way of computing igfd% (X, ®(Y)), then this
particular shape recognition problem is well posed Zor

in view of Corollary 1, as soon as we can give guaran-
tees of coverage. This can be done in the case of sub-
manifolds of RY by imposing a probabilistic model on
the samplingsXm of the manifolds, and a bound on the
curvatures of the family of manifolds. In more detail we

can show thaP (dgf (X, Xm) > 6m> ~ ﬁ] asm+ oo, for

Inm

1/k
Om > (W) / , wherek is the dimension ofX, see Sec-

tion §3.2. In the case of surfacesZn= R®, ® sweeps all
rigid isometries, and there exist good algorithms which can
actually solve the problem approximately. For example, in
[18] the authors report an algorithm which for any given
0 < a < 1 can find®q such that

5% (5Xim, @a(Vry)) < (8+00)infdy (X, O(Vyy))

with complexity O(s*logs) where s = maxm,m'). This
computational result, together with our theory, makes the
problem of surface recognition (under rigid motions) well
posed and well justified. In fact, just using Corollary 1 and
the triangle inequality, we obtain a bound between the dis-

tance we want to estimati%f‘"gid (X,Y) and the observed
(computable) valuel%s(Xm, abq(Ymr)),
3 i 3 ~
59 (X, ) — o (5im, Ba (Vi) | <
3
10 (r+1' + i 199X, Y)).

This bound gives a formal justification for the surface recog
nition problem. To the best of our knowledge, this is the first
time that such formality is shown for this very important

problem, both in the particular case just shown and in the
general one addressed next.

2.2. The General Recognition Case

discrete metric spaces which are dense enough samplings.l.he theory introduced by Gromov permits to address the

of the continuous underlying ones, that number would be a
good approximation to what happens between the continu-

ous spaces. Currently, there is no computationally efficien
way to directly computedgs(,) between discrete metric

concept of (metric) proximity between metric spaces.

When dealing with discrete metric spaces, as those aris-
ing from samplings or coverings of continuous ones, it is

spaces in general. This forces us to develop a roundabout convenient to introduce a distance between them, which ul-
path, see §2.2 ahead. Before going into the general case, wetimately is the one we compute for point clouds, see 8§3.4

discuss next the application of our framework to a simpler
but important case.

©

ahead. For discrete metric spaces (both of cardinaljty
(X={Xq,...,%n},dx) and(Y = {y1,...,¥n},dy) we define
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the distance:

dy (X, Y) @)

£ min  max_ Sd(4,;) — d .y )|
where Pn stands for the set of alh x n permutations of
{1,...,n}. A permutatiorrtprovides the correspondence be-
tween the points in the sets, afd (xj,x;j) — dy (yn,Ym)|
gives the pairwise distance/disparity once this correspon
dence has been assumed.

Itis evident that one hatig 4 (X, Y) < dy (X, Y), by virtue
of Property 5 from Proposition 1. Moreover, we easily derive
the following easy result, whose usefulness will be made ev-
ident in 83.

Corollary 2 Let (X,dx) and (Y,dy) be compact metric
spaces. LeK = {x1,...,Xn} C XandY = {y1,...,yn} CY,
such thatBx(X,Rx) = X and By(Y,Ry) = Y (the point
clouds provideRx andRy coverings respectively). Then

with the understanding thatly = dx |y, x and dy =
dy ‘YXY'

Remark 1 This result tells us that if we manage to find cov-
erings ofX andY for which the distancel; is small, then

if the radii defining those coverings are also small, the un-
derlying manifoldsX andY sampled by these point clouds
must be close in a metric sense. Another way of interpret-
ing this is that we will never see a small valued®fX,Y)
wheneverdgy¢(X,Y) is big, a simple statement with prac-
tical value, since we will be looking at values @f, which

depend on the point clouds. This is because, in contrast with

dgg¢(,), the distancely is (approximately) computable from
the point clouds, see §3.4.

We now introduce some additional notation regarding cov-
erings of metric spaces. Given a metric spé¥edy ), the

discrete subs@ty > denotes a set of poinfsy, ..., Xn} C X
such that (1Bx (N, r) = X, and (2)dyx (%, Xj) > swhen-

The following Proposition will also be fundamental for our
computational framework in 83, leading us to work with
point clouds.

Proposition 2 ([19]) Let (X,dx) and(Y,dy) be any pair of
given compact metric spaces andret= dgq(X,Y). Also,

let NY® = {x4,...,xn} be given. Then, give > 0 there
exist points{yy,...,y3} C Y such that

Ly (NYY D, < (n+a)
2. By ({yqvayg}vr_l_z(n_l_a)) =Y
3. dv(y,Y]) >s—2(n+a)fori# .

Remark 3 This proposition first tells us that if the metric
spaces happen to be sufficiently close in a metric sense, then
given as-separated covering on one of them, one can find a
(s'-separated) covering in the other metric space suchdghat
between those coverings (point clouds) is also small. This,
in conjunction with Remark 1, proves that in fact our goal
of trying to determine the metric similarity of metric space
based on discrete observations of them is, so far, a (theoret
cally) well posed problem.

Since by Tychonoff’s Theorem the-fold product space

Y x ... x Y is compact, ifs— 2n > ¢ > 0 for some con-
stantc, by passing to the limit along the subsequences of
{)fl‘,...,yﬁ}{a>0} asa | 0 (if needed) above one can as-

sume the existence of a set of different poif\s, ..., yn} C

¥ such thatdy ({33, -, ¥n}, Ny ) < N, min; dy (%, 9) >
s—2n >0, andBy({y1,...,¥n},r +2n) =Y.

Since we are given the finite sets of points sampled from
each metric space, the existence{®i,...,yn} guaranteed
by Proposition 2 doesn’t seem to make our life a lot easier,
those points could very well not be contained in our given fi-
nite dataset¥XmandY y. The simple idea of using a triangle
inequality (with metriady) to deal with this does not work in
principle, since one can find, for the same underlying space,
two nets whosel, distance is not small, see [7, 31]. Let us

everi # |. In other words, the set provides a coverage and the €xplain this in more detail. Assume that as input we are given
points in the set are not too close to each other (the coveragetWwo finite sets of point&m and Ym on two metric spaces,

is efficient).

Remark 2 For eachr > 0 denote byN(r,X) the minimum
number of closed balls of radiineeded to coveX. Then,
([38], Chapter 10), one can actually show that the class
(M, dgg¢(,)) of all compact metric spaces whose cover-
ing numberN(r, X) are bounded for all (small) positive

by a functionN : (0,C;) — (0, 00) is totally bounded This
means that givep > 0, there exist a finite positive inte-
gerk(p) and compact metric spacss, .. ., X(p) € M such
that for anyX € M one can find € {1,...,k(p)} such that
dgg¢(X, %) < p. This is very interesting from the point of
view of applications since it allows to make the classifica-
tion problem of metric spaces in a well justified way. For ex-
ample, in a system of storage/retrieval of faces/inforamati
manifolds, this concept permits the design of a clustering
procedure for the objects.

X andY, respectively, which we assume to be isometric.
Then the results above ensure that for any gNg-;‘rfﬁ) C Xm

there exists &ly > C Y such thatly (N>, NY) = 0. How-

ever, it is clear that thig\/;) has no reason to be con-
tained in the given point clouf m. The obvious idea would

be try to rely on some kind of independence property on
the sample which represents a given metric space, nhamely
that for any two different covering net$; andN, (of the
same cardinality and with small covering radii)Xfthe dis-
tanced; (N1, Np) is also small. If this were granted, we could

proceed as followsd (N NSy < dg (NS N9 4+
dy (N9 NSy = 04 smallr, 7, s,8), where smallr, 7, s, §)
is small number depending only oyf, sands. The property

we fancy to rely upon was a conjecture proposed by Gromov
in [20] (see also [42]) and disproved [7, 31]. Their coun-

©
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terexamples are for separated net<ZA. It is not known
whether we can construct counterexamples for compact met-
ric spaces, or if there exists a characterization of a faofily

{Z,...,7,} to be chosen from a s@m C Z consisting of
m>> ni.i.d. points sampled uniformly frord. We introduce
the Voronoi diagram’V(Z) on Z, determined by the points

n-points separated nets of a given compact metric space suchin Z (see for example [28]). Theth Voronoi cell of the

that any two of them are at a smdjj-distance which can be
somehow controlled witim. A first step towards this is the
density condition introduced in [8].

If counterexamples do not exist for compact metric
spaces, then the above inequality should be sufficient.-With
out assuming this, we give below an argument which tackles
the problem in a probabilistic way. In other words, we use
a probabilistic approach to boumlj for two different sam-
ples from a given metric space. For this, we pay the price of
assuming the existence of a measure which comes with our
metric space. On the other hand, probabilistic frameworks
are natural for noisy random samples of manifolds as ob-
tained in real applications.

2.3. A Probabilistic Setting for Submanifolds of RY

We now limit ourself to smooth submanifolds of aﬁ;ﬁ’,
although the work can be extended to more general metric
spaces (once a notion of uniform probability measure is in-
troduced).

Let Z be a smooth and compact submanifoldRS¥ with
intrinsic (geodesic) distance functiafz(-,-). We can now
speak more freely about poinfg; }"; sampled uniformly

from X. For any measurable C Z,P(z € C) = a(c) , Where

aZ)
a(B) denotes the area of the measurableéBsetZ. This uni-
form distribution can be replaced by other distributiong, e
that adapt to the geometry of the underlying surface, and the

framework here developed can be extended to those as well.

LetZ={z,...,zn} andZ' = {7, ...,Z,} be two discrete
subsets of (two point clouds). For any permutatione Pn
andi, ] € {17 .- '7n}1 |dZ(Zi,Zj) _dZ(ZlTﬁvz,T[j)‘ < dZ(Zialeﬁ) +
dz(zj, z’ni) and therefore we have

d5(z,7)) 2 min ml?xdz(zk,im) >dy(z,2) (3)

nePn
This is known as th8ottleneck Distancbetweer? andz’,
both being subsets &. This is a possible way of measuring
distance between two different samples of the same metric
space.

Instead of dealing with (3) deterministically, after impos
ing conditions on the underlying metric spacewe derive
probabilistic bounds for the left hand side. We also make
evident that by suitable choices of the relations among the
different parameters, this probability can be chosen dt wil
This result is then used to bound the distadcbetween two
point cloud samples of a given metric space, thereby lead-
ing to the bound for (a quantity related w)(Ny">, Ny-~)
without assuming any kind of proximity of the nets (and
from this, the bounds on the original Gromov-Hausdorff dis-
tance). We consideZ to be fixed, and we assunig’ =

©

Voronoi diagram defined b = {z,...,za} C Z is given
by A £ {z€Z: dz(z,2) < min; 4 dz(z},2)}. We then have
Z = Ui A

We first want to find, amongst points #m, n different
points{z,,...,z,} such that each of them falls inside one
Voronoi cell, {z, € Acfork=1,...,n}. We provide lower
bounds forP (#(AkNZm) > 1, 1<k < n), the probability
of this happening. We can see the event as ifoattected
points inside all the Voronoi cells, a case of theupon Col-
lecting Problemsee [15]: we buy merchandise at a coupon-
giving store until we have collected all possible types of
coupons. The next Lemma presents the basic results we need
about this concept [43].

Lemma 1 (Coupon Collecting) If there aren different
coupons one wishes to collect, such that the probability of
seeing thek-th coupon ispk (let p= (p1,...,pn)), and one
obtains samples of all of them in an independent way then:
The probabilityPg(n,r) of having collected alh coupons
afterr trials is given by

i(l)" (z pk> ) @)
i= K=

where the symboB, means that we consider all possible
combinations of the indices in the expression being eval-
uated. (For exampl&((p1+ P2)") = (P1+ P2)" + (P1 +
p3)' + (P2 +p3))

This result is used to prove the following fundamental
probability bounds:

Ps(nr)=1-% (

Theorem 1 Let (Z,dz) be a smooth compact submani-

fold of RY. Given a covering\y"s of Z and a number
p € (0,1), there exists a positive integen = mn(p) such
that if Zm = {z}r., is a sequence ofi.d. points sam-
pled uniformly from Z, with probability p one can find
a set ofn different indices{is,...,in} C {1,...,m} with

A (NS {2y, 2z }) <.

This result can also be seen the other way around: for
a givenm, the probability of finding the aforementioned
subset inZm is given by (4), forpz defined as follows:

p, = a(A)/a(Z), whereA is thei-th Voronoi cell corre-
sponding Y'Y, 1< i < n. Moreover, since fog € Ny
Bz(Z, 5) C A« then one can lower bound all components of
Pz. In practise one could use as a rule of thumb= ninn
which is the mean waiting time (in the equiprobable case)
until all “coupons” are collected, [15].

Corollary 3 Let X andY compact submanifolds ®RY. Let

NQ_‘,? be a covering oK with separatiors such that for some
positive constant, s— 2dg4¢(X,Y) > c. Then, given any
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numberp € (0,1), there exists a positive integef = m(p)
suchthatiff y = {yk}ﬂil is a sequence ofi.d. points sam-
pled uniformly fromY, we can find, with probability at least
p, a set ofn different indices{i, . ..,in} C {1,...,m'} such

thatdy (NS {Yi,, -, ¥in}) < 3dgac (X, Y) 41

This concludes the main theoretical foundation of our pro-
posed framework. We have shown thigtis a good approxi-
mation of the Gromov-Hausdorff distance between the point
clouds, in a probabilistic sense. Now, we must devise a com-
putational procedure which allows us to actually find the
subset{yi,,...,Vi,} inside the given point clou®&m when
it exists, or at least find it with a large probability. Notath
in practise we can only access metric information, that is,
interpoint distances. Point positions cannot be assumed to
be accessible since that would imply knowing the (isome-
try) transformation that mapX into Y. A stronger result
should take into account possible self-isometrieXdfY),
which would increase the probability of finding a net which
achieves smalil; distance to the fixed one. Next we present
such a computational framework.

3. Computational Foundations

There are a number of issues that must be addressed in or-

der to develop an algorithmic procedure from the theorktica
results previously presented. These are now addressed.

3.1. Initial Considerations

In practise we have as input two independent point clouds
Xm and Y,y each of them composed of i.i.d. points sam-
pled uniformly fromX andY, respectively. We fix a number

n < min(m,m') and construct good coveringl > of X and

N\((f;'s,) of Y. Actually, r,s,r’ ands’ all depend om, and we
should choose such that andr’ are small enough to make
our bounds useful, see the additional computations below.
Details on how we construct these coverings are provided in
Section 83.3.

It is convenient to introduce the following additional no-
tation. Forg € N, let {1 : q} denote the sefl,...,q}; also
for a set of point<Zq = {zk}ﬂzl and forasetof Ku<q
indicesly = {i1,...,iu} C {1:q}, let Zg[lu] denote the set
{Zilv"'aziu}'

Corollary 3 suggests that in practise we compute the sym-
metric expression

dy (X Ym) 2 ®)

N dy(NCY Ydd]), min dy (NS 5l
max (Jncrryﬂm} 7 (Ny mdn]) Incngllr?m} 7 (Ny mlIn])

which depends not only dfimandY y but also on specified

covering netd\y"> andN\/*’. However we prefer to omit
the dependence in the list of arguments to keep the notation
simpler.

Then, we know that with probability at leaB§, (n, m) x
Ps, (n,m') we have (we assum&m to be independent
from Yy) dg(Xm, Yoy ) < 3dgg¢(X,Y) +maxr,r’). More-
over, in some precise senskr(Xm,Yny) upper bounds
dgg¢(Xm, Yny), something we need to require otherwise we
would have solved one problem to gain another, and that im-
plies (Corollary 1) a similar upper bound fdg 4 (X,Y).

In fact, for anyln C {1 :m}
dggc(Xm, Yry) < dgge(Xm, Xm[ln]) +dgg¢(Xmlln], Yoy )

< dga¢(Xm, Xm[In]) + dgg¢ (Xmlln], N\((Tr;.s,))
'

+ dg}((Nyn )’Ym’)

< e (Xm Xumlln]) + (K] Ny S ) 1

Now,

considering In such that dy(Xm[ln], N}
miny,  f1my & (N, Xmlln]), we find dgg¢(Xm, Yoy) <
A% (Xem, Xm{In]) + Ao (Xm, Yy ) 41

Symmetrically, we also obtain forJy such that
oy (Yl n], Ny( ) = ming, {1} dg Ny Y [30])

dgo(Xm, Yiy) < AYc(Yoy, Yoy [3n]) + A (X, V) + 1
Hence, dgg¢(Xm, Yiy) < dg (Xm, Yy)
min (o (X, Xfln]), A (Yo, Yoo o] ) + mar, ).

+

Let Ax = d(Xm, Xm[ln]) andAy = d¥ (Y py, Yy [3n]).
The computational procedure we infer 16:dg(Xm, Ypy)
is “large”we then know that d4¢(X,Y) must also be
“large”with high probability. On the other hand, if
dy (Xm, Yy ) is “small’and min(Ax,Ay) is also “small”
then d;4¢(X,Y) must also be “small”

3.2. Working with Point Clouds

First, all we have is a finite sets of points, point clouds, sam
pled from each metric space, and all our computations must
be based othese observatiorsone. Since we made the as-
sumption of randomness in the sampling (and it also makes
sense in general to model the problem in this way, given the
way shapes are acquired by a scanner for example), we must
relate the number of acquired points to the coverage prop-
erties we wish to have. In other words, and following our
theory above, we would like to say that given a desired prob-
ability p and a radius, there exists a finiten such that the
probability of covering all the metric space witballs (in-
trinsic or not) of radiug centered at those random points

is at leastp. This kind of characterizations are easy to deal
with in the case of submanifolds cﬁd, where thetuning
comes from the curvature bounds available. For this we fol-
low arguments from [32]. LeZ be a smooth and compact
submanifold ofRY of dimensionk. Let Zm C Z consist of
mi.i.d. points uniformly sampled frord. LetK be an upper
bound for the sectional curvaturesfThen we can prove

©
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that for a sequencen — 0 such thatm > '“ﬁm for largem,
d
P (d:I;Q{ (Z,Zm) > rm> ~ l%’l

Then, since one can also prove, [32], that for ary Z,
6 > 0 small,B(z,0) N Z C Bz(z,Ck9d), for some constant
Ck > 1 depending only on metric propertiesd(curvatures

and diameter), we also firial(dfz}((z,zm) > rm) ~ L

This relation gives us some guidance regarding how many
points we must sample in order to have a certain covering ra-

dius, or to estimate the covering radius in termsroMore

precise estimates can be found in the reference mentione
above. The important point to remark is that this kind of re-
lations should hold for the family of shapes we want to work

with, therefore, once given bounds on the curvatures and di-

using the construction discussed above. Choose randomly
one pointp; € Zmand considef’; = {p;}. Run the proce-
dureFPSuntil n— 1 other points have been added to the set
of points. Compute nowh = maxycz,,dz (0, Pn). Then, also

with probability pr,m, Pn is a(r + rn)-covering net ofZ with
separatiors,, the resulting separation of the net. Following

this, we now use the notatidd, ™%,

We use a graph based distance computation following [3],
or the exact distance, which can be computed only for certain
examples (spheres, planes). We could also use the tecknique

ddeveloped for triangular surfaces in [27], or, being this th

optimal candidate, the work on geodesics on (hoisy) point
clouds developed in [32].

ameters which characterize the family, one can determine a 3.4. Additional Implementation Details

precise probabilistic covering relation for it. We leave th
exploitation of this idea for future work.

Given the natural number< m(or eventuallys > 0), we
use the procedure described in §3.3 below to fifabints
from Zmwhich constitute a covering &nm of the given car-
dinality n (or of the given separatiog) and of a resulting

radiusr. We denote this set by(zrr‘:)n CZm

3.3. Finding Coverings

In order to find the coverings, we use the well known Far-
thest Point SamplingHPS) procedure, which we describe
next. Suppose we have a dense samglirgof the smooth
and compact submanifold & (Z,dz) as interpreted by the
discussion above. We want to simplify our sampling and ob-

In this section we conclude the details on the implementa-
tion of the framework here proposed. The first step of the
implementation is the computation df and subsequently
dg, which from the theory we described before, bounds the
Gromov-Hausdorff distance.

We have implemented a simple algorithm. Considering
the matrix of pairwise geodesic distances between points of
Xm, we need to determine whether there exists a submatrix
of the whole distance matrix correspondingit@ which has
a smalldy distance to the corresponding matrix of a given
N\((Tr;'s’). We select this latter net as the result of applying the
FPSprocedure to obtain a subsample consisting pbints,
where the first two points are selected to be at maximal dis-
tance from each other. To fix notation, ¥t = {x1,...,Xm}

andNY ) = {y;,.....yj,}. We then use the following al-

tain a well separated covering net of the space. We also want gorithm.

to estimate the covering radius and separation of our rist. It

important to obtain subsets which retain as best as possible

the metric information contained in the initial point cloud
in order to make computational tasks more treatable without
sacrificing precision.

We first show a procedure to sample the whole space
Fix nthe number of points we want to have in our simplified
point cloud®n. We buildPn, recursively. GiverP,_ 1, we se-
lect p € Z such thatdz(p, Pn) = maxezdz(z,Pn—1) (here

we consider of course, geodesic distances). There might ex-

ist more than one point which achieves the maximum, we
either consider all of them or randomly select one and add it

to Pn_1. This subsampling procedure has been studied and

efficiently implemented in [34] for the case of surfaces rep-
resented as point clouds.

Let us now assume that the discrete metric spzgedz)
is a good random sampling of the underlyifg dz) in the
sense thalls(Z, Zm) < r with probability prm, as discussed
in Section 83.2. We then want to simplif§m in order to
obtain a sefP with n points which is both a good subsam-
pling and a well separated net &f We want to use oun

(k = 1,2) Choosex;, and x;, such that|dx (X, X,) —
dy (Yj;.Yj,)| is minimized.
(k > 2) Let x,,, € Xm be such thate.1(%,,,)

Miny<i <m&e1(Xi;) where &r1(%)
maxg <r <k |dx (X, X, ) — Oy (Y1, Yie)l-

We stop whem points, {xi,, X, . .., X, } have been selected,
and therefore a distance submattidx (Xi,,%i, )0 y_1, |

>l

7]

obtained. Since we can write ({i, ..., %, },N/,°)) =
1 maxg <k<nmaxg<t<k—1/dx (%, %) Ay (Yje: Vi)

%maxlgkgnek(xir) we then see that with our algorithm we
are minimizing the error point-wise.

Of course, we now use the same algorithm to compute the
other half ofds. This algorithm is not computationally opti-
mal. We are currently studying computational improvements
along with error bounds for the results provided by the algo-
rithms.

4. Examples
We now present experiments that confirm the validity of the

sampled points in the best possible way. We are then led to theoretical and computational framework introduced ir pre

©
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vious sections. In the future, we plan to make these experi-

- ) ' - n\m 500 900 1500 1900

ments more rigorous, including concepts of hypothesis test

H : s . : 5 0.036793 0015786 0018160 00074027
ing. As a S|mpI|f|cat|9n, for our experiments we have oply 25 0041845 0050005 0026821 0031019
computeddy neglecting the other terms (see 83.1) which 45 Q081975 0042198 0038990 (0036376
would provide a estimative of the Gromov-Hausdorff prox- 65 0068935 0052482 0035718 (0031512

. 85 0077863 0038660 0036009 0036894
imity between the shapes.

We complemented the more complex data (as pregented mm 500 900 1500 1000

ith si . [T T
below) with simple shapes: (1) A plangy = | V8’ \/é] 5 0013282 0013855 (0010935 0013558
and (2) A sphereS: {X c Rd . ||X|| — 1}_ 25 0082785 0043617 0033095 0033592
45 0074482 0067096 0057161 0040727
We first test our framework wheX andY are isometric. 65 0079456 0076762 0049503 0043405

) . . 85 0083577 0083344 0058094 0054144
We first consideX =Y and see whether we make the right

decision based on the discrete (random) measurements. Let

. . 500 1000 1500 2000
XmandYmbe two independent sets composedandepen- mm
dent, uniformly distributed random points & In the case 10 1839x 10*1 1.902x 10*1 1.931x 10*1 1.942x 10*1
H H H H 25 1834x 10~ 1908x 10~ 1920x 10~ 1944x 10~
of Fhe sphere we generated this uniformly distributed gampl 0 1o16x10-1  1896x10-1 1osx10-1 19334 10-1
points using the method of Muller, see [35]. We consider 75  1873x 101  1882x10~!  1936x 10~1  1939x 10~1
to be either the planByr or the spheres as defined above. 100 1846x 1071 1913x 1071  1924x 1071  1936x 107!

Givenn, from Xy andYm, and using th&PSprocedure, we
constructNx, , andNy, n (we omit the supraindices since ~ Table 1: Table with values of ¢ for a plane (top), a sphere
we won't use the values of covering radius and separation), (middle), and a plane against a sphere (bottom).

and look for a metric match insidém andY m, respectively,

following the algorithm described in §3.4 for the computa-

tion of d#(Xm, Ym). (Recall that actuallyds (Xm, Ym) de-

pends om, see its definition (5).) For each dataset we tested doesn’t get confused by bends. Moreover, the distances be-
for values ofme M = {500,600....,2000; andn € N = tween a given object and the possible bends of another one

{5,10,15,...,100}, and obtained the results reported below.  are very similar, as it should be for isometric invariantgc
In Table 1 we show the values dfy for selected values of nition.

mandn. As expected, the values df; are small compared
to D (Pr) = D(S) = m(see below for the corresponding val-
ues when comparing non-isometric shapes). In Figure 1 (first 5. Conclusions

two figures) we show a pseudocolor representation of the re- ] ) ]
sults fords. A theoretical and computational framework for comparing

) manifolds (metric spaces) given by point clouds was intro-
~ We now proceed to compare shapes that are not isomet- 4ceq in this paper. The theoretical component is based on
ric, starting withX = Pr (a plane) and’ = S(a sphere). In 1o Gromov-Hausdorff distance, which has been extended
this case we expect to be able to detect, based on the finite 304 embedded in a probabilistic framework to deal with

point clogds, thatly is large. Table 1 (see .also IQSt tYVO fig- point clouds and computable distances. Examples support-
ures of Figure 1), shows the results of a simulation in which ing this theory were provided.

we compared the sphe&and the planéy, varying the net

sizes and the total number of points uniformly sampled from  We are currently working on improving the computational
them. The experiments have been repeated 100 times to pro-efficiency of the algorithm, performing additional experi-
duce this table, and the reported values consist of the meanments, and in particular, comparing high dimensional point
of these 100 tests, as well as their maximum (the correspond- clouds with data from image sciences and neuroscience. This
ing deviation was 72 x 10~2). As expected, the values are ~ as well as the proofs of the theorems in this paper will be
larger than when comparing plane against plane or sphere published elsewhere.

against sphere.

We conclude the experiments with real (more complex)
data. We have 4 sets of shapes (the datasets were kindly
provided to us by Prof. Kimmel and his group at the Tech- We thank Prof. Omar Gil, Prof. Ron Kimmel and Prof. Ofer
nion), each one with their corresponding bends. We ran the Zeitouni for stimulating conversations on the subject o th
algorithmN = 6 times withn = 70, m = 2000, using the paper. A. Elad and R. Kimmel provided valuable data for the
4 nearest neighbors to compute the geodesic distance usingexperiments. This work is supported in part by the Office of
thei somap engine. The data description and results are re- Naval Research, the National Science Foundation, and the
ported in Table 2. We note not only that the technique is able National Institutes of Health. The work of FM is partly sup-
to discriminate between different object, but as expedted, ported by CSIC-Uruguay.
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Figure 1: First two figures: Graphic visualization of the results faetplane R (on the left), and the sphere S (on the right). Red correspond
to low values of ¢ and blue larger values. On the horizontal axis, from leftight we have increasing values of m, while on the verticad axi
n increases going upwards. Observe how the distance inesdas fixed m as n increases in accordance with the fact thatave less freedom
to choose the n points from the given Tiird figure: Graphic visualization of the results for the comparisoriviieen the plane Pand the
Sphere S. Red corresponds to low valuessobdd blue larger values. On the horizontal axis, from leftight we find increasing values of m,
and on the vertical axis, n increases going upwarésurth figure: Plot of the values of g obtained against n, the size of tR€S net, with
m= 2000 (This is a color figure.)

Model . . . . . . . . .

1939 1929 1258 1258 3121 3121 7190 7190 7190
. <107* * * * * * * * *
. 2887 2887 * X % % « « %
. 2887 2887 805x 10~ 2 % % % « « %
. 59x 101 59x 101 3477 3459 * * * * %
. 595x 10~ 595x 10~1 3482 3464 112x 1072 * * * %
. 419%x 10t 419x 101! 331 329 162x 1071 159x 1071 x * *
. 425%x 1071 425x 1071 331 329 156x 101 115x 107!  553x 10”2 * *
. 416x 1001 416x 1071 3.30 328 165x 1071  162x10°! 485x1072 577x 102 *
Diameters 1223 1223 6996 6960 61x 102 68x 1072 386x10°1 373x10°! 391x 107t

Figure 2: Comparison results for the complex objects. The numberiatgpper model are indicated in the first row under the
corresponding figure.



