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Abstract

Point clouds are one of the most primitive and fundamental surface representations. A popular source of point
clouds are three dimensional shape acquisition devices such as laser range scanners. Another important field
where point clouds are found is in the representation of high-dimensional manifolds by samples. With the increas-
ing popularity and very broad applications of this source ofdata, it is natural and important to work directly
with this representation, without having to go to the intermediate and sometimes impossible and distorting steps
of surface reconstruction. A geometric framework for comparing manifolds given by point clouds is presented
in this paper. The underlying theory is based on Gromov-Hausdorff distances, leading to isometry invariant and
completely geometric comparisons. This theory is embeddedin a probabilistic setting as derived from random
sampling of manifolds, and then combined with results on matrices of pairwise geodesic distances to lead to a
computational implementation of the framework. The theoretical and computational results here presented are
complemented with experiments for real three dimensional shapes.

1. Introduction

Point clouds are one of the most primitive and fundamental
manifold representations. One of the most popular sources
of point clouds are 3D shapes acquisition devices, such as
laser range scanners, with applications in many disciplines.
These scanners provide in general raw data in the form of
(noisy) unorganized point clouds representing surface sam-
ples. With the increasing popularity and very broad appli-
cations of this source of data, it is natural and important to
work directly with this representation, without having to go
to the intermediate step of fitting a surface to it (step that can
add computational complexity and introduce errors). See for
example [4, 11, 13, 16, 21, 29, 30, 36, 37] for a few of the
recent works with this type of data. Point clouds can also be
used as primitives for visualization, e.g., [5, 21, 40], as well
as for editing [44].

Another important field where point clouds are found
is in the representation of high-dimensional manifolds by
samples (see for example [2, 24, 41]). This type of high-
dimensional and general co-dimension data appears in al-
most all disciplines, from computational biology to image
analysis to financial data. Due to the extremely high dimen-

sionality in this case, it is impossible to perform manifold
reconstruction, and the task needs to be performed directly
on the raw data, meaning the point cloud.

The importance of this type of shape representation is
leading to a recent increase in the fundamental study of point
clouds [1, 2, 9, 12, 17, 32, 33, 41] (see also the papers men-
tioned in the first paragraph and references therein). The
goal of this work,y inspired in part by [14] and the tools
developed in [32, 41], is to develop a theoretical and com-
putational framework to compare shapes (Riemannian man-
ifolds) represented as point clouds.

As we have mentioned, a variety of objects can be repre-
sented as point clouds inIRd. One is often presented with the
problem of deciding whether two of those point clouds, and
their corresponding underlying objects or manifolds, repre-
sent the same geometric structure or not (object recognition
and classification). We are concerned with questions abouty This is a short version of the work “A Theoretical and Computa-
tional Framework for Isometry Invariant Recognition of Point Cloud
Data,” by Mémoli and Sapiro, submitted, and also IMA and DTC
Reports.
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the underlying unknown structures (objects), which need to
be answered based on discrete and finite measures taken be-
tween their respective point clouds. In greater generality,
we wonder what is the structural information we can gather
about the object itself by exploring the point cloud which
represents it.

Multidimensional scaling (MDS) for example has been
used to approach in part this general problem of object
recognition. Procedures based on MDS require that one
first computes the interpoint distance matrix for all the
members of the point cloud (or for a representative selected
sub-set of them). If one is interested in comparing two
different objects, the problem is reduced to a comparison
between the corresponding interpoint distance matrices. If
the distance we use is the Euclidean one, these matrices
only provide information about their rigid similarity, and
(assuming they have the same size) if they are equal (up
to a permutations of the indices of all elements), we can
only conclude that there exists a rigid isometry (rotation,
reflection, translation) from one point cloud to the other.
After adding compactness considerations, we can also say
something about the true underlying (sampled) objects.
Being a bit more rigorous, let the point cloudsPi � Si be
εi-coverings of the surfacesSi in IR3, for i = 1;2 (this will be
formally defined below). Then assuming there exists a rigid
isometryτ : IR3 ! IR3 such thatτ(P1) = P2, we can bound
the Hausdorff distance (which we will also formally define
below) betweenτ(S1) and S2 as follows:dH(τ(S1);S2) �
dH(τ(S1);τ(P1)) + dH(τ(P1);P2) + dH(P2;S2) =
dH(S1;P1) + dH(τ(P1);P2) + dH(P2;S2) � ε1 + 0+ ε2.
And of course the same kind of bound holds for the Haus-
dorff distance between the points clouds once we assume
the underlying continuous objects are rigidly isometric, see
§2.1 below.

If S1 and S2 happen to be isometric, thereby allowing
for bends and not just rigid transformations, we wonder
whether we will be able to detect this by looking at (finite)
point cloudsPi sampled from eachSi . This problem is much
harder to tackle. We approach this problem through a proba-
bilistic model, in part because in principle, there might exist
even for the same object, two different samplings that look
quite dissimilar (under the discrete measures we can cope
with computationally), for arbitrarily fine scales (see below).

With the help of the theory presented here we recast these
considerations in a rigorous framework and address the case
where the distances considered to characterize each point
cloud (object) are more general. We concentrate on the sit-
uation when we know the existence of an intrinsic notion
of distance for each object we sample. For the applications
of isometric invariant shape (surfaces) recognition, one must
consider the distance as measured by paths constrained to
travel on the surface of the objects, better referred to as
geodesic distance. These have been used in [14] for bending
invariant recognition in 3D (without the theoretical founda-

tions here introduced) and in [17, 41] to detect intrinsic sur-
face dimensionality.

In this paper, the fundamental approach used for isomet-
ric invariant recognition is derived then from theGromov-
Hausdorff distance[19], which we now present. If two sets
(objects)X andY are subsets of a common bigger metric
space(Z;dZ), and we want to compareX toY in order to de-
cide whether they are/represent the same object or not, then
an idea one might come up with very early on is that of com-
puting theHausdorff distancebetween them (see for exam-
ple [10, 23] for an extensive use of this for shape statistics
and image comparison):

dZH(X;Y)4= max(sup
x2X

dZ(x;Y);sup
y2Y

dZ(y;X))
But, what happens if we want to allow for certain defor-
mations to occur and still decide that the manifolds are the
same? More precisely, we are interested in being able to find
a distance between metric spaces that isblind to isomet-
ric transformations (“bends”). This will permit a truly ge-
ometric comparison between the manifolds, independently
of their embedding and bending position. Following [19],
we introduce theGromov-Hausdorff distancebetween Met-
ric Spaces

dGH(X;Y)4= inf
Z; f ;gdZH(X;Y)

where f : X ! Z andg : Y ! Z are isometric embeddings
(distance preserving) into the metric spaceZ. It turns out that
this measure of metric proximity between metric spaces is
well suited for our problem at hand and will allow us to give
a formal framework to address the isometric shape recogni-
tion problem (for point cloud data). However, this notion of
distance between metric spaces encodes the “metric” dispar-
ity between the metric spaces, at first glance, in a computa-
tionally impractical way. We derive below new results that
connect this notion of disparity with other more computa-
tionally appealing expressions.

Since we have in mind specific applications and scenar-
ios such as those described above, and in particular surfaces
and submanifolds of some Euclidean spaceIRd, we assume
that we are given as input pointsdenselysampled from the
metric space (surface, manifold). This will manifest itself in
many places in the theory described below. We will present
a way of computing a discrete approximation (or bound) to
dGH(; ) based on the metric information provided by these
point clouds. Due to space limitations, the proofs are omitted
and will be reported elsewhere.

2. Theoretical Foundations

This section covers the fundamental theory behind the bend-
ing invariant recognition framework we develop. We use ba-
sic concepts of metric spaces, see for example [25] for a de-
tailed treatment of this and [6, 19, 22, 26, 38, 39] for proofs
of Proposition 1 below.
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Definition 1 (Metric Space)A setM is a metric space if for
every pair of pointsx; y2M there is a well defined function
dM(x;y) whose values are non-negative real numbers, such
that (a)dM(x;y) = 0, x= y, and (b)dM(x;y)� dM(y;z)+
dM(z;x) for anyx;y;z2M. We calldM : M�M! IR+[f0g
the metric or distance. For clarity we will specify a metric
space as the pair(M;dM).
Definition 2 (Covering) For a pointx in the metric space(X;dX) and r > 0, we will denote byBX(x; r) the setfz2
X : dX(x;z) < rg. For a subsetA of X, we use the notation
BX(A; r) = [a2ABX(a; r). We say that a setC� X is anR-
coveringof X if BX(C;R) = X. We will also frequently say
that the setA is an-covering ofX if A constitutes, for some
r > 0, a covering ofX by n-balls with centers in points ofA.

Definition 3 (Isometry) We say the metric spaces(X;dX)
and(Y;dY) are isometric when there exists a bijective map-
ping φ : X ! Y such thatdX(x1;x2) = dY(φ(x1);φ(x2)) for
all x1;x2 2 X. Such aφ is an isometry between(X;dX) and(Y;dY).
Proposition 1

1. Let(X;dX), (Y;dY) and(Z;dZ) be metric spaces then

dGH(X;Y)� dGH(X;Z)+dGH(Z;Y):
2. If dGH(X;Y) = 0 and(X;dX), (Y;dY) are compact metric

spaces, then(X;dX) and(Y;dY) are isometric.
3. Letfx1; : : :;xng �X be aR-covering of the compact met-

ric space(X;dX), thendGH(X;fx1; : : :;xng)�R.
4. For compact metric spaces(X;dX) and (Y;dY),

1
2 jD (X)�D (Y)j � dGH(X;Y)� 1

2 max(D (X) ;D (Y)),
where D (X) 4= maxx;x02X dX(x;x0) stands for the
diameter of the metric spaceX.

5. For bounded metric spaces(X;dX) and (Y;dY) (x 2
X; y2Y),

dGH(X;Y)= inf
φ : X ! Y
ψ : Y ! X

sup
x;y 1

2
jdX(x;ψ(y))�dY(y;φ(x))j

From these properties, we can easily prove the following
important result:

Corollary 1 Let X and Y be compact metric spaces. Let
moreoverXm be ar-covering ofX (consisting ofm points)
andYm0 be ar 0-covering ofY (consisting ofm0 points). ThenjdGH(X;Y)�dGH(Xm;Ym0)j � r + r 0

We can then say that if we could computedGH(; ) for
discrete metric spaces which are dense enough samplings
of the continuous underlying ones, that number would be a
good approximation to what happens between the continu-
ous spaces. Currently, there is no computationally efficient
way to directly computedGH(; ) between discrete metric
spaces in general. This forces us to develop a roundabout
path, see §2.2 ahead. Before going into the general case, we
discuss next the application of our framework to a simpler
but important case.

2.1. Intermezzo: The Rigid Isometries Case

When we are trying to compare two subsetsX and Y of
a larger metric spaceZ, the situation is less complex. The
Gromov-Hausdorff distance boils down to a somewhat sim-
pler Hausdorff distance between the sets. In more detail,

one must computedZ;rigidGH (X;Y)4= infΦ dZH(X;φ(Y)), where
Φ : Z ! Z ranges over all self-isometries ofZ. If we know
an efficient way of computing infΦ dZH(X;Φ(Y)), then this
particular shape recognition problem is well posed forZ,
in view of Corollary 1, as soon as we can give guaran-
tees of coverage. This can be done in the case of sub-
manifolds of IRd by imposing a probabilistic model on
the samplingsXm of the manifolds, and a bound on the
curvatures of the family of manifolds. In more detail we

can show thatP
�

dIRdH (X;Xm)> δm

� ' 1
lnm asm" 1, for

δm ? � lnm
m

�1=k
, wherek is the dimension ofX, see Sec-

tion §3.2. In the case of surfaces inZ = IR3, Φ sweeps all
rigid isometries, and there exist good algorithms which can
actually solve the problem approximately. For example, in
[18] the authors report an algorithm which for any given
0< α < 1 can findbΦα such that

dIR3H (Xm; bΦα(Ym0))� (8+α) inf
Φ

dIR3H (Xm;Φ(Ym0))
with complexity O(s4 logs) where s = max(m;m0). This
computational result, together with our theory, makes the
problem of surface recognition (under rigid motions) well
posed and well justified. In fact, just using Corollary 1 and
the triangle inequality, we obtain a bound between the dis-

tance we want to estimatedIR3;rigidH (X;Y) and the observed

(computable) valuedIR3H (Xm; bΦα(Ym0)),���dIR3;rigidH (X;Y)�dIR3H (Xm; bΦα(Ym0))����
10
�

r + r 0 + dIR3;rigidH (X;Y)� :
This bound gives a formal justification for the surface recog-
nition problem. To the best of our knowledge, this is the first
time that such formality is shown for this very important
problem, both in the particular case just shown and in the
general one addressed next.

2.2. The General Recognition Case

The theory introduced by Gromov permits to address the
concept of (metric) proximity between metric spaces.

When dealing with discrete metric spaces, as those aris-
ing from samplings or coverings of continuous ones, it is
convenient to introduce a distance between them, which ul-
timately is the one we compute for point clouds, see §3.4
ahead. For discrete metric spaces (both of cardinalityn)(X= fx1; : : :;xng;dX) and(Y= fy1; : : :;yng;dY) we define
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the distance:

dI(X;Y)4= min
π2Pn

max
1�i; j�n

1
2
jdX(xi ;x j)�dY(yπi ;yπ j )j (1)

wherePn stands for the set of alln� n permutations off1; : : : ;ng. A permutationπ provides the correspondence be-
tween the points in the sets, andjdX(xi ;x j)� dY(yπi ;yπ j )j
gives the pairwise distance/disparity once this correspon-
dence has been assumed.

It is evident that one hasdGH(X;Y)� dI(X;Y),by virtue
of Property 5 from Proposition 1. Moreover, we easily derive
the following easy result, whose usefulness will be made ev-
ident in §3.

Corollary 2 Let (X;dX) and (Y;dY) be compact metric
spaces. LetX= fx1; : : :;xng � X andY= fy1; : : :;yng �Y,
such thatBX(X;RX) = X and BY(Y;RY) = Y (the point
clouds provideRX andRY coverings respectively). Then

dGH(X;Y)�RX +RY +dI(X;Y) (2)

with the understanding thatdX = dX jX�X and dY =
dY jY�Y.

Remark 1 This result tells us that if we manage to find cov-
erings ofX andY for which the distancedI is small, then
if the radii defining those coverings are also small, the un-
derlying manifoldsX andY sampled by these point clouds
must be close in a metric sense. Another way of interpret-
ing this is that we will never see a small value ofdI(X;Y)
wheneverdGH(X;Y) is big, a simple statement with prac-
tical value, since we will be looking at values ofdI, which
depend on the point clouds. This is because, in contrast with
dGH(; ), the distancedI is (approximately) computable from
the point clouds, see §3.4.

We now introduce some additional notation regarding cov-
erings of metric spaces. Given a metric space(X;dX), the

discrete subsetN(r;s)
X;n denotes a set of pointsfx1; : : :;xng � X

such that (1)BX(N(r;s)
X;n ; r) = X, and (2)dX(xi ;x j)� s when-

everi 6= j . In other words, the set provides a coverage and the
points in the set are not too close to each other (the coverage
is efficient).

Remark 2 For eachr > 0 denote byN(r;X) the minimum
number of closed balls of radiir needed to coverX. Then,
([38], Chapter 10), one can actually show that the class(M;dGH(; )) of all compact metric spacesX whose cover-
ing numberN(r;X) are bounded for all (small) positiver
by a functionN : (0;C1)! (0;1) is totally bounded. This
means that givenρ > 0, there exist a finite positive inte-
gerk(ρ) and compact metric spacesX1; : : :;Xk(ρ) 2M such
that for anyX 2M one can findi 2 f1; : : : ;k(ρ)g such that
dGH(X;Xi) � ρ. This is very interesting from the point of
view of applications since it allows to make the classifica-
tion problem of metric spaces in a well justified way. For ex-
ample, in a system of storage/retrieval of faces/information
manifolds, this concept permits the design of a clustering
procedure for the objects.

The following Proposition will also be fundamental for our
computational framework in §3, leading us to work with
point clouds.

Proposition 2 ([19]) Let (X;dX) and(Y;dY) be any pair of
given compact metric spaces and letη = dGH(X;Y). Also,

let N(r;s)
X;n = fx1; : : :;xng be given. Then, givenα > 0 there

exist pointsfyα
1 ; : : :;yα

ng �Y such that

1. dI(N(r;s)
X;n ;fyα

1 ; : : :;yα
ng)� (η+α)

2. BY
�fyα

1 ; : : :;yα
ng; r +2(η+α)�=Y

3. dY(yα
i ;yα

j )� s�2(η+α) for i 6= j .

Remark 3 This proposition first tells us that if the metric
spaces happen to be sufficiently close in a metric sense, then
given as-separated covering on one of them, one can find a
(s0-separated) covering in the other metric space such thatdI
between those coverings (point clouds) is also small. This,
in conjunction with Remark 1, proves that in fact our goal
of trying to determine the metric similarity of metric spaces
based on discrete observations of them is, so far, a (theoreti-
cally) well posed problem.
Since by Tychonoff’s Theorem then-fold product space
Y� : : :�Y is compact, ifs� 2η � c > 0 for some con-
stantc, by passing to the limit along the subsequences of�

yα
1 ; : : :;yα

n
	fα>0g as α # 0 (if needed) above one can as-

sume the existence of a set of different pointsfȳ1; : : :; ȳng �
Y such thatdI(fȳ1; : : :; ȳng;N(r;s)

X;n )� η, mini 6= j dY(ȳi ; ȳ j)�
s�2η > 0, andBY(fȳ1; : : :; ȳng; r +2η) =Y.

Since we are given the finite sets of points sampled from
each metric space, the existence offȳ1; : : :; ȳng guaranteed
by Proposition 2 doesn’t seem to make our life a lot easier,
those points could very well not be contained in our given fi-
nite datasetsXm andYm0. The simple idea of using a triangle
inequality (with metricdI) to deal with this does not work in
principle, since one can find, for the same underlying space,
two nets whosedI distance is not small, see [7, 31]. Let us
explain this in more detail. Assume that as input we are given
two finite sets of pointsXm andYm on two metric spaces,
X and Y, respectively, which we assume to be isometric.

Then the results above ensure that for any givenN(r;s)
X;n �Xm

there exists aN(r;s)
Y;n �Y such thatdI(N(r;s)

X;n ;N(r;s)
Y;n ) = 0. How-

ever, it is clear that thisN(r;s)
Y;n has no reason to be con-

tained in the given point cloudYm. The obvious idea would
be try to rely on some kind of independence property on
the sample which represents a given metric space, namely
that for any two different covering netsN1 andN2 (of the
same cardinality and with small covering radii) ofX the dis-
tancedI(N1;N2) is also small. If this were granted, we could

proceed as follows:dI(N(r;s)
X;n ;N(r̂;ŝ)

Y;n ) � dI(N(r;s)
X;n ;N(r;s)

Y;n ) +
dI(N(r̂;ŝ)

Y;n ;N(r;s)
Y;n ) = 0+ small(r; r̂;s; ŝ); where small(r; r̂;s; ŝ)

is small number depending only onr, r̂, sandŝ. The property
we fancy to rely upon was a conjecture proposed by Gromov
in [20] (see also [42]) and disproved [7, 31]. Their coun-
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terexamples are for separated nets inZZ2. It is not known
whether we can construct counterexamples for compact met-
ric spaces, or if there exists a characterization of a familyof
n-points separated nets of a given compact metric space such
that any two of them are at a smalldI-distance which can be
somehow controlled withn. A first step towards this is the
density condition introduced in [8].

If counterexamples do not exist for compact metric
spaces, then the above inequality should be sufficient. With-
out assuming this, we give below an argument which tackles
the problem in a probabilistic way. In other words, we use
a probabilistic approach to bounddI for two different sam-
ples from a given metric space. For this, we pay the price of
assuming the existence of a measure which comes with our
metric space. On the other hand, probabilistic frameworks
are natural for noisy random samples of manifolds as ob-
tained in real applications.

2.3. A Probabilistic Setting for Submanifolds ofIRd

We now limit ourself to smooth submanifolds of anyIRd,
although the work can be extended to more general metric
spaces (once a notion of uniform probability measure is in-
troduced).

Let Z be a smooth and compact submanifold ofIRd with
intrinsic (geodesic) distance functiondZ(�; �). We can now
speak more freely about pointsfzigm

i=1 sampled uniformly

from X. For any measurableC� Z, P(zi 2C) = a(C)
a(Z) , where

a(B) denotes the area of the measurable setB� Z. This uni-
form distribution can be replaced by other distributions, e.g.,
that adapt to the geometry of the underlying surface, and the
framework here developed can be extended to those as well.

LetZ= fz1; : : :;zng andZ0= fz01; : : :;z0ng be two discrete
subsets ofZ (two point clouds). For any permutationπ 2 Pn

andi; j 2 f1; : : : ;ng, jdZ(zi ;zj)�dZ(z0πi ;z0π j )j � dZ(zi ;z0πi )+
dZ(zj ;z0π j ) and therefore we have

dZB(Z;Z0)4= min
π2Pn

max
k

dZ(zk;z0πk)� dI(Z;Z0) (3)

This is known as theBottleneck DistancebetweenZandZ0,
both being subsets ofZ. This is a possible way of measuring
distance between two different samples of the same metric
space.

Instead of dealing with (3) deterministically, after impos-
ing conditions on the underlying metric spaceZ, we derive
probabilistic bounds for the left hand side. We also make
evident that by suitable choices of the relations among the
different parameters, this probability can be chosen at will.
This result is then used to bound the distancedI between two
point cloud samples of a given metric space, thereby lead-

ing to the bound for (a quantity related to)dI(N(r;s)
X;n ;N(r̂;ŝ)

Y;n )
without assuming any kind of proximity of the nets (and
from this, the bounds on the original Gromov-Hausdorff dis-
tance). We considerZ to be fixed, and we assumeZ0 =

fz01; : : :;z0ng to be chosen from a setZm� Z consisting of
m� n i.i.d. points sampled uniformly fromZ. We introduce
the Voronoi diagramV(Z) on Z, determined by the points
in Z (see for example [28]). Thei-th Voronoi cell of the
Voronoi diagram defined byZ= fz1; : : :;zng � Z is given

by Ai
4= fz2 Z : dZ(zi ;z)< min j 6=i dZ(zj ;z)g. We then have

Z =Sn
k=1Ak.

We first want to find, amongst points inZm, n different
pointsfzi1 ; : : :;zing such that each of them falls inside one
Voronoi cell,fzik 2 Ak for k = 1; : : :;ng. We provide lower
bounds forP(#(Ak\Zm)� 1; 1� k� n), the probability
of this happening. We can see the event as if wecollected
points inside all the Voronoi cells, a case of theCoupon Col-
lecting Problem, see [15]: we buy merchandise at a coupon-
giving store until we have collected all possible types of
coupons. The next Lemma presents the basic results we need
about this concept [43].

Lemma 1 (Coupon Collecting) If there aren different
coupons one wishes to collect, such that the probability of
seeing thek-th coupon ispk (let ~p = (p1; : : :; pn)), and one
obtains samples of all of them in an independent way then:
The probabilityP~p(n; r) of having collected alln coupons
afterr trials is given by

P~p(n; r) = 1�Sn

 
n

∑
j=2

(�1) j

 
n

∑
k= j

pk

!n!
(4)

where the symbolSn means that we consider all possible
combinations of then indices in the expression being eval-
uated. (For exampleS3((p1 + p2)r) = (p1 + p2)r + (p1 +
p3)r +(p2+ p3)r .)

This result is used to prove the following fundamental
probability bounds:

Theorem 1 Let (Z;dZ) be a smooth compact submani-

fold of IRd. Given a coveringN(r;s)
Z;n of Z and a number

p 2 (0;1), there exists a positive integerm = mn(p) such
that if Zm = fzkgm

k=1 is a sequence ofi:i:d: points sam-
pled uniformly from Z, with probability p one can find
a set ofn different indicesfi1; : : :; ing � f1; : : :;mg with

dZB(N(r;s)
Z;n ;fzi1; : : :;zing)� r.

This result can also be seen the other way around: for
a given m, the probability of finding the aforementioned
subset inZm is given by (4), for~pZ defined as follows:
pi

Z = a(Ai)=a(Z), whereAi is the i-th Voronoi cell corre-

sponding toN(r;s)
Z;n , 1� i � n. Moreover, since forbzk 2 N(r;s)

Z;n
BZ(bzk; s

2)� Ak then one can lower bound all components of~pZ. In practise one could use as a rule of thumbm' nlnn
which is the mean waiting time (in the equiprobable case)
until all “coupons” are collected, [15].

Corollary 3 Let X andY compact submanifolds ofIRd. Let

N(r;s)
X;n be a covering ofX with separationssuch that for some

positive constantc, s� 2dGH(X;Y) > c. Then, given any

c




Mémoli and Sapiro / Comparing Point Clouds

numberp2 (0;1), there exists a positive integerm0 = m0n(p)
such that ifYm0 = fykgm0

k=1 is a sequence ofi:i:d: points sam-
pled uniformly fromY, we can find, with probability at least
p, a set ofn different indicesfi1; : : :; ing � f1; : : : ;m0g such

thatdI(N(r;s)
X;n ;fyi1; : : :;ying)� 3dGH(X;Y)+ r.

This concludes the main theoretical foundation of our pro-
posed framework. We have shown thatdI is a good approxi-
mation of the Gromov-Hausdorff distance between the point
clouds, in a probabilistic sense. Now, we must devise a com-
putational procedure which allows us to actually find the
subsetfyi1 ; : : :;ying inside the given point cloudYm when
it exists, or at least find it with a large probability. Note that
in practise we can only access metric information, that is,
interpoint distances. Point positions cannot be assumed to
be accessible since that would imply knowing the (isome-
try) transformation that mapsX into Y. A stronger result
should take into account possible self-isometries ofX (Y),
which would increase the probability of finding a net which
achieves smalldI distance to the fixed one. Next we present
such a computational framework.

3. Computational Foundations

There are a number of issues that must be addressed in or-
der to develop an algorithmic procedure from the theoretical
results previously presented. These are now addressed.

3.1. Initial Considerations

In practise we have as input two independent point cloudsXm andYm0 each of them composed of i.i.d. points sam-
pled uniformly fromX andY, respectively. We fix a number

n< min(m;m0) and construct good coveringsN(r;s)
X;n of X and

N(r0;s0)
Y;n of Y. Actually, r;s; r 0 ands0 all depend onn, and we

should choosen such thatr andr 0 are small enough to make
our bounds useful, see the additional computations below.
Details on how we construct these coverings are provided in
Section §3.3.

It is convenient to introduce the following additional no-
tation. Forq2 IN, let f1 : qg denote the setf1; : : : ;qg; also
for a set of pointsZq = fzkgq

k=1 and for a set of 1� u� q
indicesIu = fi1; : : :; iug � f1 : qg, letZq[Iu℄ denote the setfzi1 ; : : :;ziug.

Corollary 3 suggests that in practise we compute the sym-
metric expression

dF (Xm;Ym)4= (5)

max

�
min

Jn�f1:mgdI(N(r;s)
X;n ;Ym[Jn℄); min

In�f1:mgdI(N(r0 ;s0)
Y;n ;Xm[In℄)�

which depends not only onXm andYm0 but also on specified

covering netsN(r;s)
X;n andN(r0;s0)

Y;n . However we prefer to omit
the dependence in the list of arguments to keep the notation
simpler.

Then, we know that with probability at leastP~pX
(n;m)�

P~pY
(n;m0) we have (we assumeXm to be independent

fromYm0) dF(Xm;Ym0)� 3dGH(X;Y)+max(r; r 0). More-
over, in some precise sensedF(Xm;Ym0) upper bounds
dGH(Xm;Ym0), something we need to require otherwise we
would have solved one problem to gain another, and that im-
plies (Corollary 1) a similar upper bound fordGH(X;Y).

In fact, for anyIn � f1 : mg
dGH(Xm;Ym0) � dGH(Xm;Xm[In℄)+dGH(Xm[In℄;Ym0)� dGH(Xm;Xm[In℄)+dGH(Xm[In℄;N(r0;s0)

Y;n )+ dGH(N(r0;s0)
Y;n ;Ym0)� dXH(Xm;Xm[In℄)+dI(Xm[In℄;N(r0;s0)

Y;n )+ r 0
Now, considering In such that dI(Xm[In℄;N(r0;s0)

Y;n ) =
minIn�f1:mgdI(N(r;s)

Y;n ;Xm[In℄), we find dGH(Xm;Ym0) �
dXH(Xm;Xm[In℄)+dF(Xm;Ym0)+ r 0.

Symmetrically, we also obtain forJn such that

dI(Ym[Jn℄;N(r;s)
X;n ) = minJn�f1:m0g dI(N(r;s)

X;n ;Ym0[Jn℄)
dGH(Xm;Ym0)� dYH(Ym0;Ym0[Jn℄)+dF(Xm;Ym0)+ r

Hence, dGH(Xm;Ym0) � dF(Xm;Ym0) +
min

�
dXH(Xm;Xm[In℄); dYH(Ym0;Ym0[Jn℄)�+max(r; r 0).

Let ∆X = dXH(Xm;Xm[In℄) and ∆Y = dYH(Ym0;Ym0[Jn℄).
The computational procedure we infer is:If dF(Xm;Ym0)
is “large”we then know that dGH(X;Y) must also be
“large”with high probability. On the other hand, if
dF(Xm;Ym0) is “small”and min(∆X;∆Y) is also “small”
then dGH(X;Y) must also be “small.”

3.2. Working with Point Clouds

First, all we have is a finite sets of points, point clouds, sam-
pled from each metric space, and all our computations must
be based onthese observationsalone. Since we made the as-
sumption of randomness in the sampling (and it also makes
sense in general to model the problem in this way, given the
way shapes are acquired by a scanner for example), we must
relate the number of acquired points to the coverage prop-
erties we wish to have. In other words, and following our
theory above, we would like to say that given a desired prob-
ability p and a radiusr, there exists a finitem such that the
probability of covering all the metric space withmballs (in-
trinsic or not) of radiusr centered at thosem random points
is at leastp. This kind of characterizations are easy to deal
with in the case of submanifolds ofIRd, where thetuning
comes from the curvature bounds available. For this we fol-
low arguments from [32]. LetZ be a smooth and compact
submanifold ofIRd of dimensionk. Let Zm� Z consist of
m i.i.d. points uniformly sampled fromZ. Let K be an upper
bound for the sectional curvatures ofZ. Then we can prove
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that for a sequencerm! 0 such thatrm? lnm
m for largem,

P
�

dIRdH (Z;Zm)> rm

�' 1
lnm.

Then, since one can also prove, [32], that for anyz2 Z,
δ > 0 small, B(z;δ)\ Z � BZ(z;CKδ), for some constant
CK > 1 depending only on metric properties ofZ (curvatures

and diameter), we also findP
�

dZH(Z;Zm)> rm

�' 1
lnm.

This relation gives us some guidance regarding how many
points we must sample in order to have a certain covering ra-
dius, or to estimate the covering radius in terms ofm. More
precise estimates can be found in the reference mentioned
above. The important point to remark is that this kind of re-
lations should hold for the family of shapes we want to work
with, therefore, once given bounds on the curvatures and di-
ameters which characterize the family, one can determine a
precise probabilistic covering relation for it. We leave the
exploitation of this idea for future work.

Given the natural numbern�m (or eventuallys> 0), we
use the procedure described in §3.3 below to findn-points
fromZm which constitute a covering ofZm of the given car-
dinality n (or of the given separations) and of a resulting

radiusr. We denote this set byN(r;s)Zm;n �Zm.

3.3. Finding Coverings

In order to find the coverings, we use the well known Far-
thest Point Sampling (FPS) procedure, which we describe
next. Suppose we have a dense samplingZm of the smooth
and compact submanifold ofIRd (Z;dZ) as interpreted by the
discussion above. We want to simplify our sampling and ob-
tain a well separated covering net of the space. We also want
to estimate the covering radius and separation of our net. Itis
important to obtain subsets which retain as best as possible
the metric information contained in the initial point cloud
in order to make computational tasks more treatable without
sacrificing precision.

We first show a procedure to sample the whole spaceZ.
Fix n the number of points we want to have in our simplified
point cloudPn. We buildPn recursively. GivenPn�1, we se-
lect p2 Z such thatdZ(p;Pn) = maxz2Z dZ(z;Pn�1) (here
we consider of course, geodesic distances). There might ex-
ist more than one point which achieves the maximum, we
either consider all of them or randomly select one and add it
to Pn�1. This subsampling procedure has been studied and
efficiently implemented in [34] for the case of surfaces rep-
resented as point clouds.

Let us now assume that the discrete metric space(Zm;dZ)
is a good random sampling of the underlying(Z;dZ) in the
sense thatdH(Z;Zm)� r with probabilitypr;m, as discussed
in Section §3.2. We then want to simplifyZm in order to
obtain a setPn with n points which is both a good subsam-
pling and a well separated net ofZ. We want to use ourn
sampled points in the best possible way. We are then led to

using the construction discussed above. Choose randomly
one pointp1 2 Zm and considerP1 = fp1g. Run the proce-
dureFPSuntil n�1 other points have been added to the set
of points. Compute nowrn =maxq2ZmdZ(q;Pn). Then, also
with probability pr;m,Pn is a(r + rn)-covering net ofZ with
separationsn, the resulting separation of the net. Following

this, we now use the notationN((r+rn);sn)
Z;n .

We use a graph based distance computation following [3],
or the exact distance, which can be computed only for certain
examples (spheres, planes). We could also use the techniques
developed for triangular surfaces in [27], or, being this the
optimal candidate, the work on geodesics on (noisy) point
clouds developed in [32].

3.4. Additional Implementation Details

In this section we conclude the details on the implementa-
tion of the framework here proposed. The first step of the
implementation is the computation ofdI and subsequently
dF, which from the theory we described before, bounds the
Gromov-Hausdorff distance.

We have implemented a simple algorithm. Considering
the matrix of pairwise geodesic distances between points ofXm, we need to determine whether there exists a submatrix
of the whole distance matrix corresponding toXm which has
a smalldI distance to the corresponding matrix of a given

N(r0;s0)
Y;n . We select this latter net as the result of applying the

FPSprocedure to obtain a subsample consisting ofn points,
where the first two points are selected to be at maximal dis-
tance from each other. To fix notation, letXm= fx1; : : :;xmg
andN(r0 ;s0)

Y;n = fy j1; : : :;y jng. We then use the following al-
gorithm.

(k = 1;2) Choosexi1 and xi2 such that jdX(xi1;xi2) �
dY(y j1;y j2)j is minimized.

(k > 2) Let xik+1 2 Xm be such thatek+1(xik+1) =
min1�i l�mek+1(xi l ) where ek+1(xi l ) 4=
max1�r�k jdX(xi l ;xir )�dY(y jk+1;y jr )j.

We stop whenn points,fxi1;xi2; : : :;xing have been selected,
and therefore a distance submatrix((dX(xiu ;xiv)))nu;v=1, is

obtained. Since we can writedI(fxi1; : : :;xing;N(r0;s0)
Y;n ) =

1
2 max1�k�nmax1�t�k�1 jdX(xik ;xit ) � dY(y jk ;y jt )j =
1
2 max1�k�nek(xir ) we then see that with our algorithm we
are minimizing the error point-wise.

Of course, we now use the same algorithm to compute the
other half ofdF. This algorithm is not computationally opti-
mal. We are currently studying computational improvements
along with error bounds for the results provided by the algo-
rithms.

4. Examples

We now present experiments that confirm the validity of the
theoretical and computational framework introduced in pre-
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vious sections. In the future, we plan to make these experi-
ments more rigorous, including concepts of hypothesis test-
ing. As a simplification, for our experiments we have only
computeddF neglecting the other terms (see §3.1) which
would provide a estimative of the Gromov-Hausdorff prox-
imity between the shapes.

We complemented the more complex data (as presented
below) with simple shapes: (1) A plane,Pπ = [� πp

8
; πp

8
℄2

and (2) A sphere,S= fx2 IRd : kxk = 1g.
We first test our framework whenX andY are isometric.

We first considerX =Y and see whether we make the right
decision based on the discrete (random) measurements. LetXm andYmbe two independent sets composed ofm indepen-
dent, uniformly distributed random points onX. In the case
of the sphere we generated this uniformly distributed sample
points using the method of Muller, see [35]. We considerX
to be either the planePπ or the sphereS as defined above.
Givenn, fromXm andYm, and using theFPSprocedure, we
constructNXm;n andNYm;n (we omit the supraindices since
we won’t use the values of covering radius and separation),
and look for a metric match insideXm andYm, respectively,
following the algorithm described in §3.4 for the computa-
tion of dF(Xm;Ym). (Recall that actuallydF(Xm;Ym) de-
pends onn, see its definition (5).) For each dataset we tested
for values ofm2 M = f500;600; : : : ;2000g and n 2 N =f5;10;15; : : : ;100g, and obtained the results reported below.
In Table 1 we show the values ofdF for selected values of
m andn. As expected, the values ofdF are small compared
to D (Pπ) = D (S) = π (see below for the corresponding val-
ues when comparing non-isometric shapes). In Figure 1 (first
two figures) we show a pseudocolor representation of the re-
sults fordF.

We now proceed to compare shapes that are not isomet-
ric, starting withX = Pπ (a plane) andY = S (a sphere). In
this case we expect to be able to detect, based on the finite
point clouds, thatdF is large. Table 1 (see also last two fig-
ures of Figure 1), shows the results of a simulation in which
we compared the sphereSand the planePπ, varying the net
sizes and the total number of points uniformly sampled from
them. The experiments have been repeated 100 times to pro-
duce this table, and the reported values consist of the mean
of these 100 tests, as well as their maximum (the correspond-
ing deviation was 1:72�10�2). As expected, the values are
larger than when comparing plane against plane or sphere
against sphere.

We conclude the experiments with real (more complex)
data. We have 4 sets of shapes (the datasets were kindly
provided to us by Prof. Kimmel and his group at the Tech-
nion), each one with their corresponding bends. We ran the
algorithm N = 6 times withn = 70, m = 2000, using the
4 nearest neighbors to compute the geodesic distance using
theisomap engine. The data description and results are re-
ported in Table 2. We note not only that the technique is able
to discriminate between different object, but as expected,it

nnm 500 900 1500 1900

5 0:036793 0:015786 0:018160 0:0074027
25 0:041845 0:050095 0:026821 0:031019
45 0:081975 0:042198 0:038990 0:036376
65 0:068935 0:052482 0:035718 0:031512
85 0:077863 0:038660 0:036009 0:036894

nnm 500 900 1500 1900

5 0:013282 0:013855 0:010935 0:013558
25 0:082785 0:043617 0:033095 0:033592
45 0:074482 0:067096 0:057161 0:040727
65 0:079456 0:076762 0:049503 0:043405
85 0:083577 0:083344 0:058094 0:054144

nnm 500 1000 1500 2000

10 1:839� 10�1 1:902� 10�1 1:931� 10�1 1:942�10�1

25 1:834� 10�1 1:908� 10�1 1:920� 10�1 1:944�10�1

50 1:818� 10�1 1:899� 10�1 1:925� 10�1 1:933�10�1

75 1:873� 10�1 1:882� 10�1 1:936� 10�1 1:939�10�1

100 1:846� 10�1 1:913� 10�1 1:924� 10�1 1:936�10�1

Table 1: Table with values of dF for a plane (top), a sphere
(middle), and a plane against a sphere (bottom).

doesn’t get confused by bends. Moreover, the distances be-
tween a given object and the possible bends of another one
are very similar, as it should be for isometric invariant recog-
nition.

5. Conclusions

A theoretical and computational framework for comparing
manifolds (metric spaces) given by point clouds was intro-
duced in this paper. The theoretical component is based on
the Gromov-Hausdorff distance, which has been extended
and embedded in a probabilistic framework to deal with
point clouds and computable distances. Examples support-
ing this theory were provided.

We are currently working on improving the computational
efficiency of the algorithm, performing additional experi-
ments, and in particular, comparing high dimensional point
clouds with data from image sciences and neuroscience. This
as well as the proofs of the theorems in this paper will be
published elsewhere.
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Figure 1: First two figures: Graphic visualization of the results for the plane Pπ (on the left), and the sphere S (on the right). Red corresponds
to low values of dF and blue larger values. On the horizontal axis, from left to right we have increasing values of m, while on the vertical axis,
n increases going upwards. Observe how the distance increases for fixed m as n increases in accordance with the fact that wehave less freedom
to choose the n points from the given m.Third figure: Graphic visualization of the results for the comparison between the plane Pπ and the
Sphere S. Red corresponds to low values of dF and blue larger values. On the horizontal axis, from left to right we find increasing values of m,
and on the vertical axis, n increases going upwards.Fourth figure: Plot of the values of dF obtained against n, the size of theFPS net, with
m= 2000. (This is a color figure.)

Model
1939 1929 1258 1258 3121 3121 7190 7190 7190� � � � � � � � �< 10�4 � � � � � � � �
2:887 2:887 � � � � � � �
2:887 2:887 8:05� 10�2 � � � � � �

5:9� 10�1 5:9� 10�1 3:477 3:459 � � � � �
5:95� 10�1 5:95� 10�1 3:482 3:464 1:12�10�2 � � � �
4:19� 10�1 4:19� 10�1 3:31 3:29 1:62�10�1 1:59� 10�1 � � �
4:25� 10�1 4:25� 10�1 3:31 3:29 1:56�10�1 1:15� 10�1 5:53�10�2 � �
4:16� 10�1 4:16� 10�1 3:30 3:28 1:65�10�1 1:62� 10�1 4:85�10�2 5:77� 10�2 �

Diameters 1:223 1:223 6:996 6:960 6:1� 10�2 6:8�10�2 3:86�10�1 3:73� 10�1 3:91�10�1

Figure 2: Comparison results for the complex objects. The number of points per model are indicated in the first row under the
corresponding figure.
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