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Abstract

Concurrent with recent theoretical interest in the problem of metric embedding, a growing body of
research in the networking community has studied the distance matrix defined by node-to-node laten-
cies in the Internet, resulting in a number of recent approaches that approximately embed this distance
matrix into low-dimensional Euclidean space. There is a fundamental distinction, however, between the
theoretical approaches to the embedding problem and this recent Internet-related work: in addition to
computational limitations, Internet measurement algorithms operate under the constraint that it is only
feasible to measure a linear (or near-linear) number of node pairs, and typically in a highly structured
way. Indeed, the most common framework for Internet measurements of this type is a beacon-based ap-
proach: one chooses uniformly at random a constant number of nodes (‘beacons’) in the network, each
node measures its distance to all beacons, and one then has access to only these measurements for the
remainder of the algorithm. Moreover, beacon-based algorithms are often designed not for embedding
but for the more basic problem of triangulation, in which one uses the triangle inequality to infer the
distances that have not been measured.

Here we give algorithms with provable performance guarantees for beacon-based triangulation and
embedding. We show that in addition to multiplicative error in the distances, performance guarantees for
beacon-based algorithms typically must include a notion of slack — a certain fraction of all distances
may be arbitrarily distorted. For metrics of bounded doubling dimension (which have been proposed as
a reasonable abstraction of Internet latencies), we show that triangulation-based reconstruction with a
constant number of beacons can achieve multiplicative error 1 + § on a 1 — € fraction of distances, for
arbitrarily small constants § and e. For this same class of metrics, we give a beacon-based embedding
algorithm that achieves constant distortion on a 1 — € fraction of distances; this provides some theoretical
justification for the success of the recent Global Network Positioning algorithm of Ng and Zhang, and it
forms an interesting contrast with lower bounds showing that it is not possible to embed all distances in
a doubling metric with constant distortion. We also give results for other classes of metrics, as well as
distributed algorithms that require only a sparse set of distances but do not place too much measurement
load on any one node.
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1 Introduction

The past decade has seen many significant and elegant results in the theory of metric embeddings (for recent
surveys, see e.g. [16, 25, 28]). Embedding techniques have been valuable in the design and analysis of
algorithms that operate on an underlying metric; many optimization problems become more tractable when
the given metric is embedded into one that is structurally simpler.

Meanwhile, an active line of research in the networking community has studied the distance matrix
defined by node-to-node latencies in the Internet [9, 12, 14, 15, 23, 37], resulting in a number of recent
approaches that approximately embed this distance matrix into low-dimensional Euclidean space [5, 7, 30,
32, 36].! However, there is a fundamental distinction between this Internet-related work and the large body
of theoretical work on embedding, due to the following intrinsic problem: in any analysis of the distance
matrix of the Internet, most distances are not available. The cost of measuring all node-to-node distances
is simply too expensive; instead, we have a setting where it is generally feasible to measure the distances
among only a linear (or near-linear) number of node pairs, and typically in a highly structured way. In-
deed, the most common framework for Internet measurements of this type is a beacon-based approach: one
chooses uniformly at random a constant number of nodes (‘beacons’) in the network, each node measures
its distance to all beacons, and one then has access to only these O(n) measurements for the remainder of
the algorithm. (For example, the data can be shared among the beacons, who then perform computations on
the data locally.)

This inability to measure most distances is the inherent obstacle that stands in the way of applying
algorithms developed from the theory of metric embeddings, which assume (and use) access to the full
distance matrix. Thus, to obtain insight at a theoretical level into recent Internet measurement studies, we
need to consider problems in following two genres.

(i) What performance guarantees can be achieved by metric embedding algorithms when only a sparse
(beacon-based) subset of the distances can be measured?

(i) Atan even more fundamental level, many Internet measurement algorithms are seeking not to embed
but simply to reconstruct the unobserved distances with reasonable accuracy (see e.g. [9, 12, 14, 23]).
Can we give provable guarantees for this type of reconstruction task?

Reconstruction via triangulation. Within this framework, we discuss the reconstruction problem (ii) first,
as it is a more basic concern. Motivated by the research of Francis et al. on IDMaps [9], and subsequent
work, we formalize the reconstruction problem here as follows. Let S be the set of beacons; and suppose
for each node u, and each beacon b € S, we know the distance d,;. What can we infer from this data about
the remaining unobserved distances d,,,, (when neither v nor v is a beacon), assuming we know only that we
have points in an arbitrary metric space? The triangle inequality implies that
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and it is easy to see that these are the tightest bounds that can be provided on d,,, if we assume only that
the underlying metric is arbitrary subject to the given distances. We will say that d,,, is reconstructed by
triangulationz, with distortion A > 1, if the ratio between the upper and lower bounds in (1) is at most A.

"We speak of Internet latencies as defining as a “distance matrix” rather than a metric, since the triangle inequality is not always
observed; however, one can view the recent networking research as indicating that severe triangle inequality violations are not
widespread enough to prevent the matrix of node-to-node latencies from being usefully modeled using notions from metric spaces.

Note that this is one of several standard uses of the term “triangulation” in the literature; it should not be confused with the
process of dividing up a region into simplices, which goes by the same name.



Since it is much cheaper for nodes to exchange messages than to actually estimate their round-trip distance
on the Internet (the latter typically requires a significant measurement period to produce a stable estimate),
triangulation can be valuable as a way to assign each node a short label — its distances to all beacons — in
such a way that the distance d,,,, can later be estimated by a third party (or by one of v or v) just from their
labels. This can be viewed as a kind of distance labeling, and we discuss related work on this topic (e.g.
[10]) below.

To give performance guarantees for triangulation, we also need a notion of slack. Even in very simple
metrics, there will be some distance pairs that cannot be reconstructed well using only a constant number
of beacons. Consider for example a set of regularly spaced points on a line (or in a d-dimensional lattice);
points u and v that are very close together will have a distance d,,, that is much smaller than the distance
to the nearest beacon, rendering the upper bound obtainable from (1) useless. We therefore say that a set
of beacons achieves a triangulation with distortion A and slack e if all but an € fraction of node pairs in the
metric are reconstructed with distortion A.

A fundamental question is then the following. Suppose we have an underlying metric space M, and
desired levels of precision € > 0 and 6 > 0. Is there a function f(-,-) (independent of the size of M) so that
f (e, 9) beacons suffice to achieve a triangulation with distortion 1 + § and slack €? Clearly such a guarantee
is not possible for every metric; in the n-point uniform metric, with all distances equal to 1, any distance
that is not directly measured will have a lower bound from (1) equal to 0. Thus we ask: are there are natural
classes of metrics that are triangulable in this way?

Beacon-based embedding. The recent work of Ng and Zhang on Global Network Positioning (GNP) [30]
showed how a beacon-based set of measurements could embed all but a small fraction of Internet distances
with constant distortion in low-dimensional Euclidean space, and this result touched off an active line of
follow-up embedding studies in the networking literature (e.g. [5, 7, 32, 36]). Note that the empirical guar-
antee for GNP naturally defines a notion of € slack for embeddings: an e fraction of all node pairs may
have their distances arbitrarily distorted. Again, it is easy to see that this notion of slack is necessary for
a beacon-based approach. The GNP algorithm forms an interesting contrast with the algorithms of Bour-
gain and Linial, London, and Rabinovich [4, 26] for embedding arbitrary metrics. These latter algorithms
use access to the full distance matrix and build coordinates in the embedding by measuring the distance
from a point to a set — in effect, sets that can be as large as a constant fraction of the space thus act as
“super-beacons” in a way that would not be feasible to implement for all nodes in the context of Internet
measurement.

In order to understand why beacon-based approaches in general, or the GNP algorithm in particular,
achieve good performance for Internet embedding in practice, a basic question is the following: are there
natural classes of metrics that are embeddable with constant distortion and slack €, using a constant number
of beacons?

The present work: Performance guarantees for beacon-based algorithms. We begin by showing that
distances in a metric space M whose doubling dimension is bounded by & can be reconstructed by tri-
angulation with distortion 1 + § and slack e, using a number of beacons that depends only on J, ¢, and
dimension k, independent of the size of M. We define the doubling dimension here to be the smallest k
such that every ball can be covered by at most 2k balls of half the radius (see [1, 13, 21]); we also call such
a metric 2¥-doubling. The point here is that we are not assuming a reconstruction method that explicitly
knows anything about the doubling properties of M rather, as long as the number of beacons is simply
large enough relative to the doubling dimension, one obtains accurate reconstruction using upper and lower
bounds obtained from the triangle inequality alone. Doubling metrics, which generalize the distance ma-
trices of finite d-dimensional point sets, have been the subject of recent theoretical interest in the context



of embedding, nearest-neighbor search, and other problems [13, 19, 20, 21, 35]; and an increasing amount
of work in the networking community has suggested that the bounded growth rate of balls may be a useful
way to capture the structural properties of the Internet distance matrix (see e.g. [8, 30, 31, 38]). Thus, given
that strong triangulation performance guarantees are not possible for general metrics (as noted above via the
uniform metric), this positive result for doubling metrics serves as a plausible theoretical underpinning for
the success of beacon-based triangulation in practice.

Certain non-trivial metrics exhibit a stronger phenomenon that we term perfect triangulation: on all but
an e-fraction of node pairs, the upper and lower bounds from the triangle inequality agree exactly (i.e. with
distortion 1). For example, one can show that f(d, €) beacons suffice to achieve perfect triangulation with
slack € on the points of a d-dimensional lattice under the L metric. It is thus natural to ask how generally
this phenomenon holds. Perfect triangulation turns out not be possible for all point sets in the L; metric,
but we show that it can be achieved for all dense point sets in L1; by a dense point set we mean an n-point
subset of R in which the ratio of the largest to the smallest distance is ©(n/%).

We next move on to results for beacon-based embedding. We show that every metric of doubling di-
mension k can be embedded into L, (for any p > 1) with constant distortion and slack e, using a constant
number of beacons, where the constants here depend on e and the doubling dimension. Moreover, we show
that an embedding with these properties can be achieved by a close analogue of the actual GNP algorithm of
Ng and Zhang, providing some theoretical explanation for its success in practice. It is interesting to note that
metrics of bounded doubling dimension cannot be embedded into Euclidean space (or L, for any p > 2)
with constant distortion in general [13, 34], so this is a case where allowing slack leads to a qualitatively
different result.

While beacon-based algorithms perform a manageable set of measurements, they do so by choosing a
small set of nodes and placing a large computational load on them. Several recent networking papers [5, 7,
32, 36] address the unbalanced load of beacon-based methods using uniform probing: each node selects a
small number of virtual ‘neighbors’ uniformly at random and measures distances to them; all nodes then run
a distributed algorithm that uses the measured distances. We show how an extension of our techniques here
can be used to give performance guarantees for distributed algorithms such as these.

In particular, to analyze beacon-based embedding algorithms, we build on the techniques we develop
for reasoning about triangulation. We consider subgraphs G’ on the set of nodes with the property that
embeddings that approximately preserve all edge lengths in G’ must have constant distortion with slack e
for the full distance matrix. This is a kind of “rigidity” property (with slack) that follows naturally from the
analysis of triangulation, and we can show that subgraphs consisting of node-to-beacon measurements, as
well as subgraphs built in a more distributed fashion, can be usefully analyzed in terms of this property.

Finally, we show that stronger guarantees can be obtained in the more restrictive class of strongly dou-
bling metrics. Following a definition of [19], we say that a metric is strongly s-doubling if doubling the
radius of a ball increases its cardinality by at most a factor of s. We show that a constant number of beacons
suffice to embed such metrics with constant distortion, using a more “gracefully degrading” notion of slack:
all but an e-fraction of distances are embedded with distortion A; all but an e-fraction of the remainder
are embedded with distortion 2A; and in general, all but an €’ fraction are embedded with distortion JA.
We also obtain improvements here for distributed algorithms that engage in uniform probing of random
neighbors, in the style discussed above.

Related Work. As discussed above, the questions we consider here differ from the bulk of algorithmic
embedding research (as surveyed in [16, 25, 28]) because we are able to measure only a small subset of
the distances, and we allow a notion of slack in the performance guarantee. Indeed the whole problem of
triangulation, which seeks simply to reconstruct the distances, would not be of interest if we already had
access to all distances. Allowing slack changes the kinds of performance guarantees one can achieve; for



example, as mentioned above, doubling metrics become embeddable with constant distortion in Euclidean
space once a small slack is allowed. At the same time, we find that techniques from the body of previous
work on embedding, combined with our results on triangulation, are useful in designing algorithms under
these new constraints.

Work on distance labeling [10] seeks to assign a short label to each node in a graph so that the distance
between u and v can be (approximately) determined from their labels alone. This is of course analogous to
our goals in triangulation. In the most closely related work in this vein, Talwar investigated distance labels
for doubling metrics [35]. Both the objective and the techniques in [35] differ considerably from our work
on triangulation here, however: in [35], the concern is with labels of low bit complexity, but the encoding of
distances into short labels there makes extensive use of the full distance matrix, and it is thus not adaptable
to our setting in which distances to only a few beacons can be measured. The more extensive use of the
distance matrix in [35] comes in pursuit of a stricter goal: distance labels in which there is no notion of
slack in the performance guarantee.

Work on property testing [11] makes use of a somewhat different notion of slack in its performance
guarantees: can an e-fraction of the input be changed so that a given property holds? There has been some
research on property testing in metric spaces (see e.g. [22, 33], and related work on sampling for approx-
imating metric properties in [17]), but this work has considered problems quite different from what study
here, and makes use of different sampling models and objective functions. Metric Ramsey theory [2] also
seeks subsets of a metric satisfying specific properties, but it tends to operate in a qualitatively different part
of the parameter space, exploring properties that hold on the sub-metric induced by relatively small subsets
of the nodes, rather than properties that hold on a large fraction of the edges. Finally, distance geometry [6]
is a large area concerned with reconstructing point sets from sparse and imprecise distance measurements;
our use of triangulation here corresponds to the notion of triangle inequality bounds smoothing in [6], but
beyond this connection we are not aware of closely related work in the distance geometry literature.

2 Triangulation

We begin with some basic definitions. For convenience let [n] denote aset {0,1, ... , n}. In a given metric
space, let d,,,, denote the distance between u and v, let B,,(r) denote the closed ball {v : d,, < r}, and let
. (€) be the smallest r such that | By, ()| > en. Let 7, (¢) = min(ry(€), 7 (€)).

Given a set S of beacons, we define lower and upper distance bounds for each pair (u,v) of points:
d,, = maxpeg |dyp — dyp| and df, = mingeg(dyp + dp, ). We say that S achieves an (e, §)-triangulation if
for all but an e fraction of the pairs (u, v), we have d,, < (1 + d)d},.

Our results for triangulation and embedding will generally involve showing that a large enough set of
beacons sampled uniformly at random from the metric space will have a certain desired property. (For
brevity, we will refer to such a sampled subset of the space as “a constant number of randomly selected
beacons.”) Because we will be working in many cases with constant-size samples, our properties will
typically hold with a constant probability that can be made arbitrarily close to 1. Hence, in this context, we
will sometimes use the phrase “with probability close to 1" as an informal short-hand for: with a probability
that can be made arbitrarily close to 1 by increasing the sample size by a constant factor.

As noted in the introduction, good triangulation bounds cannot be obtained for all metrics since, for
example, non-trivial lower bound values d,,, cannot be achieved in the uniform metric in which all distances
are 1. However, it is interesting to note that in every metric space, the upper bound d;}, actually does come
within a constant factor of the true distance on all but an e fraction of pairs.

Theorem 2.1 If M is an arbitrary finite metric space, then a constant number of randomly selected beacons
achieves an upper bound estimate d},, < 3dy, for all but an e-fraction of pairs (u,v) with probability at



least 1 — ~y, where the constant depends on € and .

Proof: Let B, be the smallest ball around u containing at least en/2 nodes. For each point » in M, and with
enough beacons, at least one point in B,, will be selected as a beacon with probability close to 1. Suppose this
happens, and let b be a beacon in B,,. Then all but at most en /2 points v lie outside B,, or on its boundary;
for any such point, we have d, < dyp + duy < 2dy, and hence df, < dyp + dop < duy + 2dyy = 3dyy. O

The upper bound of 3 in Theorem 2.1 is tight, as shown by the shortest-path metric of the complete
bipartite graph G = K, ,, with unit-distance edges. For all non-beacon pairs (u,v) on opposite sides of
G, we have d}, = 3d,,. With a modification of this example, we can in fact show that no algorithm
given access to each node’s distances to all beacons can estimate d,,, to within a factor better than 3 for a
large fraction of pairs (u,v). Specifically, we randomly generate a graph G’ by deleting each edge from
G = K, , with probability % If w and v are on opposite sides of G’, then d,,,, = 1 if the edge (u,v) is
present, and otherwise d,, = 3 with probability 1 — o(1). But if neither u nor v is a beacon, the full set of
node-to-beacon distances gives no information about the presence or absence of the edge (u, v), and hence
one cannot resolve whether this distance is 1 or 3.

For metrics of bounded doubling dimension, we have a much stronger result.

Theorem 2.2 In any s-doubling metric M, a constant number of randomly selected beacons achieves an
(€, 9)-triangulation with probability 1 — ~y, where the constant depends on 0, €, -y, and s.

B u r
[ J

Balls of radius r'
with > en/3s' points.

(a) (b)

Figure 1: Triangulation in doubling metrics.

Proof: Fix any point u. Let 7 = r,(¢/3), and consider a large ball B = B, (2r/J). By our definition of
r, there are only a small number of points at distance strictly less than r from u, and we will ignore our
estimated distances to these points. By selecting enough beacons, we can ensure that with probability close
to 1 at least one beacon b lies in B, (r). Consider any point v ¢ B. Since b is close to u and relatively very
far from v, we can argue that the upper and lower bound provided by b on the distance from u to v will be
good (see figure 1a). In particular, if d = d,,, then dyp + dyp < d+2dypy < d+2r = (1+6)d, and similarly
dyp — dyp > (1 —0)d.

It remains to consider the possibly large set of points in the annulus B — B, (r). For these points, a
beacon in B, (r) will not necessarily suffice to give the desired bound. Instead, we need to use the doubling
property to show that the points in the annulus can be covered with a bounded number of very small balls,
and with probability close to 1 we can ensure beacons lie in most of these. In other words, to estimate the
distance dy,,, for v € B — B, (r), we will find a beacon close to v rather than close to .



We would like to cover the annulus with balls of small radius 7’ = ¢r/2. By the doubling property,
B (and hence B — B,(r)) can be covered by s’ = s2+2198 § pballs of radius 7 , as shown in figure 1(b).
Disregarding balls containing fewer than en/3s’ points throws out at most en /3 points. Again, if we know
that each of the remaining balls contains a beacon, then all points in these balls will have upper and lower
bounds that are within a 1 = ¢ factor of their respective distances to u.

Thus, we conclude by arguing that if we chose a sufficiently large (constant) number of beacons, with
probability close to 1 a beacon will be selected in all but an €/3 fraction of balls containing en/3s’ or more
points. Combining these results shows that all but %en points have good estimated distances to all but %en
points. This is the desired result. a

The following lemma is implicit in the proof of Theorem 2.2, and it will be very useful in our subsequent
discussion of doubling metrics. To state the lemma, we introduce the following definitions. If E is a set of
pairs of points in M, we say that E is an e-set if it includes all but an € fraction of all pairs, and we say that
it is a strong e-set if it includes all but an € fraction of all pairs of the form (u, v) for each point w.

2logd—1

Lemma 2.3 Consider an s-doubling metric d and fixed ¢ and 6. Let ¢’ = es Then for a strong

2e-set of node pairs uv we have min(r(€),r,(€")) < ddy, and therefore r,(€') < ddyy.

Perfect triangulation. As mentioned in the introduction, the stronger notion of perfect triangulation is
sometimes achievable, when d;,,, = d;},, = d,, for all but an e-fraction of node pairs, using only a constant
number of beacons. A natural example where this occurs is for the points of a finite d-dimensional lattice
under the L; metric (this is a consequence of Theorem 2.4 below). It is natural to ask whether perfect
triangulation is possible for all finite point sets in the L metric, but this is too strong; consider for example
the union of the points {(i,n — i) : ¢ € [n]|} and {—i,—(n — i) : ¢ € [n]} in the plane.

As a way to understand how general this phenomenon is, we use the following notion of a dense point
set as a generalization of the d-dimensional lattice: We say that a finite subset of R? under the L; metric is
dense if the coordinates of all points lie in the interval [0, kn'/?] for a constant k, and the minimum distance
between each pair of points is 1. (We will refer to k as the density parameter.)

Theorem 2.4 In any dense point set M under the L, metric, a constant number of randomly selected
beacons achieves a perfect triangulation with € slack and with probability 1 — ~y, where the constant depends
on €, v, the dimension, and the density parameter.

Proof Sketch: Due to space limitations, we only provide a sketch of the proof here; the details are in
Appendix A. Also, for ease of exposition we assume that d = 2, but the same techniques extend naturally
to any constant dimension.

Given a dense point set M in [0, \/R]Q, we divide M into square cells with width and height §v/kn,
for a small constant 5. We partition these cells into two types: heavy and light, where roughly speaking the
heavy cells are those that contain at least (6%n) points. We argue that with probability close to 1, each
heavy cell will contain a beacon. Also, we can ignore errors on pairs that involve points in light cells, or that
involve two points in the same heavy cell, since there are relatively few pairs like this. Thus, we only need
to consider pairs of points that belong to distinct heavy cells.

We then argue that for most heavy cells C, there are heavy cells K1, Ko, K3, K4 in each of the four
“quadrants” of the square [0, v/kn|? defined by treating C' as the origin. This requires a geometric argument
based on the density property; however, once the existence of K1, Ky, K3, K, is established, one beacon in
each K is sufficient to provide a tight lower bound on any distance pair involving a point in C'. Analogously,
for the upper bound, we show by another application of the density property that for most pairs of heavy



cells C' and C’, there is a heavy cell K in the rectangle with corners at C' and C’; one beacon in K is
sufficient to provide a tight upper bound on distances between points in C' and C’. o

3 Embedding with a Small Set of Beacons

We now turn to the problem of beacon-based embedding. Let f map the points of M into some target metric
space X with distance function d*'; we say that f is an embedding of M, and for nodes u,v € M, we write
d,,, for d;((u)7 F)" We define the distortion of f on a set of node pairs E C M x M to be the ratio between
the maximum amount by which distances are expanded, max y y)c g dyp/duv, and the minimum amount
min(, ,)ep d.,,,/duy. We will say that f has non-contracting distortion A on E if no distance in E is shrunk
under f, and no distance is expanded by more than a factor of A. Following our discussion earlier, we can
say that f has distortion A with slack € if f has distortion A on some e-set of pairs.

We will be able to use our triangulation analysis (particularly Lemma 2.3) via the following definition,
which is phrased at a level of generality that will be useful in both this section and the next. Given a set E
of node pairs in a metric, we can consider the weighted graph G(FE) in which these pairs form the edges,
and each edge (u,v) is labeled with the distance d,,. We say that a uv-path P in G(FE) is 0-skewed if for
some e € P, the total edge weight of P \ {e} is at most dd,,, and e is incident to one of u or v — in other
words, P consists of an initial “long hop” followed by a number of short ones. Finally, we say that the set
of pairs E is a (strong) (e, d)-frame if G(E) contains a J-skewed path for all pairs in a (strong) e-set. We
will assume throughout this section that ¢ is sufficiently small, specifically § < 1/4.

Frames E as defined here have a useful “rigidity” property, as the following result shows: an embedding
with bounded distortion on the pairs in £ must also have bounded distortion on all but an e-fraction of node
pairs. In this sense, frames have a similar flavor to spanners, but they include a slack parameter and also
require the approximately distance-preserving paths to have a particular “skewed” structure.

Lemma 3.1 Consider a metric M with (e, §)-frame E, and suppose an embedding f : M — X has non-
contracting distortion A on E, where A < 4—15. Then the embedding has distortion O(A) with slack e.

Proof: Suppose the pair (u, v) has a 0-skewed path P in G(F), with long edge (u, p). By the definition of a
frame combined with the triangle inequality, we have (1 —0)dy, < dyp < (14 9)dy,. Since the embedding
has non-contracting distortion A on E, we have (1 —§) < dj,,,/duy < A(1 + 0) and dy, < Addy,; hence,

using the assumptions that X is a metric and that 6 < 1/4, we have

13
d,, € [d;p — d;p, d;p + d;p] Cdyyll =0 — A6 A(1+25)] C duv[i’ §A]
It follows that the distortion of f is O(A) on the set of all pairs that have a d-skewed path, and this is an
e-set. |

We are now in a position to discuss the performance of beacon-based embedding algorithms. We begin
with a “black-box” result: in any doubling metric, an embedding will have low distortion with small slack
provided it has low distortion on all measurements to a random set of beacons of constant size.

Theorem 3.2 Let M be an s-doubling metric space, and suppose we have a black-box algorithm that for
each size-k set of beacons S C M will produce an embedding fs of M into a target space X with non-
contracting distortion A on the set of all node-beacon pairs. (That is, the set of all pairs (u,v) where at
least one of u or v belongs to S.) Then provided k is large enough relative to the parameters €, A, s, and v,
the following holds with probability at least 1 —y for a random choice of S: the embedding f s has distortion
O(A) with slack e.



Proof Sketch: Choose d small enough so that A < %. Now Lemma 2.3 implies that with a large enough
constant number of beacons relative to J, €, s, and ~, the set of all node-beacon pairs will form an (e, §)-
frame with probability at least 1 — . Hence Lemma 3.1 implies that an embedding of M into X with
non-contracting distortion A on this set of pairs will have distortion O(A) with slack e. O

We now turn this black-box result into an algorithm that embeds a doubling metric in R? with constant
distortion and e-slack. For reasons of space, we only provide a sketch of the proof.

Theorem 3.3 Let M be an s-doubling metric space, and choose a constant k so that lolgoi Ig’c r = O(log 2).
There is an algorithm that, with probability at least 1 — -y, embeds M into R? with distortion O(log k) and
slack €, using measurements to a randomly selected set of k beacons; here v and d are constants that depend

on k.

Proof Sketch: Denote the set of node-beacon pairs by E. First we claim that with probability close to 1,
E is an (¢, §)-frame for 6 = O(log ™! k), where the constant can be adjusted by tuning the constant in the
definition of k. Indeed, letting k = ©(z log x) and skipping some easy details, we have —252— > Q(log 2)

loglogx —
and log (ex) > Q(loglog k), where the constants can be adjusted similarly. The claim follows since by
Lemma 2.3 E is an (e, §)-frame with probability close to 1, as long as log 3+ = 3 log,(ez).

Now, by Theorem 3.2, it suffices to embed M into R? so that the distortion on pairs in E is O(log k).
(The embedding can be re-scaled so that it is also non-contracting on E.) We perform this embedding as
follows. Let B be the set of beacons; we first embed B using the algorithm of Bourgain and Linial et al.
[4, 26]. Recall that this involves choosing, for each i = 1,2, ..., |log k|, a collection of = subsets of B of
size 27, each uniformly at random. Let S;; denote the 7t of these. We assign each node b € B a coordinate
corresponding to each set S;;, defined to be d(b, S;;), the minimum distance between b and any point in .S;;.

Having embedded the beacons, we then embed every other node v using these same sets {S;;}; for each
S;j, node u constructs a coordinate of value d(u,.S;;). In the approach of Linial et al., z = O(log k) sets
of each size are chosen. Here, by way of contrast, we take z = O(k); we claim that with this choice of
random sets {.5;;} in the embedding, the set of node-beacon pairs is embedded with distortion O(log k) with
probability close to 1.

To establish this claim, we give upper and lower bounds on the embedded distances; the calculations
here differ from [4, 26] in that we will be taking a union bound over subsets of beacons, rather than over the
much larger set of all node pairs. The upper bound is straightforward, so we focus on the lower bound. Here,
we fix i and let S and S’ be two disjoint subsets of B of size k/2% and 2k/2" respectively. One can show
there is a constant ¢ so with probability at least ¢, a given .S;; has the property that it hits S and misses S’.
Thus the expected number of \S;;’s with this property is ck, so applying the Chernoff bound, for large enough
x = ©(k) the probability that at most cz/2 of S;;’s do not have this property is at most e—cx/8 < =2k,
Therefore with probability close to 1 for all 4, for every pair S, S’ of disjoint subsets of B of the right size,
this property holds for Q(k) sets .S;;. Once this is true, consider embedding any given node u, separately
from all other non-beacon nodes; an analogue of the telescoping-sum argument from [26] gives the desired
lower bound with probability close to 1. O

The above embedding follows the GNP [30] framework, in which the beacons are embedded first, and
then each other node is embedded separately with respect to the beacons. This therefore provides some
theoretical explanation for GNP’s strong empirical performance. We also provide a different embedding
algorithm that achieves qualitatively similar bounds: constant distortion with € slack, using a constant num-
ber of beacons. This alternate algorithm offers somewhat better quantitative guarantees but is less useful in
justifying GNP. This issue is discussed further in Appendix B.



4 Fully Distributed Approaches

Recent work in the networking literature has considered so-called ‘fully distributed’ approaches to triangu-
lation and embedding problems, in which no single node has to perform a large number of measurements
[5, 7, 32, 36]. Instead, for a relatively small parameter k, each node selects k virtual ‘neighbors’ uniformly
at random and measures distances to them; let £, denote the set of all pairs (u,v) where v is one of the
selected neighbors of u. All nodes then run a distributed algorithm that uses the measured distances on the
pairs E; to embed the full metric. The distributed algorithms in these papers are based on different heuris-
tics: Vivaldi [5, 7] simulates a network of physical springs, Lighthouse [32] uses global-local coordinates,
and [36] claims to simulate the Big Bang explosion. They offer no proofs, but their experimental results
are quite strong. In particular, Vivaldi [S] uses the testbed from the GNP algorithm [30] and claims slightly
better performance. Here we consider what kinds of theoretical guarantees can be obtained for algorithms
of this type; as in previous sections, we focus on doubling metrics.

First, suppose we view the distributed embedding heuristic as a black box that embeds the nodes with
distortion at most A on the pairs . Is this enough to provide a guarantee for the full metric? By The-
orem 3.2, it suffices to show that the set of pairs Fj forms an (e, §)-frame for § < ﬁ; then we have an
embedding of the full metric with distortion O(A) and slack e.

Theorem 4.1 Let M be an s-doubling metric, and k = s%) (logn)21°¢s+OW) For any € and & that are
each at least Q(1/ log@M n), the set Ey, of probed edges is a strong (¢, §)-frame with high probability.

Proof: Indeed, for some constant ¢ to be defined later, set 6’ = §/(clogn) and € = es21°8%9'~1/2 5o that
k= O(% logn) suffices to make sure that with high probability each node has at least three neighbors in
a ball of size €/n around every other node. By Lemma 2.3, for a strong e-set of node pairs uwv, a ball of
size €'n around one of the nodes (say v) has radius at most ¢§’d,,,. As we argued, u has a neighbor in this
ball, call it w. Now, each node in this ball has at least three neighbors in it, chosen uniformly at random.
Therefore the graph induced by this ball in E'; contains a constant-degree expander, and hence has diameter
at most clogn. This is the ¢ we use in the definition of §’ and € (it is enough to use an upper bound in
which we assume the induced graph has n nodes). In particular, £’y contains a vw-path with at most clogn
hops, each of length at most ¢’ d,,,, so the metric length of this path is at most dd.,,,. Therefore E}, is a strong
(€, 9)-frame. O

Theorem 4.1 already helps provide some underpinning for the success of distributed embedding heuris-
tics in recent networking research. But to go beyond this black-box result to concrete distributed algorithms,
we need to think about techniques for triangulation and embedding that operate in a decentralized fashion
on the graph G(E}). In this section, we focus on the problem of distributed triangulation in particular.

Here’s a schematic description of a distributed triangulation algorithm. First, a (small) number of nodes
S declare themselves to be quasi-beacons. Messages are then passed over the edges of the graph G(FE},), at
the end of which each node w has, for each quasi-beacon b, a pair of upper and lower bounds {5 < d,;; <
hup- This is the crux: unlike standard beacon-based algorithms, node w never actually measures its distance
to beacon b (unless they happen to be neighbors in G(F})), so it must infer bounds on the distance from the
distributed algorithm. Finally, the distance between two nodes u and v can be estimated via

max(‘hub - lvb’v ‘hvb - lub‘) <dyy < min(hub + hvb)-
bes besS
We denote the left-hand and the right-hand sides by d,,, and d},, respectively, and say such process is a
quasi-(e, 0)-triangulation if df, /d,,, < 1+ for an e-set of node pairs. Given a set Fj, of measured distances
as in Theorem 4.1, our goal is to perform quasi-triangulation with only a small number of messages passed
between nodes.



Theorem 4.2 Let M be an s-doubling metric. For any € and 0 that are each at least Q2(1/ log @M n), a
quasi-(e, 0)-triangulation can be achieved in time polylogarithmic in n with only an expected polylogarith-
mic load per node, taking into account the work for distance measurements, storage, and the number of bits
sent and received.

We’ll use the following multi-stage algorithm. For simplicity, we refer to quasi-beacons as beacons.

Algorithm 4.3 Suppose each node knows (e, 0,n) and chooses (€', k, c) as in Theorem 4.1.

1. Each node selects k neighbors® uniformly at random, measures distances to them, and decides (inde-
pendently, with probability k/n) whether it is a quasi-beacon.

2. Beacons announce themselves to their neighbors. Specifically, each quasi-beacon b sorts its measure-
ments from low to high and estimates ry,(€') by the measurement ranked 2¢€'k. Call this measurement
rp. Then it sends a message M (b, ry, 1) to all its neighbors, where i is the number of hops that the
message has traversed, initially set to 0.

3. When node u receives M (b, 1y, 1) from v, node u updates its existing bounds on d.;, using the new
bounds dy, + 2iry. Say the message is new if u does not already store M (b,ry, i) with i’ < i. If
so and moreover d,, < 2r, and i < clogn, then u stores it and forwards M (b,ry,1 + 1) to all its
neighbors but v.

We now analyze this algorithm. Let K = clog n. Each message is forwarded at most K times, yielding
the claimed running time. A given node can broadcast the message from a given beacon at most K times,
yielding the claimed number of messages per node. When M (b, ry,4) is forwarded, all hops but possibly
the last one have length at most 7, so the distance bounds in step 3 are valid.

By a straightforward application of Chernoff bounds, it holds with high probability for every beacon b
that at most 2¢'k neighbors lie within distance r;(¢’) from b, and at least 2¢’k neighbors lie within distance
rp(4€”) from b, so rp(€') < 1 < rp(4€’).

Let B, be the smallest ball around u that has size at least €’n. In the proof of Theorem 4.1 we saw that
the graph induced by each such ball in E}, has diameter at most K. Since r, > r,(€¢'), each w € By, will
receive a message from b via a path of at most K hops of length at most 27, each, so w will upper-bound d,;,
by hyp < 21, K. Moreover, since (by the proof of Theorem 4.1) every node u has a neighbor w € By, node
u will receive a message from b via this w and bound d.;, by dy,,, £ hyp, Which is (at worst) d, & 3rp K.

Now, by Lemma 2.3 there exists an e-set of node pairs uv such that the ball B around u or v of radius
r = O(ddyy/ logn) has at least 4¢'n points. With high probability, each such ball B contains a beacon, call
it b. Since By, (2r) contains B, 1, < 13(4€’) < 2r. Therefore, omitting a few details, beacon b yields bounds
on d, that are (at worst) d(1 £ O(J)). This completes the proof of Thm. 4.2.

5 Extensions and Further Directions

Strongly doubling metrics. We can obtain a number of improvements to our results when the given metric
is strongly doubling. (Recall that a metric is strongly s-doubling [19] if doubling the radius of a ball increases
its cardinality by at most a factor of s.) We start with an improved Bourgain-style embedding; with a careful
accounting argument we show that it has a ‘graceful degradation’ property: for this single embedding and
any € > 0, the distortion is O(log f) for a strong e-set of node pairs. As in [26], we consider the case of L,
first; however, extending to the general L, is more involved than in [26]. This graceful degradation property

3Neighbors are undirected, in the sense that if u selects v as a neighbor, then u becomes a neighbour of v, too.
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should also be contrasted with the lower bounds on embedding presented in [13]. We discuss this result in
more detail in Appendix C.

We also show that the following simple nearest-beacon embedding is effective in strongly doubling
metrics: select k£ beacons uniformly at random, embed the beacons, and then simply position each other
node at the embedded location of its nearest beacon. It is not hard to show that in strongly-doubling metrics
the nearest-beacon embedding is (essentially) as accurate as triangulation. (It is worth noting, on the other
hand, that there are doubling metrics in which this nearest-beacon embedding does not yield good results,
even allowing constant slack.) Combined with Algorithm 4.3, the nearest-beacon embedding yields a fully
distributed (Vivaldi-style) embedding for strongly doubling metrics. Moreover, such an embedding will have
the ‘graceful degradation’ property if the beacons can embed themselves using the improved Bourgain-style
algorithm described above.

Embeddability with e-slack for general metrics. Finally, there is an interesting and quite natural open
question raised by our work here: Can every metric be embedded into L, with constant distortion and e
slack? Standard examples of metrics that require super-constant distortion for embeddings into L, —e.g.,
bounded-degree expanders — do not serve as counterexamples here, since they can actually be embedded
with constant distortion and e slack into a uniform metric. We discuss this further in Appendix D.

Acknowledgments. We thank Paul Francis, Martin Pal, Mark Sandler, and Gun Sirer for useful discus-
sions on this topic.

References

[1] P. Assouad, “Plongements lipschitziens dans R™,” Bull. Soc. Math. France 111(4), pp. 429-448, 1983.

[2] Y. Bartal, N. Linial, M. Mendel and A. Naor, “On Metric Ramsey-Type Phenomena,” in 35th Annual
ACM Symposium on the Theory of Computing, 2003.

[3] B. Bollobas and O. Riordan, “The diameter of a scale-free random graph,” preprint 2000.

[4] J. Bourgain, “On Lipschitz embeddings of finite metric spaces in Hilbert space,” Israel J. of Math,
52(1-2), pp. 46-52, 1985.

[5] R. Cox, F. Dabek, F. Kaahoek, J. Li and R. Morris, Practical, Distributed Network Coordinates,” in
2nd Workshop on Hot Topics in Networks (HotNets), 2003.

[6] G.M. Crippen and T.F. Havel, Distance Geometry and Molecular Conformation, Wiley, 1988.
[7] R. Cox and F. Dabek, ’Learning Euclidean coordinates for Internet hosts,” MIT ETR 2003.

[8] M. Fomenkov, k. claffy, B. Huffaker, D. Moore. Macroscopic Internet topology and performance
measurements from the DNS root name servers,” in USENIX Large Installation System Administration
Conference (LISA), 2001.

[9] P. Francis, S. Jamin, C. Jin, Y. Jin, D. Raz, Y. Shavitt and L. Zhang, “IDMaps: A Global Internet Host
Distance Estimation Service,” IEEE/ACM Transactions on Networking, 2001.

[10] C. Gavoille, D. Peleg, S. Perennes, R. Raz “Distance Labeling in Graphs,” In //th ACM-SIAM Sympo-
sium on Discrete Algorithms, 2000.

11



[11] O. Goldreich, S. Goldwasser and D. Ron, "Property Testing and its Connection to Learning and Ap-
proximation”, in 37th Annual IEEE Symposium on Foundations of Computer Science, 1996.

[12] K.P. Gummadi, S. Saroiu and S.D. Gribble, “King: Estimating Latency between Arbitrary Internet End
Hosts,” in ACM SIGCOMM Internet Measurement Workshop, 2002.

[13] A.Gupta, R. Krauthgamer and J.R. Lee, “Bounded Geometries, Fractals, and Low-Distortion Embed-
dings,” in 44th Annual IEEE Symposium on Foundations of Computer Science, 2003.

[14] J.D. Guyton and M.F. Schwartz, “Locating Nearby Copies of Replicated Internet Servers,” in ACM
SIGCOMM, 1995.

[15] B. Huffaker, M. Fomenkov, D.J. Plummer, D. Moore and k claffy, ”Distance Metrics in the Internet,”
IEEE International Telecommunications Symposium, 2002.

[16] P. Indyk, “Algorithmic applications of low-distortion geometric embeddings,” survey, in 40th Annual
IEEE Symposium on Foundations of Computer Science, 1999.

[17] P. Indyk. ”Sublinear Time Algorithms for Metric Space Problems,” in 40th Annual IEEE Symposium
on Foundations of Computer Science, 1999.

[18] W.B. Johnson and G. Schechtman, “Embedding l;” into [1',” Acta Mathematica, 149, pp. 71-85, 1982.

[19] D. Karger and M. Ruhl, “Finding Nearest Neighbors in Growth-restricted Metrics,” in 34th Annual
ACM Symposium on the Theory of Computing, 2002.

[20] R. Krauthgamer and J.R. Lee ”The Intrinsic Dimensionality of Graphs,” in 35th Annual ACM Sympo-
sium on the Theory of Computing, 2003.

[21] R. Krauthgamer and J.R. Lee ‘“Navigating nets: Simple algorithms for proximity search,” In /5th
ACM-SIAM Symposium on Discrete Algorithms, 2004.

[22] R. Krauthgamer and O. Sasson, “Property testing of data dimensionality,” In /4th ACM-SIAM Sympo-
sium on Discrete Algorithms, 2003.

[23] C. Kommareddy, N. Shankar and B. Bhattacharjee, “Finding close friends on the Internet,” in 9th IEEE
International Conference on Network Protocols (ICNP), 2001.

[24] T. Leighton and S. Rao, “An approximate max-flow min-cut theorem for uniform multicommodity
flow problem with applications to approximation algorithms,” in 29th Annual IEEE Symposium on
Foundations of Computer Science, 1988.

[25] N. Linial, “Finite metric spaces - combinatorics, geometry and algorithms,” Proc. International
Congress of Mathematicians 111, pp. 573-586 Beijing, 2002

[26] N. Linial, E. London and Yu. Rabinovich, “The geometry of graphs and some of its algorithmic appli-
cations,” Combinatorica (1995) 15, pp. 215-245.

[27] J. Matousek, “On embedding expanders into [, spaces,” Israel J. of Mathematics 102 (1997).

[28] J. Matousek and P. Indyk, Chapter on embeddings in the Handbook of Discrete and Computational
Geometry, J.E. Goodman and J. O’Rourke, eds, CRC Press LLC, FL. 1997.

12



[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

M. Mihail, C.H. Papadimitriou and A. Saberi, “On Certain Connectivity Properties of the Internet
Topology,” in 44th Annual IEEE Symposium on Foundations of Computer Science, 2003.

E. Ng and H. Zhang, "Predicting Internet Network Distance with Coordinates-Based Approaches”, in
IEEE INFOCOM, 2002.

R. Percacci and A. Vespignani ~’Scale-free behavior of the Internet global performance,” arXiv e-print
cond-mat/0209619, September 2002.

M. Pias, J. Crowcroft, S. Wilbur, S. Bhatti and T. Harris “Lighthouses for Scalable Distributed Loca-
tion,” in 2nd International Workshop on Peer-to-Peer Systems (IPTPS), 2003.

D. Ron and M. Parnas, “Testing Metric Properties,” in 33th Annual ACM Symposium on the Theory of
Computing, 2001.

S. Semmes. ”On the nonexistence of bi-Lipschitz parametrizationsand geometric problems about A o,
weights,” Rev. Mat. Iberoamericana 12 (1996).

K. Talwar, "Bypassing the embedding: Approximation schemes and Compact Representations for
growth restricted metrics,” in 36th Annual ACM Symposium on the Theory of Computing, 2004.

T. Tankel and Y. Shavitt, "Big-bang simulation for embedding network distances in Euclidean space,”
in [EEE INFOCOM, 2003.

A. Vazquez, R. Pastor-Satorras and A. Vespignani, “Large-scale topological and dynamical properties
of Internet,” Phys. Rev. E 65, 066130 (2002).

B. Y. Zhao, J. D. Kubiatowicz, A. D. Joseph. “Tapestry: An Infrastructure for Fault-Tolerant Wide-
Area Location and Routing,” UC Berkeley Computer Science Division, Report No. UCB/CSD
01/1141, April 2001.

13



Appendix A: Dense Point Sets under .; Metric

The proof of this theorem extends the discussion in Section 2.

Theorem A.1 Any dense point set M under the L1 metric can be perfectly triangulated.
Proof: For easy of exposition we assume that d = 2, but the same techniques extend naturally to any
constant dimension.

Consider a dense point set M in [0, \/%]2 Divide M into cells with width and height 5\/%, for some
0 to be chosen later. There will be Tlf cells. Let z¢ and y¢ denote the row and column of cell C. Define
h = min(6%n/4k, §°ne/3), and call a cell C heavy if it contains at least h points, and light otherwise. The
idea is that we will be able to ensure that with high probability, nearly all heavy cells will contain beacons,
and that a negligible number of points fall outside of the heavy cells. We will then argue that for most pairs
of points that lie in heavy cells, triangulation will give matching upper and lower bounds.

(LT I I O
I (<21 I O I
o[ e, c,

1(i :

R T
@ (b)

Figure 2: Dense point sets: (a) a cell C, A¢ in gray, and corresp. quadrants; (b) a band of bad heavy cells.

Since no two points in M are within a distance of 1, no cell can have more than 462nk points. So if we
let cv be the fraction of cells that are heavy, then (omitting some easy arithmetic) o > 1/(4k + 1).

We will begin by proving that the lower bound is correct for most pairs. Say two cells C, D are aligned
if xc = xp or yo = yp. Let Ac be the set of cells aligned with C'. Note that the removal of A partitions
the area into four quadrants, which we label C', C, Cs, and Cy, as shown in figure 2(a). Say a dense cell
C is good if each of its four quadrants contain at least one heavy cell, and bad otherwise. Observe that if C'
is good, and all dense cells contain beacons, then all points in C' will have correct lower bounds to all points
in M — Ac.

We now need to show that most dense cells are good. Any dense cell that is not good can attribute its
badness to one of its quadrants. Define ; for 1 < i < 4 to be the set of heavy cells lacking a heavy cell
in their i*" quadrant. Consider cells C, D € B; and note that ¢ + yc # xp + yp, since otherwise one of
these cells would be to the upper-left of the other, violating our assumption. Therefore |B1| < % (see figure
2(b) for a possible B set). The argument is symmetric for all four quadrants, so in total, there can be no
more than % bad cells. Since any cell containts at most 462nk points, the total number of points in bad cells
is at most 326nk. Choosing § = g& ensures that only $n points are in bad cells.

By our definition of &, the total number of points that are in light cells is also at most gn. Lastly, for
those points in any good cell C, we have no guarantee about the lower bound to points in .4 <. But this set
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contains % — 2 cells, and hence fewer than gn points. Hence, by selecting a large enough number of beacons,
we can ensure with high probability that all but an € fraction of distances have correct lower bounds.

The same general idea works for the upper bound as well. The primary difference is we need the idea of
a heavy cell D being bad relative to some cell C, meaning there are no heavy cells in the rectangular region
bounded by C' and D. It is this region that needs to contain a beacon for us to have a good upper bound on
distances from C' to D. As before, we can show that only a small number of cells are bad relative to any
other cell, and for all other cells, the calculated upper bound will be correct. The same choice of § used
above gives the desired result. |

Appendix B: Bourgain-like Embedding for Doubling Metrics
The exact statement and the proof of this theorem extend the discussion in Section 3.

Theorem B.1 Fix constants € > 0, s > 1 and p > 1. Then any s-doubling metric can be e-embedded into
L,, with constant dimension and constant distortion, using only a constant number of beacons. We get a
strong e-embedding with O(logn) dimensions and beacons. Moreover, we provide an efficient randomized
algorithm.
Proof: Using Lemma 2.3a we capture the dependence on the doubling constant s via § = %e /s? such that
T, (8) < idw for a strong e-set E of node pairs. We’ll give a randomized algorithm that e-embeds any s-
doubling metric d into L,, with dimension O(log % log %) and distortion O(log %), using only O(% log %)
beacons, with success probability at least 1 — §. In particular, there exists an e-embedding with dimension
O(log? %), distortion O(log %) and O(% log %) beacons. Note that for a strongly s-doubling metric § =
¢/s? would suffice by Lemma C.2. In either case log % = O(log 2).

The algorithm is essentially the Bourgrain’s algorithm without the smaller length scales. For each i €
[log %] choose k = O(log %) uar sets of beacons of size 1/(24), call them S;;. Embed each node v into

L; so that the ij-th coordinate is kl—l/pd(v, Sij), where d(v, S) is the distance between v and the set S.
For simplicity we’ll consider the case p = 1 first. Since for any set S we have d,,, > |d(u, S) —d(v, S)],
the embedded wv-distance d,,, is upper-bounded by O(d,, log %) The hard part is the lower bound: d,,, =
Qdyw)- '
Fix a node pair uv € E. Letd = d,. Let p;, = min(r,, (8 2'),d/2). Note that the sequence p; is
increasing with pg < d/4 and p; = d/2 for i > ig for some ig. For each i we claim that with failure
probability at most €d/ log % the total contribution to d;,, of all sets S;; is Q(p;+1 — p;). Once this claim is

proved, with failure probability at most €d the sum of these contributions telescopes:

diyy =Y Qpis1 — pi) = Apiy — po) = Ad).

Then by Markov inequality with failure probability O(¢) this holds for an e-set of node pairs. To make this
happen for a strong e-set of node pairs (actually, for all of E) we need to replace the Markov inequality by
the union bound, which is achieved by increasing the parameter & to O(logn).

It remains to prove the claim. Fix ¢ and let v = 2°3. Wlog assume the ball around u reaches size yn
before the ball around v does: p; = 7,(7) < 7,(7y). A given set S;; contributes at least %(,02'4_1 — pi) to
d.,, as long as it hits B = B,(p;) and misses the open ball B’ of radius p;+; around v. By Lemma B.2 the
probability of this happenning is at least ¢ (since the two balls are disjoint, |B| > yn and |B’| < 2yn). Thus
the expected number of S;;’s with this property is ck, so applying the Chernoff bound, for big enough £k =
O(log %) the probability that at most ck/2 of S;;’s do not have this property is at most e~ck/8 < B¢ /log %
This proves the claim, and completes the proof of the theorem for the case p = 1.
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To extend the theorem to general p, follow [26]. Let d%,, be the embedded uv-distance, let
w5 = |d(u, Sij) — d(v, Sij)|

be the contribution of the set S;;, and let = log % Then &b, = (% Zij xfj)l/p, SO

1/p
1 1
1 p 1 3 1/p—1 41 1/p—1
dr, = /P v Eij Ty > g/P = Eij Tij = 2'/P71gY = 2VPTQ(d).

1/p
For a lower bound, recall that z;; < d, so b, < (% Zij dp) = 2!/Pd. Therefore the (two-sided)
distortion is at most x, as required. O

We use the following lemma in the proof of Theorem B.1. The proof is implicit in [26] but we include
it for the sake of completeness.

Lemma B.2 There is a constant ¢ > 0 with the following property. Consider disjoint events E and E' such
that Pr[E] > ~ and Pr[E'] < 2v. Let S be a set of 1/~ points sampled independently from this probability
distribution. Then with probability at least ¢, S hits E and misses E'.

Proof: Let p = Pr[E] and p’ = Pr[E’]. Treat sampling a given point as two independent random events:
first it misses F’ with probability 1 — p’, and then (if it indeed misses) it hits £ with probability 1%,. Wlog
rearrange the order of events: first for each point we choose whether it misses E’, so that

Pr[all points miss E'] = (1 — p/)/7 m e ?/7 > ¢71/2,

Then upon success choose whether each point hits £. Then at least one point hits £ with probability at least
1-(1-p/r>1- 1. So the total success probability is at least ¢ = (1 — %)6_1/2. O

Appendix C: Graceful Degradation Embedding for Strongly Doubling Metrics

The exact statement and the proof of this theorem extends the discussion in Section 5.

Theorem C.1 (a) Bourgain’s algorithm embeds any strongly 2°-doubling metric into L, with dimesion
O(log®n) so that each d,, > 1, (27) is embedded with distortion O(i + s), for each i € [logn]. (b) In
particular, for any € > 0 the distortion is O(s + log %) for a strong e-set of node pairs.
Proof: First note that part (b) easily follows from part (a): given € > 0 apply (a) for ¢ = log % to get the
desired distortion for all pairs uv such that d, > 7. (€), which is clearly a strong e-set.

The rest of the proof is on part (a). Recall that Bourgain’s algorithm uses uar sets S;; of size 2¢, for each
i € [logn]and j € [k], k = O(logn). Denote the contribution of the set S;; by z;; = |d(u, S;;) —d(v, S;j)|.
For normalization purposes divide all coordinates by k1/P, so that the embedded uv-distance is

1/p
1 p
dyyy = % Z Lij
ij

For simplicity consider the case p = 1 first.
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Fix x and a node pair uv such that d,, > r;, (27%). Let d and d’ be the true and embedded distances,

respectively. As in the Bourgain’s proof, d’ = Q(d). Since z;; < d, the Bourgain’s upper bound is
d" = O(dklogn). Here we’ll improve it to O((x + s)dk). Specifically, we’ll show that

> aiy < O(dks).

>z j

Fixi > z. Let f = 2"/ and t = % Let X, be a 0-1 random variable that is equal to 1 if and only
if d(u, S;;) > dB7". It is not hard to prove that this happens with probability at most e2' 4 We'd like to
upper-bound j X by a constant times the expectation, but for large enough ¢ the expectation is too small
to give small enough failure probability via Chernoff bounds. However, if we give up a factor of 2 2 /2¢, then
the Chernoff bound (Lemma C.3 with [ = 2) gives > i Xju = O(k27%) with a sufficiently small failure
probability to make sure that this happens for all « simultaneously.

Note that z;; > 2d3~t only ifY; =1, where Y; = X, V Xj,. So

D SO(d) Y (87" +Y5) = Odk) (5" +27).

J

Summing this over all ¢ > x we obtain the desired upper bound since ﬁ =0(s).

To extend this theorem to a general p < 1 we need a more complicated calculation than the one in [26].
As before, consider a fixed ¢ > x. Let S be the set of all j such that Y; = 1. Recall that with high probability
it is the case that for all pairs uv the size of S is at most O(k2~"). Therefore

Soaby = b+ Y ab <|S|a + k(243"
J jes igs

O(k)(2d)P (27" + 57'7)

1YY < carYop e <o ({200
k v = — 1— /8—p

>x j 1>T

< (24)*O(s/p)

1 1
dhy = |G 2

i>T J i<z jJ

< O(d)(z+s/p)"/?

1/p

For a lower bound, note that for | = z + 2s it is the case that 7}, (27!) < d/4. In the proof of Thm. B.1
we essentially show that } -, ., >~ z;; > Q(kd). Therefore,

1/p 1/p

1 1 1

i<l j i<l g i<l g
> Qd)(x + s)Y/P7!

So the total (two-sided) distortion is at most x + s as required. O

*Indeed, for i > 1 > x letting r = r,(27") we have d > 7,(27%) = r,(27'2"7%) > 8"""r, s0
Pr[d(u, Si;) > d3" "] < Pr[S,; misses B, (r)] = (1 — 24)21 <e ¥

The claim follows if we take [ = Z*T*
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We use these lemmas in the proof of the above theorem.

Lemma C.2 Consider a strongly s-doubling metric d and fixed € and 5. Let €' = €s'°%9. Then for a strong

e-set of node pairs uv we have 1, (€') < ddy,. Therefore for an 2¢-set of pairs uv we have 1.1, (€') < ddy,.

Lemma C.3 Let X, j € [8log n] be independent 0-1 random variables such that Pr[X; = 1] = e~ where
[ >16. Then ) X; < % log n with probability at least 1 —n =%,
Proof: Let X =) X;and u = E(X). Let 1 + § = €'/I. Then using Chernoff Bounds we get

. e\ 1Ton (el)l/l 8logn 1
_ _ —1 _ —
Pr[X > 8" logn] =Pr[X > (1+d)u] <e <1 —|—5> < . <

since (el)'/! < \/e for any I > 16. O

Appendix D: Asymptotically-Uniform Metrics

This section extends the discussion in Section 5.

Call a metric (e, d)-uniform if it is e-embeddable into a uniform metric with distortion 1 + 6. Call a
family of metrics {M,, : n € N} asymptotically uniform if for each €,§ > 0 there exists N such that
metric M, is (e, d)-uniform for each n > N. We’ll demonstrate several families of metrics that are non-
embeddable into L, with constant distortion, but asymptotically uniform, hence e-embeddable. These are:
preferential attachment graphs, constant-degree expanders, and hypercubes.

The preferential attachment graph (PA) is an expander [29]. Any constant-degree expander is embed-
dable into L,, with distortion at least ©2(logn)[26, 27]. PA (and Internet) need not contain a constant-degree
expander since their high expansion might rely on the high-degree nodes. However, we can lower-bound the
distortion using the average distance.

Lemma D.1 PA is embeddable into 1, p € [1, 2] with distortion no better than Q(log n)/ log log n.

Proof: Let )\, n be the all-pairs max-concurrent flow and min-ratio cut, respectively, so that A < 7. By
Linial-London-Rabinovich [26] the minimal distortion for embedding any graph into Ly is v > n/A. By
a simple argument from Leighton-Rao [24], for expanders with O(n) edges n/\ > (d) where (d) is the
average distance in the graph. Let’s lower-bound the expected (d) for PA.

In Thm. 5 of Bollobas-Riordan [3], they number the vertices of PA from 1 to n, in the order of arrival,
and show that for some L = O(logn)/loglogn, the expected number of uv-paths of length exactly [ < L
is at most (n//uv)(%)!/(log n). Therefore, for u,v > n/2 the expected number of uv-paths of length < L
is O(1/logn), so dy, > L w.h.p. for large enough n, so E(dy,) = Q(L).

This proves the lemma for p = 1. The general case follows since for any p € (1,2] there exists a
constant-distortion embedding from L, to L (e.g. by [18]). O

It turns out that the shortest-paths metric of PA is near-uniform with high probability.

Lemma D.2 PA is asymptotically uniform whp. More precisely, for any fixed €,6 > 0, PA is (€, )-uniform
with failure probability o(1).

Proof: Using the Bollobas-Riordan argument from Lemma D.1, for u,v > en the expected number of
uv-paths of length < Lis ¢ = O(ﬁ), s0 dy, < L with probability at most q. The fraction of such pairs
is at most ¢ in expectation, hence by Markov inequality it is at most € with probability at most g/e. So with
probability at least 1 — ¢/e all but a O(e)-fraction of node pairs is at distance at least L. This suffices since
by [3] the diameter of PA is at most L(1 + §) with failure probability at most o(1). O
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Constant-degree expanders are near-uniform for all n and with a small additive distortion.

Lemma D.3 For any € > 0, any constant-degree expander is e-embeddable into a uniform metric with
additive distortion of O(log 1).

Proof: Let § = a/d where « is the expansion and d is the maximal degree, and let s < n/2. Then any
ball of radius r and size s has least aes edges coming out of it, which go to at least 3s distinct nodes outside
of the ball. So the ball of radius r + 1 has at least (1 + 3)s nodes. Similarly, any ball of radius r and size
n — s has at least as edges coming out of it, which go to at least 3s distinct nodes outside of the ball. So the
complement of the ball of radius  + 1 has at most (1 — 3)s nodes. Therefore for any node u

ru(l —€) —ru(e) <logy, g(1/€) +log; _g(e) = O(log %)

We obtained the required additive distortion on all node pairs adjacent to the same node. Now let’s
extend it to entire graph. Ignore node pairs uv such that v € B/ (¢) or v € B, (1 — ¢€). Let G be the graph
on the remaining node pairs. Then for any pair of edges adjacent in G their distances differ by at most
O(log 1). It remains to show that in G all but an O(e)-fraction of node pairs are within a constant #hops
from each other. This follows from the density of G: since at most 2en? node pairs are ignored, all but an
O(e)-fraction of nodes have degree at least %n in G; obviously any two such nodes have a common neighbor
in G, claim proved. O

Lemma D.4 Hypercubes are asymptotically uniform.

Proof: Fixe, 6 > 0. Leta = Fl(s’ b= ﬁ and c = ﬁ Note that for each j < i < bk/2 we have

(B)=e( b )=sen)

Therefore #nodes within distance ¢ < ak/2 from a given node u in a k-dimensional hypercube is

50) 5o () () s
j=0

which is less than €2* for big enough k. Distances i > (1 + 0)k/2 are treated similarly. O
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