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Abstract

We are given a set of n points that appears uniformly distributed in the unit square [0, 1]2.
We wish to test whether the set actually is generated from a non-uniform distribution having
a small fraction of points concentrated on some (a priori unknown) curve with C'“-norm
bounded by S.

An asymptotic detection threshold exists in this problem; for a constant T («, 8) > 0, if
the number of points on the curve is smaller than T («, 5)n1/(1+“), reliable detection is not
possible for large n.

We describe a Multiscale Significant-Runs Algorithm; it can reliably detect concentration
of data near a smooth curve, without knowing the smoothness information « or 3 in advance,
provided that the number of points on the curve exceeds T, (a,ﬁ)nl/(HO‘). This algorithm
therefore has an optimal detection threshold, up to a factor T, /T_.

At the heart of our approach is an analysis of the data by counting membership in multi-
scale multianisotropic strips. The strips have an area of C'/n and exhibit a variety of lengths,
orientations and anisotropies. The strips are partitioned into anisotropy classes; each class is
organized as a directed graph whose vertices are strips all of the same anisotropy and whose
edges link such strips to their ‘good continuations’. The point cloud data are reduced to counts
measuring membership in strips. Each anisotropy graph is reduced to a subgraph consisting
of strips with ‘significant’ counts. The algorithm rejects Hy whenever some such subgraph
contains a path connecting many consecutive ‘significant’ counts.
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1 Introduction

We cannot help but see faces and castles in clouds, monsters in ink-blots and exotic
forms in random dots. Form is so central to human perception that, I am told, it is
extremely difficult to prove something random or formless. — Mae-Wan Ho [16]

Suppose we have n data points X; € [0,1]? which at first glance seem uniformly distributed in
the unit square. On cursory visual inspection, it seems that a suspiciously large number of the
data points fall along a smooth curve. However, the curve on which these points lie has only been
identified after inspection of the data. We know that the human visual system has the ability to
‘hallucinate’ curvilinear structure in truly random point clouds. We are therefore concerned about
the reliability of the perceived ‘pattern’, and wish to follow an objective procedure for testing the
existence of filamentary structure; this procedure should reliably separate ‘filamentary structure’
from ‘random scatter’ and be computationally tractable.

This is a prototype for various practical imaging problems ranging from surveillance to road
and streambed tracking to particle physics [24, 27, 1]. In all cases the observer is looking for
evidence of a filamentary structure in a background of heavy ‘clutter’.

As a first attempt at formalizing matters, consider the problem of testing

Hy : X; idd. Uniform(0, 1)*

Versus
H;(a,0): X; iid. (1 — &,)Uniform(0, 1) + &, Uniform(graph(f)), f € Holder(a, 3),
where, for 1 < o < 2, Hélder(«, 3) is the class of functions f : [0,1] — [0, 1], with continuous
derivative f’ obeying |f'(z) — f'(y)| < aB|z — y|*~!. In words, we believe that a relatively small

fraction €, of points lie on a smooth curve in the plane.

1.1 “Connect the Dots”

In previous work by the authors [3], it was shown that, when « and (3 are fixed and known, there
is a detector based on the principle that, under Hy, no Holder(«, 3) curve can pass through a
very large number of points in a random point cloud. More particularly, we know that there is a
threshold 7'y = T’ («, 3) so that

o If T' < T, we have that, with probability tending to 1, there exists a Holder(«a, 3) curve
containing at least T - n'/(1+%) points (X;)7,.

e If T'> T, , we have that with probability tending to 1, there does not exist a Holder(«, [3)
curve, containing more than 7" - n¥/ (%) points (Xi)iy.

More concretely, if we deal with Lipschitz curves with |slope| < 1, we have found empirically that
for moderate n &~ 1000 there will frequently be some Lipschitz curve containing /n data points
but rarely will there be one containing more than 3/n points.

So, if we happen to notice a curve passing through substantially more than 77 - nt/(
points, we have a strong basis for rejecting the null hypothesis of pure randomness. Moreover,
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to within a constant factor, this threshold is optimal; no sequence of tests can be reliable for
detecting substantially fewer than 7" - n!/(1+®) points, for a certain 7 > 0.

Elaborating this principle leads to a formal hypothesis test based on searching for curves
containing large numbers of points. Let N, (A4) = #{{X;} N A} denote the measure counting how
many points lie in the set A; searching for a curve containing the maximal number of points leads
to the optimization problem

N} (a, 8) = max{N,(graph(f)) : f € Holder(«, 5)}

which searches over all Holder(«, 3) graphs and rejects Hy for values of N* substantially exceeding
T+ X nl/(l-i—oz).

This approach, while very instructive, does not address the concerns of someone who might
actually be interested in performing a test on real data.

e Computational Burden. The task of finding the largest number of points on a Holder(«, [3)
curve seems to the authors computationally impractical unless o € {1, 2}.

e Unknown «,B3. The proposed approach assumes a specific a-3 combination. Instead, we
desire an algorithm which works automatically regardless of the specific values of a € (1, 2]
and G > 0.

e Fragments. This approach searches only for filamentary structures which extend all the way
across the square from z = 0 to z = 1. Instead, one wants an algorithm which works even
for short fragments.

e General Planar Curve . The proposal assumes the underlying filament can be parametrized
as a graph. It seems important to search for filamentary structures which are general curves
rather than just graphs — for example, curves which loop around in the plane.

1.2 An Adaptive Multiscale Approach

In this paper we describe an approach which addresses the concerns just listed. Our proposal:

1. Works across for a wide range of («, (3), and only requires knowing a bound on the maximum
slope of the curve;

2. Detects presence of Hy provided
e > T, -n~/(et])

for a constant T} which depends on «, # and other factors. In view of earlier results, this
is optimally sensitive to within a factor T /7_.

3. Runs in O(log(n) - n?) flops.
4. Extends naturally to detecting general planar curves which are not graphs; and, finally,

5. Extends naturally to detecting target filaments of unknown extent which, in large samples,
can be very short compared to the image extent.



The detector is based on multiscale geometric analysis of the dataset, using a multiscale
dictionary of parallelogram strips exhibiting a variety of lengths, locations, orientations and aspect
ratios. The idea is to count membership of data points in various strips, to identify strips with
significantly large counts, and search for long ‘runs’ of significantly large counts in collections of
strips that are ‘good continuations’ of each other.

An interesting aspect of our approach is how simply and naturally the principle of ‘good
continuation’ appears and leads to a solution.

1.3 Contents

The paper is organized as follows. In Section 2 we describe the underlying multiscale data
structures. Section 3 describes the adaptive algorithm in general terms, and gives a statement
of our main result. Section 4 describes the threshold settings underlying our algorithm, while
Sections 5 and 6 analyze its behavior under Hy and Hj, respectively. Section 7 finishes the paper
with discussion of related work.

2 Multiscale Anisotropic Strips, and Good Continuation

Our data structures comprise a multiscale collection of anisotropic, tilted planar regions, and a
sequence of directed graphs organizing them.

To define the regions, fix p = 2" (e.g. 2 or 4); this parameter controls overlap between the
regions we will be defining. Also, fix S > 0 (e.g. 2 or 4) this controls the maximum |slope| we
shall be able to detect. We assume that n is large and let J = [logy(n)].

Let R(j, k, £1,02) be a paralleliped with vertical sides which is w = 277 ‘wide’ by t = 2=(/=/)+r
‘thick’. Here j runs through the set 0O, ..., J. For examples, see Figure 1. The regions in question
have a midline bisecting them vertically and will be ‘tilted’ (sheared) at a variety of angles. Notice
that these regions are highly anisotropic. While implicitly the whole collection depends on n, we
suppress this in our notation. Moreover, the width w and thickness ¢ depend on j and n; but we
also suppress this in our notation. Note that the degree of anisotropy is the same for all regions
sharing a common value of j; we generally focus only on one anisotropy class j at a time.

—

kw Xy (k+1)w

Figure 1: An Anisotropic ‘Strip’ R’



The parameters k and ¢; control the horizontal location of the regions and vertical location
and slope of the midline. There is an underlying assumption that we are interested only in
regions whose major axis has a slope bounded in absolute value by S. The mapping between
these discrete parameters is intended to insure that the regions pack together horizontally, and
that they are fairly closely spaced in both vertical position and slope. We fix two scale factors,
U = 16 and V = 16, which are arbitrary but should exceed 1. Let 6; = t/U and d2 = t/(Vw)
(these again depend implicitly on j and n). The region R(j,k,¢1,/3) will be located in [0,1]?
with left-hand vertical side at x = kw, left endpoint of midline at y = ¢101, and with slope of
midline s = f265. Here 0 < k < w™!'; ¢; runs through the set 0,. .., 5;1 — 1; 5 runs through the
set —S6,%, ..., 90, .

We gather all such regions at level j in R(j) = {R(j, k, ¢1,02) : k,{1,02}.

To organize the regions, we define a directed graph G(j) = (V(5),€(j)), with vertices V(j)
and edges £(j). The vertices are simply the regions in R(j): V(j) = R(j). The edges connect
regions to their good continuations, namely, regions which are horizontally adjacent, and which
have altitudes and slopes which are nearly the same — less than d; and 05 apart, respectively.
Formally, we have the following directed edges in £(j):

(k,l1,02) — (k+ 1,01 + o+ u, by +v)

where |u| < U, |[v| < V.
Figure 2 (resp. 3) illustrates “good continuation” (resp. “bad continuation”).

kw (k+D w (k+2y w kw (k+1) w (k+2) w
(a) (b)

Figure 2: Examples of good continuations; the midlines have about the same slope and there is
a substantial part of a side in common.



Figure 3: Examples of bad continuations; either the midlines have very different slopes or the
sides are effectively disjoint.

This graphical structure, while very simple, has a perhaps surprising property: it allows us to
efficiently cover the graphs of general smooth functions exhibiting any of a range of smoothnesses.
This claim is summarized in three lemmas. The first lemma associates to each Hoélder class a
specific anisotropy graph.

Lemma 2.1 For each fized (a, 3) combination with 1 < o < 2, we have that for all sufficiently
large n there is 7* = j*(«, B;n) so that w = w(j*) and t = t(j*) obey

2w <t < 16p5w™. (2.1)

The next result shows that regions in the anisotropy class R(j*(«, 3)) are well-adapted to
cover fragments of the graphs of the associated Holder(«, 5) class.

Lemma 2.2 Let j = j*(a, 3) and suppose f is a Hélder(a, 3) function with domain containing
I, = [kw, (k + Dw). Set z, = (k+ 1/2)w, let £101 be the closest multiple of &1 to f(xy), let €262
be the closest multiple of 02 to f'(xy). We say that the region R(j,k,{1,¢2) is associated to f
on 1. This strip covers the graph of f over their common domain:

gmph(f, Ik) C R(Ja k’£17€2)' (22)

See Figure 4.
The final lemma in the sequence shows every function in the Holder(«, 3) class corresponds
to a covering sequence of regions which makes a connected path in G(j).

Lemma 2.3 Let j = j*(«o,3) and suppose f is a Hélder(o, 3) function on [0,1]. Let T;(f) be
the collection of all strips R(j, k, {1, ¢2) associated to f by the procedure mentioned in Lemma 2.2.
The sequence of strips R; = R(j,4,01,,02;) consists of spatially adjacent regions, making a kind
of ‘tube’. When viewed as vertices of G(j), the (R;) are neighbors in G(j), i.e. R; and R;+1 can
be connected using edges in E(j).



Figure 4: graph(f) (in blue) covered by its kth associated region at level j (in red); fx is tangent
to graph(f), gx is the midline of R(j, k, ¢1,¢2). See the proofs in the Appendix for more discussion.

These lemmas together show that, while the graphical structure itself is based on very simple
rules, it is able to associate paths in the graph with custom-fitting tubes covering the graphs of
very different kinds of smooth functions. The proofs of these lemmas are given in the appendix.
Figure 5 illustrates the idea.

3 The Multiscale Significant-Runs Algorithm

We now describe the complete algorithm for analysis of point cloud data (X;) looking for suspected
filaments. It depends on a counting threshold N* and a length threshold L}, both to be defined
later. The algorithm has several steps:

1. Counting Membership in Anisotropic Strips. For every region R, in every anisotropy class,
we count the number of data falling in that region:

N(R) = #{i: X; € R}.

2. Identifying Significant Counts. We define a significance indicator which is nonzero when
the counts exceed a threshold:

$(R) = L{N(R)>N*}-
The significance indicator may be viewed as labels on the regions R, producing a sequence
of a labelled graphs

%) = (V3G),€3),0(5)),
where o(j) = (s(R)) gives the labels on R € R(j). We call this the j-th significance graph.
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Figure 5: graph(f) (in blue) covered by 7;(f) (in red).
3. Computing Longest Paths. In each significance graph, we employ a depth-first search algo-
rithm to explore all significant paths
™= (Rl)R27 s 7Rm)’
i.e. sequences of vertices which are

(a) All significant: s(R;) = 1.
(b) All connected: (R;, Ri+1) € £(4)-

We record the maximum path length in each significance graph:

Ly'5" = max{length(r) : 7 is a significant path in %(j)},
Ly = max Lp'7".

J
4. Decision. We compare L7'** with a length threshold:

If L < LY, Accept Ho; If L7 > L Reject Hy.

This defines the test, except for the specification of the thresholds Ly and N*. Asymptotic
formulas for these thresholds will be given in Section 4.

A worked example of the Multiscale Significant Runs Algorithm is illustrated in Figure 6. A
pointset is mostly uniformly distributed, with about € = 1/20 fraction of points on a smooth
curve. The test is run with p = 2 and S = 2. The significance threshold was N* = 8.

The longest run in this case has length 5, which in this case exceeds the run-length threshold
L* and leads to rejection of the null hypothesis. For this small-sample setting, the threshold

n
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Figure 6: A random pointset contaminated by ¢ = 1/20 points on a curve, together with the
identified significant run (consisting of five strips).

Ly = 4 was obtained by simulation rather than asymptotic theory. For comparison, Figure 7
gives an example of a simulation in the null case € = 0; the longest run has length 2 in this case.
This simulation was typical; in the null case, rarely does the longest run exceed 2.

Several properties of the algorithm are immediate:

o Complexity of Strip Counts. The algorithm calculates all the N(R) for all the anistropic
strips. This takes O(n?log(n)) flops, where n is the number of points sampled. Indeed,
since each data point can belong to order O(nlog(n)) strips, by simply calculating which
R > X, and incrementing a counter for those R we get all N(R).

o Complexity of Longest Path. The algorithm calculates the longest path in each significance
graph. This takes work comparable to O(n?log(n)), based on depth-first search [2].

e Storage Requirement. The algorithm stores all of the N(R) counts and all the significance
coefficients. This requires O(n?log(n)) storage.

To state our main result, we amend our notion of alternative hypothesis. For a > 1, let
Holder(a, 3, S) denote the collection of function f € Holder(a, 8) with |f'|o < S. Define

Hi(o,5,57): X; i1d. (1 — &,)Uniform(0, 1)? + &, Uniform(graph(f)),

f in Hélder(a, 3;9), &n > 1-n~o/0+a),
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Figure 7: A random pointset, together with the identified longest run of significant strips; at
length 2, it is not a significant run.

Theorem 3.1 There is a single choice of thresholds N* and (L), so that for every a € (1,2]
and 3 >0, there is Ti(«, 3, p,S) so that, for each 7 > T,

P{ Test rejects Hy | Hi (o, 3,5,7) } — 1 as n — oc;

at the same time
P{ Test rejects Hy | Hp } — 0 as n — oo.

In words, under Hy the longest significant path is overwhelmingly unlikely to be substantially
longer than L} for large n, while under each indicated H;, the longest significant path is over-
whelmingly likely to be substantially longer than L. The threshold T is within a constant factor
T,/T- of the optimal detection threshold; this shows that, up to constants, we can adaptively
test for existence of fragments of C“ graphs.

4 Asymptotics of Thresholds

For practical finite-sample application of the test just described, it is of course possible to calibrate
thresholds by conducting simulation experiments. For the proof of our main result, we specify
thresholds in closed form. These thresholds are very conservative and our closed-form analysis
yields vastly overstated estimates of error probabilities, which are nevertheless good enough for
our proofs.

4.1 Specification of N*
Fix a probability py < 1. Define a counting threshold N (e, \) with the property that
P{Poisson()\) > N} < ¢,
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where Poisson(A) denotes a Poisson random variable with parameter A. Let Bin(n,p) denote a
binomial random variable with parameters n and p. By Poisson approximation to the Binomial,
we have

P{Bin(n,\/n) > NT(¢,\)} < 2¢, n > ny.

Set then N* = N*(po/(2UV), p), where U, V — introduced earlier — control the discretization of
altitude and slope. Our definition of N* gives us the key property

P{s(R) = 1|Ho} = P{Bin(n,p/n) > N*} < py/UV, n > ng. (4.1)

4.2 Specification of L

We use a convenient, but nonstandard, notation borrowed from Arratia and Waterman [5]. For
0 < p < 1, log, denotes, in this unconventional notation, the logarithm with base 1/p. At the
same time, we maintain the original convention that if b > 1, log;, means log to the base b. By our
convention, log, is the traditional logarithm base two, and log; /, is actually the same quantity.
Define the length threshold
L;, = 5log,, (nlog, n), (4.2)

where pg € (0,1) is the same as in the specification of N*. The underlying rationale for this
choice is the Erdos-Renyi law (see Arratia and Waterman [5]), which says

In a sequence of m i.i.d. Bernoulli random variables with probability p of heads, the
length of the longest run of pure heads ~ log,(m)(1 + op(1)).

In effect, our definition makes L} very substantially longer than the length of the longest run of
pure heads in a linear sequence of O(nl/ (1+°‘)) coin tosses of a pg-coin.

4.3 Specification of T,

Associated to the parameters N* and L} will be the threshold T, at which H; becomes detectible.
To define that, set p; sufficiently close to 1 that, for some ni > 0,

log,,, (nYA+) > 2. LF  n> . (4.3)

Implicitly, this choice again refers to the Erdés-Renyi law, and in some way guarantees that under
H; there will be very long runs.
Define an intensity threshold At (g) with the property that

P{Poisson(AT(g)) < N*} <,
Set \* = AT((1 —p1)/2), and set
To(, 5.p.5) = 2X° - (26/p) /050 . /T 1 &2

We will show that for
en > T, - n~0/(1+0), (4.4)
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the hypothesis Hj(a, ) becomes detectable by our proposal. The central point will be the
property

n-en-w(i (a,B,n))/V1+82 >\ (4.5)

To prove this, we inspect the proof of Lemma 2.1 in the appendix, and note that, by definition
of Ti(«, B, p) above, and using notation from the Appendix,

n-en - w(i* (e, 8,n))/V1+ 82 >0 T w( (o, 8,0))/(2V1 + 52) = A%,

Incidentally, we don’t claim that the algorithm fails for 7 < T}, only that we can prove it succeeds
for T > T.

5 Behavior under H;

Let f be the function in Holder(a, ), generating the graph carrying the fraction &, of data. From
Lemmas 2.1-2.3, we let j = j* and consider the tube 7;(f). For each region R in this tube,

N(R) ~ Bin(n, (1 — g,)area(R) + e,v(f, R)),

where area(R) = p/n, and « denotes the relative arclength in the graph of f, obeying

_ length(graph(f;;)) wo
B = fgtalgraph(f) = VIT o2

here I denotes the projection of R on the z-axis.
By Poisson approximation to the Binomial,

approx.

N(R) Poisson(u),

where, using (4.5)

> p/2+4 ne,w/\/ 1+ 52
> N
Hence, for every R in this tube, we have, for all sufficiently large n > ns,

P{N(R) > N*} = p1. (5.1)

Label the sequence of strips R in this tube Ryp,..., R,-1_;. We want to know the probable
length of the longest run of the form

N(R,) > N*,...,N(Ri+[,) > N*.

Then, if L,, is the length of the longest run in this special sequence, it follows that the longest-run
statistic we are computing over the entire graph can only be larger:

L > L,

12



To show that the test rejects Hy, we will show that
P{L,>L;} -1, n— . (5.2)

If we define
Xi = 1N(R)>N*}»
we note that each X; is Bernoulli with probability p;, while

Pi = Pi1-
We let m = w™! > Const - n¥/(+® and p = p; and we get, by the Erdés-Rényi Law
Ly, > log, (n'/1+9))(1 4 0p(1)).
But, by hypothesis, we have chosen p; in such a way that
1ng1(n1/(1+a)) > 2L7.

Hence (5.2) follows.

6 Behavior under H,

We need to show that with overwhelming probability under Hy, there will be no runs in the graph
exceeding L. We start by arguing that

P{ significant path of length L starts at given R|Hg} < p5.
Indeed, by choice of N*, for each R,
P{s(R) = 1|Ho} = P{Bin(n,p/n) > N*} < po/UV.
Now each region R has UV neighbors in G(j), and so by Boole’s inequality,

P {s(R') =1 for at least one neighbor of R [Hy} < Z P{s(R) = 1|Hp}
R’eNeighbors(R)
< #Neighbors - (pg/UV)

= (UV)(po/UV) = po.
Now if we are looking for a significant path of length > L, we need that starting at some vertex,
it has s(R) = 1 and is connected to a vertex with s(R’) = 1, etc. For a given starting point R,
the probability of this event is bounded by pOL - by negative correlation.

We now note there are at most M; = w™' - §; 1 - 6,1 - 25 starting points for paths in G(3).
The probability a significant path occurs in G(j) under Hy is controllable using Boole by

< # (Starting Points at Level j) - P{ significant path of length L starting at R|Hp} < M; ~p0L.

13



Take logy:

logy (M;) +logy(po) - L = logy(w™" - 67" 65" - 25) +logy(po) - L
JHj+(J—7)+r+9+1logy(S)+ logy(po) - L
j+J+C+logy(po) - L

Now choose L,, so that, for some § > 0,
Ly > 2J/logy(po) - (14 9),
for all sufficiently large n. Hence,
P{there is a run of length L,|Hy} — 0,n — oo.

Finally, recall that L} > L. a

7 Discussion

We have given only a sampling of results available by multiscale geometric analysis; much more
can be done. At the same time, these results are closely related to many ideas in the literature
of computer vision. In this discussion, we briefly indicate extensions and sketch a few such
connections.

7.1 Extensions
7.1.1 Fragments

In the introduction, we claimed that the same testing architecture allows to detect fragments
of general length, not necessarily extending across all the way across the image. The essential
requirement for detectability of shorter fragments is that there be a higher normalized density
of points on the curve for shorter curve lengths; slightly higher but not dramatically higher. To
detect fragments in this setting, we define a sequence of thresholds Ny and L;, ;, ¢ =1,.... Using
these thresholds, we apply the Multiscale Significant-Runs Algorithm repeatedly, for ¢ = 1,2, .. ..
If we cannot detect a run exceeding Ly, ; at the initial significance threshold Ng, we look for a
run exceeding Lj | with the next larger threshold, Ng,, and so on.

The thresholds are defined using an auxiliary sequence a, o for total error control; this tends
to zero with increasing n; we also have subordinate sequences o, 4 > 0, ¢ = 1,2, ... for sequential
error control obeying the sum constraint

o0
E Qg = 0o — 0, n — oo.
q=1

The sequence of thresholds is defined by setting po, = 279 and Ny = N *(%, ). Ly, is
defined so that

L*
n? -log(n) “Pog" < g

14



With this sequence of definitions, we have total probability of error under Hg tending to zero
with increasing n.

On the other hand, the multistage algorithm is powerful at detecting fragments. We need
a modified alternative hypothesis H;(«, 3, S, 7,7, 7), in which the parameters v and 7 constrain
the length of the fragment from below. This hypothesis supposes that the underlying filamentary
structure has the form of a partial graph, i.e. that f has for domain an interval I C [0,1] and the
filamentary data are uniformly distributed on graph(f|I). It supposes also, that for fixed n,vy > 0,
the length of I obeys the constraint |I| > - n~1/(+e)+n Then, by modifying our earlier analysis
of behavior under Hy, we see that, with m = m(vy,n) ~ v - n" there is pj = pi(v,n), so that for
all sufficiently large ¢,

Ly, , < log, (m), n — oo.

There is a corresponding threshold T} so that under 7 > T, we have significance probability ex-
ceeding pj for all regions belonging to 7;. It follows that the algorithm detects Hy(«, 3, S, 7,7, 1),
although again with threshold T («, 3, S,7,n) that is perhaps suboptimal by a constant factor.

The sequential algorithm just described is less computationally demanding than it may at
first seem. Note that the significance indicators s(R) may be viewed as functions involving py —
s(R;po) — and are monotone decreasing functions of py. Hence, individual runs become shorter
as pg increases, and it is possible to avoid substantial amounts of work by using this observation.

In effect, this sequential test considers runs which would not be remarkable from the initial
level pg = po,1 to be remarkable if they survive to a level py = po., at which they become
surprising. We leave out details.

7.1.2 General Plane Curves

In the introduction, we alluded to the fact that the approach described here can be adapted to
detect general plane curves, i.e. curves which are not graphs. This adapts ideas from our work on
beamlet graphs [12, 4]. We define a family of directed graphs based on regions modelled on ‘dyad-
ically thickened beamlets’ with various degrees of thickening. In this directed graph structure,
strips can have all orientations, including vertical and horizontal, so that the graph constraint
is removed. Connections between beamlets is based once more on good continuation principles,
in this case cood continuation of plane polygons rather than polygonal graphs. Otherwise the
algorithms are identical.

7.1.3 Inhomogeneous Smoothness

Holder function classes impose smoothness conditions which are spatially homogeneous — the same
at each point. Other types of smoothness classes, for example, bounded variation, allow jumps
at some points, and differentiability at others. To accomodate such inhomogeneous smoothness
would require a different architecture than the one discussed here. We would expand the notion
of good continuation to encompass connecting strips in different anisotropy classes, provided they
are immediately adjacent.

15



7.1.4 Higher-Degree Smoothness

In this paper we have only considered smoothness conditions where « is intermediate between
first and second order. It makes sense to ask about smoothness of higher order, for example to
consider 2 < a < 3. The analogous set of questions make sense in this setting; for example, there
will continue to be about n'/(1+%) points on some Holder curve, even for « in this range. To
accomodate such inhomogeneous smoothness would require a different set of strips than the one
discussed here — curved ones with parabolic midlines — and a notion of good continuation based
on matching of sides, and matching of slopes and curvatures of midlines. Preliminary calculations
suggest that analogous ‘adaptivity’ results hold in such a setting.

7.1.5 Higher Dimensions

The analogous detection problem in d-dimensional space — finding a curve or surface containing
an unexpectedly large number of points — has been considered by the authors in [3]. That work
provides nonadaptive detectors, i.e. detectors which assume knowledge of the Holder class.

The ideas developed in this paper can be directly applied to higher dimensions for adaptive
multiscale detection of filamentary structure in d-dimensional point clouds, d > 2. We omit
details.

A more ambitious generalization — to detection of codimension-k surfaces in d-dimensional
point clouds — is possible, but more involved, and messier. For example, for d =3 and k =1, we
are attempting to find a surface in d-dimensional space containing an inordinately large number of
points. The nodes of each anisotropy graph are planar slabs of volume p/n and the neighborhood
structure in the graph is, while conceptually analogous to the case considered here, far more
complex to write out. The comparable adaptive detection theorems hold in that setting, although
we omit details.

7.1.6 Vector Fields

Suppose that instead of data on points X; we had data on tangent vectors, i.e. on pairs (X;,6;)
naming both a position and a direction. Experiments in perceptual psychophysics (e.g. [15, 22])
suggests that this is a much more potent stimulus to ‘curve finding’ than simply the display of
random dots. Biological evidence about early vision suggests that individual receptive fields fire
when both location and orientation offer matches.

As null hypothesis, we suppose that the X; are i.i.d. uniform[0,1]?, while the 6; are i.i.d.
uniform[—m/2,7/2]. As alternative hypothesis, we could have that a small fraction of the X; lie
on a curve, X; = (x;, f(z;)) and the 0; specify angles parallel to the line with slope f’(z;).

Our paper [3] showed that such tangent vector data are substantially more powerful for iden-
tifying filamentary structure than the point data discussed so far in this paper. Namely, such
data give us the ability to detect filaments containing much smaller fractions of data points. In
fact, a reliable test for a Holder(2,1) filament can be based on agreement with more than T'n'/*
tangent vectors, rather than 7n'/3 points.

The multiscale data structures used in this paper can be applied in the tangent vector setting,
where we match (X;, 6;) to a region based not only on X; € R’ but also on #; matching the slope
of the midline of R. The resultant algorithm can take advantage of this more stringent matching
structure to speed up the counting process, as each tangent vector will lie in only one region
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in a given anisotropy class, resulting in O(log(n)) flops per data point rather than O(nlog(n)).
Searching for significant paths will be significantly faster as well, since there can only be nlog(n)
starting places for a path. Hence the whole algorithm can run in O(nlog(n)) flops. An analysis
paralleling the one given here shows that a multiscale-multianisotropic significance runs algorithm
can provide a detection threshold optimal to within a constant factor.

7.1.7 Pixel Imagery

In another direction, we might consider data types used to model digital imagery, for example
arrays (y(i1,i2) : 0 <ij,is < n), where

yil,iz :ff(il)iQ)'i_O'Z(ilaiQ)u OgilaiQ <n

(2(i1,142)) is a Gaussian white noise, o is the noise level, and &; is a pixel array with nonzero values
only on pixels which intersect graph(f). Despite appearances, this problem is closely related to
the present problem, and analagous detection theorems are true.

In effect, we form a family of anisotropic multiscale strips, and sum pixels intersecting those
strips, producing detector statistics X (R) which can be significance-tested in a way paralleling
the counts N(R) considered in this paper, only with Gaussian rather than Poisson threshold
analysis. The underlying data structures and arguments can be understood as, roughly speaking,
a mixture of the ideas of this paper and those of another paper by these authors [4]. In particular,
the strips considered here were called axoids in that work. In the digital array setting, there is a
fast beamlet transform to rapidly compute all the required X (R) detector statistics.

7.2 Relations to Other Work
7.2.1 Parametric Detection

In this paper we have considered detection of points on nonparametric curves. In certain cases,
one is interested in points along lines [8] or on parabolas [1]. For an attractive non-multiscale
approach to such detection problems, see [10].

In the authors’ paper [4] which was just mentioned, it has been shown how to develop multi-
scale geometric detectors for line segments in digital imagery, for parametric forms such as circles,
rectangles, and ellipses. Those ideas could be adapted to the present setting, to find situations
where data have an elevated density over a blob or along some line. In the end, the underlying
computations involve dyadic multiscale rectangles and strips, and the ideas are closely related to
those in this paper.

7.2.2 Multiscale Geometric Analysis

The tools described here are closely related to a variety of related tools in multiscale methods;
see [12, 13, 14, 17, 9, 21, 26] for discussion of related tools applied in image analysis and in
mathematical analysis. We differ here in our use of a multi-scale, multi-anisotropy collection of
analysing regions, which is organized and exploited in a specific way and for a specific purpose.
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7.2.3 Object Grouping and Neural Architecture

In the literature of computer vision, there is extensive discussion of object grouping in perception
[6]. The problem considered here — recognizing a curve against a background of random points —
fits in this tradition, and there are even experiments in psychophysics that test the ability of the
human visual system to accomplish similar tasks [15, 18]. In effect, what we have discussed here
— (near-) optimal detection — corresponds to what psychophysicists would call ‘the ideal observer’
[20]. In this connection, we have exhibited a simple multiscale architecture that can provide a
near-optimal detector for a very wide range of stimuli — curves of any of a wide range of degrees
of smoothness.

In the Gestalt theory of perception, there arises the concept of ‘good continuation’ [28, 15];
experiments show that the visual system will respond better to curvilinear stimuli that follow
a ‘good continuation’ of an initial pattern [25]. Here we have operationalized this principle by
a regular connectivity pattern in a specific graphical structure. We have shown that with this
implementation, we get a near-optimal detector, thus validating the significance of such a ‘good
continuation’ principle. Note well that the connectivity pattern is invariant — i.e. it applies the
same way at all nodes of the graph.

This architectural simplicity is striking when compared with the vast speculative literature
proposing ‘neural architectures’ for visual perception. What we have shown is that, starting from
a large collection of elements which are sensitive to (i.e. accumulate counts in) ‘receptive fields’
at a variety of lengths, widths, orientations and locations, then connecting such elements to other
elements by a simple invariant rule, one very sensitively recognizes the existence of curvilinear
stimuli simply by the existence of long connected paths.

Perhaps this bears comparison with biological evidence. fMRI studies [7] suggest that there are
centers in primate brains which seem responsible for integrating local information into recognition
of long curvilinear structures [23]. It would be interesting to know whether such integration has
any resemblance to the simple multiscale connection mechanism employed here.

8 Appendix

8.1 Proof of Lemma 2.1

Extend notation so that w(j) = 277 can have both real and integer arguments, and t(j) =
2= (/=47 a5 well. Let j* = jt(a,,n) be the real-valued solution of the system of equations

28w (5)" = t(4),

ie.
23277 = 9—(J=j)+7r

Let j* = [j 7] be the next larger integer, so that w(j1)/2 < w(j*) < w(j1), and ¢(j1) < ¢(5*) <
2t(5%). Then as 1 < a < 2, 2% < 4, and so

26w(j)* < 26w(ih)* = t(57) <t(G*) < 2-t(T) = 4Pw(5T)* < 166w(j")
Now let w = w(5*) and t = t(5*) and substitute in the last display, getting (2.1). O
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8.2 Proof of Lemma 2.2
Remember that f € Holder(a, 3) satisfies f : [0,1] — [0,1] and
() = f'(y)| < ablz —y|[*,
We saw that this implies
[f(@) = fly) = F )@ -yl < Blz—yl%, =x,yel01] (8.1)

To prove (2.2), we use the notation fj(z) for the affine function tangent to graph(f) at .
Using (8.1), with [ denoting [kw, (k + 1)w),

() — fr(@)| < B(w/2)* <t/4, =€ I
We also note that if gx(x) = 1101 + l2d2(x — x)), then
fe(@) = gu(@)] < |f(k) — Lor| + | (zn) — ladal|z — 2k

< (51/24—52/2 X w/2
< t/32+t/64.
We conclude that
|f(x) = gr(x)| <t/2,  w€l (8.2)
On the other hand, the region R(j,k,¥¢1,¢2) has gi(x) as its mid-line, and is of half-height ¢/2.
The desired relation (2.2) follows. O
Figure 4 illustrates our notation.
8.3 Proof of Lemma 2.3
It is enough to show that
|gk+1(Tht1) — gelzp)| < L, (83)
and
|G (1) — Gr(ans1)| < t/w. (8.4)

It then follows that there is an edge in £(j) connecting R(j, k,¢1,¢2) to R(j,k + 1,¢},¢,) where
¢} and ¢, are the values associated to gx41.

The following inequalities flow either from Holder conditions or from simple rounding involved
in quantizations:

|gkr1(@p41) — flarp)] < 61/2=1/32,
f(@es1) = frlzesn)] < Buw® <t/2,
| fe(@ri1) — Ge(@nen)| < 01/2+601/2 - w = t/16;
combining these with the triangle inequality yields (8.3). Similarly,
|1 (@rr1) — far)] <0 02/2 =1/(32w),
' (@r41) = fh(zrn)] < aBu® ' <t/(2w).
| fh(@ry1) = Ghleen)] < 62/2 = t/(32w).
which combine to give (8.4).
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