
Optimized Refinable Surface Enclosures

Jörg Peters, Xiaobin Wu, University of Florida

e
e−

+b

Figure 1: (left:) a piecewise bicubic spline surface
�

. (right of arrow:) Zooming in on the optimized surface enclosure of
�

. The enclosure
consists of the inner triangulation ��� and outer, matching triangulation ��� . The triangulation sandwiches

�
so tightly that the surface is all

but invisible in a full view (top right) and appears as the dark curved strip in the cut through the surface after repeated magnification (bottom
right).

Abstract

An enclosure of a composite spline surface is a pair of simpler ap-
proximations that sandwich the surface. In particular, we are inter-
ested in efficiently constructing two triangulations, so that matched
triangle pairs enclose a piece of the curved surface. The width of
the enclosure, i,e. the distance between inner and outer hull, can
be easily measured, because it is taken on at a vertex. Enclosures
are therefore approximate implicitizations with known error; such
bounding constructs are useful to support, say, collision detection,
re-approximation for format conversion, meshing with tolerance, or
silhouette detection.

The surface enclosure developed in this paper is effective, be-
cause it is optimized and refinable: an optimization specific to a
given geometry representation is done off-line and tabulated once
and for all. Moreover, given an enclosure of a smooth surface,
the number and location of refinement steps can be announced that
guarantee that the distance to the object falls below a given toler-
ance, because the width generically shrinks to 1/4 under subdivision
at midpoints.

CR Categories: I.3.5 [surface representation, splines]: I.3.6—
graphics data structures

Keywords: curved spline surface enclosure, 2-sided bounds, tri-

angulated surface enclosure, approximate implicitization

1 Motivation

Measuring closeness to the silhouette or determining the distance
between objects are fundamental issues in computer graphics.
While efficient algorithms exist for piecewise linear surfaces with
not too many pieces, objects in B-spline, Bézier or generalized sub-
division representation pose numerical and implementation chal-
lenges due to the curved geometry. Naive linearization of a curved
surface, say triangulation by sampling, incurs an error that is diffi-
cult to quantify and is particularly noticeable when estimating the
range of the normal. To extend existing techniques, we therefore
developed a two-sided, piecewise linear approximation to curved
surfaces that is cheap to compute, has a near optimal ��� error and
is refinable for adaptive multiresolution.

The enclosures are based on recent advances in bounding con-

�
�

�

�
�

Figure 2: A cubic Bézier segment and its optimized ��� � -piece
linear enclosure.

structs for polynomial functions [16]. For a function
�

, an en-
closure is an explicit two-sided approximation

�
��� � � so that�

��� � � �
� over the domain of interest, where

�
� and

�
�

are, for example, piecewise linear functions as shown in Figure 2.
We make the new techniques practically useful for computer graph-
ics by extending them to surfaces. This extension from function
enclosures to surface enclosures is nontrivial and requires several
improvements of the original approach, e.g. the separation of poly-
nomial degree and the number of pieces by which the polynomial
piece is approximated and the combined consideration of position
and normal of the surface.

Since the basic ideas can be explained in the curve case, we
carefully develop the construction first for functions in one variable
(Section 2) and then for planar curves (Section 3) in Bézier form.
The approach bootstraps, almost without further complication, to
the surface case through tensoring (Sections 4 and 5). Generaliza-
tions to other surface representations and applications are briefly
discussed in the final section. Before we start with the details, we
contrast enclosures with other commonly used bounding constructs.

1.1 Bounding constructs

The enclosure of a geometric object is a bounding construct, con-
sisting typically of two sheets, such that each sheet is guaranteed
not to intersect the object, i.e. each sheet lies to ‘one side’ of the
object. For example, a surface without boundary can be enclosed
by an inner and an outer triangulation. In this section, we contrast
enclosures with other bounding constructs and enclosing functions.

If we distinguish between elementary bounding constructs and
hierarchical structures that employ these elementary bounding con-
structs as their oracles, enclosures fall into the category of ele-
mentary bounding constructs. A gallery of elementary bounding
constructs is shown in Figure 3. That is, enclosures add to the
arsenal of axis-aligned bounding boxes (AABB), oriented bound-
ing boxes (OBB), quantized bounding boxes also called ‘ � -dops’
or discrete orientation polytopes (convex polytopes whose facets
are determined by halfspaces whose outward normals come from
a small fixed set of � orientations) [5, 12, 13], fat arcs [22], con-
vex hulls, bounding spheres and minimal enclosing ellipsoids [24].
Publications [8] and [14] give a good overview of how elementary
bounding constructs are used in the context of hierarchical interfer-
ence detection (for space partitioning methods see e.g. [1]): sim-
pler constructs like AABBs and spheres provide fast rejection tests
in sparse arrangements, while more expensive � -dops and OBBs
perform better on complex objects in close proximity. Enclosures
with adaptive resolution promise to outperform other bounding con-
structs for curved, non-polyhedral objects (cf. Figure 4) due to their
two construction principles that will be explained in detail in Sec-

Figure 3: Gallery of bounding constructs and control polygon of
a cubic curve: (left) curve and control polygon, bounding circle,
convex hull, here equal to an 8-dop, generalized fat arc, (right)
axis-aligned box, bounding ellipse, oriented bounding box, 3-linear
enclosure.

tion 2:

– Representation-specific pre-optimization: expensive opti-
mization specific to a given geometry representation is done
off-line and tabulated once and for all,

– Predictive refinability: given an enclosure, the number and
location of refinement steps can be announced that guarantee
that the distance to the object falls below a given tolerance.

The theory of function enclosures has its roots in bounds on the
distance of piecewise polynomials to their Bézier or B-spline con-
trol net [17, 19]. Compared to these constructions, enclosures yield
dramatically tighter bounds for the underlying functions since they
do not enclose the control polygon. To emphasize the advantage of
sandwiching the object, compared to sampling at a finite number
of points and connecting by straight line segments (or flat trian-
gles for surfaces), Figure 7 compares a curve approximation con-
sisting of three linear segments with a certain average of the upper
and lower enclosure bounds. — Farin [7] shows that for rational
Bézier–curves, the convex hull property can be tightened to the con-
vex hull of the first and the last control point and the weight points,
which are points on the legs of the control polygon associated with
the weights of the rational Bézier representation. A similar idea can

Figure 4: Bounding constructs (grey regions) based on the control
polygon (dashed) of a cubic Bézier curve (solid). (left) The oriented
bounding box, axis-aligned bounding box, quantized hull and con-
vex hull all have identical extent. (right) A 3-piece linear enclosure
with special treatment of the endpoints.

also be leveraged for enclosures. — Approximation theory has long
considered the problems of one-sided approximation and two-sided
approximation. Based on Buck’s seminal “Applications of Dual-
ity in Approximation Theory” [2], DeVore [6] established the close
relation of one-sided approximation to quadrature formulas with
nonnegative coefficients and gave a Remez-type algorithm for de-
termining a unique solution. The rich body of literature and the best
algorithms for one-sided approximation have been collected in the
monograph [18]. The algorithms have in common that the only ter-
mination guarantee is that a subsequence must exist that converges.
Already in one variable ‘convergence is generally very slow’ ([18],
page 181). Enclosures do not attempt solve the hard problems of
one-sided approximation as formulated by approximation theorists:
to establish optimality and uniqueness over all sufficiently smooth
functions. Rather we are satisfied with an efficiently computable
approximation with a small, quantifiable error. The underlying
techniques, however, come in handy for determining bounds when
pre-optimizing certain functions ���������� and 	
�������� crucial to the
construction of enclosures (see 2).

Surface simplification for triangulated surfaces has been modi-
fied to generate (locally) inner and outer hulls [4, 20]. This requires
solving a sequence of linear programs at runtime and applies to al-
ready triangulated surfaces. – Kobbelt [15] uses a secant based ap-
proach to construct OBBs for subdivision curves or surfaces using
a min–max criterion. This requires the evaluation of several points
on the curve or surface. – Hu et al.[9, 10, 11, 23] promote the use of
interval spline representation (see Farouki and Sederberg [21]) for
tolerancing, error maintenance and data fitting. The key ingredient
of this use of interval arithmetic are AABBs based on the positivity
and partition of unity property of the B-splines. Enclosures com-
plement this work by offering tighter two-sided bounds.

2 An example in one variable

To exhibit the fundamental ideas, we consider the polynomial
�

of
degree
 � � , in Bézier representation with coefficients ��� ��� ,��������� , ��� ��� , ��� ��� :

���
� �"! � �# �%$ � � �'& �� �
� � � & �� �
� ��! �
)(�
*�,+ � (+-(� �"� � � � � � � �-.
The goal is to build an optimized refinable enclosure for

�
on the

interval / �10 � .2. �43 with � -piece linear upper and lower bounds as
shown in Figure 5 for ��� � . Specifically, we want to enclose

�

from above and from below by piecewise linear functions 57698 �
that are linear combinations of the hat functions with break points

width = 0.2767
�
�

�
�

Figure 5: A cubic Bézier segment with coefficients � � ��� � � � � . The
control polygon exaggerates the curve far more than the grey 3-
piece linear enclosure bounded by

�
� ,
�
� .

at +;: � :

< �� ��=-��! � >?@ ?A � = � � +B�C� � if
� � �� � = � ��� +EDF� � � � = if
�� � = � � � ��� else.

Let � & ��G��� be a function in 8 � that bounds & �� from below on the
interval / and 	 & ��G� � a function that bounds & �� from above. Then
on / one easily checks that�# �%$ � � & �� � �IHKJMLON � � � �QP"DR	 & �� � �"HTS2UEN � � � �GP

� � �
�# �%$ � & ��G� � � � � �

�# �%$ � � & �� ��� HTS2U)N � � � �QP"DR	 & �� ��� HKJVLON � � � �GP .
However, this bounding construct is not useful since diff

� �W�X! �Y � � 	 & ��G� � �Z� & ��[� � �]\ � � \ is not invariant under addition of constant
functions: if ^K_�_ \ � � \ for all + , then diff

� � D`^ �ba ^ Y � 	 & ��G������ & ��G� � increases linearly with ^ .
A better approach is to restate

� �dc � �W� ��� � �fe � � � DC� � �Ve �� � �
wherec � �g�4�
� �h! �i� � � �I� � � DX� � � � e � �X! �kjVl]mn-ol mm oqp ! �rjMsut � � s;n � s msvn � � s m � suw p �� � � ! �x� �'y & �� D & �� � : � � � � � ! �z� � & �� D y & �� � : �{.
The polynomials � � � of degree
 are called antidifference functions
and the restatement is easily checked by observing that e ����|�} �z�
for + ��~ and � else. This orthogonality and � � � � � � �z� �z� �� � � �
uniquely define � � � . Applying the idea underlying

� � � to
� �dc � �W�

and then adding c � �g� to all three terms of the result yields

� � ! �Fc � �g� D � � �# ��$ � �
� � � � �,HTS2UEN e �� � � �GPIDx	
� �� � �,HKJVLON e �� � � �GP� � � �'y[�
� � ! �Fc � �g� D � � �# ��$ � �
� � � ��� HKJVLON e �� � � �GPIDx	
� �� ��� HTS2UEN e �� � � �GP �

width = 0.0579

Figure 6: Enclosure of the cubic Bézier curve segment with coeffi-
cients � � ��� � � � � after one subdivision at the midpoint. The width
of the enclosure (grey) is guaranteed to be at most 1/4th of the un-
subdivided enclosure (dashed).

where �
� � ����� is an � -piece linear function in 8 � that bounds � � �
from below and 	
� � ��� � bounds from above;

� � and
� � form the

lower and upper boundary of the grey � � � -linear enclosure in
Figure 5. Now, for any norm ����� ,

width � � �g� ! ��� � � � � � � ��� � � �# ��$ � � 	
� � � � � ���
� �� � � �h\ e �� �"\ �
is invariant under addition of constant and linear terms to

�
, a pre-

requisite for affine invariance.
What is the cost of computing such an enclosure? Since

�
is of

order four, we need to compute two second differences of its coef-
ficients. Since either e �� ��� � or e �� � � � , each second differ-
ence contributes once to each bound by scaling ���������� , respectively	
� � � � � . �
� � � � � and 	
� � � � � are represented by their values at +u: � ,+ ��� � .�.�. � � . Since ��� � and �|�� are symmetric with respect to ��: y ,
we need to store only

y ��D y numbers. In particular, for
 ��� � � ,	 �
� � � ���	
� � � � ��

� � 	 �|� . ����� y ����� ��� � �|� . �[� � � ����� �� . � � � � . �

where � ! ��� . y[y����Gy � � � , � ! ��� . � �[�[���[� � � , � ! �r� . y�� � y�� � � � ,� ! � � . � � ��� � ��� � . The decisive point is that these numbers can
be precomputed and tabulated once and for all to optimize the en-
closure of the function ��� � with respect to, say the � � norm, as
shown in Figure 2. In fact, we can do better by not just minimizing
the largest of the differences 	
��� � ��� � +u: � � � ����� � ��� � +;: � � but subse-
quently each of the remaining differences, keeping the higher dif-
ferences fixed. For low degrees, values at the break points resulting
in tight bounds can be obtained by inspection or by a simple, itera-
tive, divide-and-conquer approach [16]. This is the representation-
specific pre-optimization mentioned earlier. The enclosure of

�

(Figure 5) then requires 16 multiplications and 16 additions, com-
parable to computing a 4-direction quantized hull or 8-dop (see
1.1).

If
� � and

� � are the left and the right pieces of
�

result-
ing from de Casteljau evaluation at �M: y and if � e � � � � ! �HKJVLON \ e � � �"\ � \ e �� �"\ P , then it is well-know (see e.g. Lemma 6.1 of
[17]) that HKJMLON � e � � � � � � � e � � � � � P � �� � e � � � � .
That is, one subdivision cuts the width to a quarter or less. The re-
fined, optimized enclosure is shown in Figure 6. Conversely, we

/

Figure 7: A cubic curve
�

, a 3-piece sampled approximation of the
curve, the midpath

�
of an � � � -piece enclosure of the curve.

can predict the number of subdivision steps � needed to reduce
the width below a given tolerance � . Since width � � �g� ��� ! �� Y � � ��%$ � � 	
�������� � �
�|��M��� � ��� e � � � � � we have � � 	! #"�$&%(')I� .

We define the midpath,
�

, of
�

as the � -piece linear function in8 � with values

��� +
�
��! �+* �� � � � D �

�
�4� �� � if � � + � � �� � if + �i� or + � � .

The choice for + � � and + � � guarantees that midpaths of con-
tinuously joined Bézier pieces match up at their endpoints. The
distance between the polynomial

�
and

�
on the interval 0 �� . . � � �� 3

is bounded by the linear average of the distances at the endpoints;
and these distances are evidently bounded by\ � � �"\ � +

�
� � � �y � � � � � � �4� +� �

where � � � y
for + ��� or + � � and � � ��� otherwise.

Finally, we note that we can bound the derivative of
�

in the
same manner and with the same number of � � � linear pieces:� �-,%� � ! �Fc � �-,�� D � � �# �%$ � �
� � � �� � � HTS U)N e �� �-, � �QPD 	
� � � �� ��� HKJVLON e �� � , � �QP .
Since the derivative

� ,
of
�

is of degree
 � y
there is only one

function � � � to bound and all we need are the numbers	 �
� � � ���	
� � � � ��
.� � 	 �|� . � y ������� � � �|� . y � �|� . y � �|� . � y ������� � �� . � �|� . y y �|� . y y � . �

to assemble

� , . This will allow us to associate a midnormal with
every breakpoint of the midpath.

3 Constructing planar curve enclosures

Since both the / and the 0 component of a planar curve 1 provide
an upper and a lower bound, we obtain four segmentsj32345 4 p � j3234576 p � j32 65 4 p � j32 65�6 p
for each interval between breakpoints (see Figure 8, top). A cer-
tain ‘union’ of these combinations of function bounds encloses the
curve. A simple way to give some structure to this mess of line
segments, is to observe that, due to linearity, each piece of the en-
closure is a convex combination of consecutive point enclosures 8 � ,8 � � � , where 8 } has the four vertices

8 } � j 2345 4 p � ~� � � j 2345 6 p � ~� � � j 2 65 4 p � ~� � � j 2 65 6 p � ~� � .

�j 2 65 4 p
j 2345 6 pj 2 65 6 p
8 � � �

8 �

8 � � �
Figure 8: top: The curve

�
is bounded by a ‘union’ of four com-

ponent enclosures. The extreme, outermost components that stay
to one side of the curve, are emphasized as fat line segments. Note
the gap and the intersection between consecutive extreme segments.
bottom: The bounding region is equivalently generated as the piece-
wise linear combination of point enclosures (axis-aligned rectan-
gles) 8 � .

� � � �
� �

� � � �
� � � �

� �
� � � �

� � � � � �

� ��
� �� � ��

� ��
Figure 9: top: Anchor points � } , normals � } and directions � } for
identifying extreme segments of the enclosure. bottom: Antipodal
points � � and enclosure pieces � � .

That is, a point enclosure 8 } is an axis-parallel rectangle or box.
(Figure 8 bottom). Differently put, the function enclosures directly
yield an enclosure in interval Bézier representation (see Farouki
and Sederberg [21]).

These interval enclosures, however, have two shortcomings:
multiplicity, and intersections or gaps. By keeping information on
all four components, interference checking between two interval
objects would require 16 intersection tests. Moreover, the piece-
wise linear outer bounds have more pieces or need to be trimmed
due to the intersections and gaps between adjacent pieces (fat lines
in Figure 8, top).

3.1 Gaps and Intersections

To address the problem of gaps and intersections, we associate, with
each local parameter +u: � , a point � � that lies in all point enclosures
associated with that location (there may be two point enclosures of
differing size if +|6 N � � �qP , i.e. the point enclosure corresponds to
the end of one curve segment and the start of another and the two do
not meet � �). We call the point, anchor point, because we have in
mind to attach a line segment to it with direction � � , roughly normal
to the curve (c.f. Figure 9 top). The two endpoints � �� and � �� of
the line segment will be called antipodal points and will serve as
the vertices of the two sheets � �� and � �� of the curve enclosure (c.f.
Figure 9 bottom). If the Bézier pieces join with tangent continuity,

� � ! ��� 2 5�� � +� � � and � � ! � j 5
	
� 2 	 p � +� � � � �

fit the bill and we can process each piece independent of its neigh-
bor. If the curves meet just with continuity of position then (the
normalized) � � of the first and (the normalized) � � of the second
segment need to be averaged.

3.2 Multiplicity

To address the problem of multiplicity, we observe that there is al-

ways a pair of linear function enclosures, say j 2345 6 p and j 2 65 4 p ,

whose linear extensions or trims enclose the other two enclosures
over the region of interest. To select this extreme pair of line seg-
ments from the four possible choices, we compute the direction � �
of the line segment with endpoints � � and � � � � as

� � ! � � � D � � � � .
Then, for each vector dimension � , we choose, if ���
��� � � , the � th
component of the upper function enclosure

� ��� �
��� and for the other
sheet

� ��� �
��� . If � �
��� � � , we reverse the choice.

3.3 Planar Curve Enclosure Algorithm

We now make the construction precise. The input are Bézier curve
pieces of degree
 and the enclosure of each piece is to have � linear
segments.
Precondition: The Bézier pieces are consistently oriented

and regularly parametrized.

1. (read basic enclosures) Read the coefficients of the
upper and lower enclosures �
� � � ��� and 	
� � � ��� for degree

and � pieces, and for degree
*�C� and � pieces. For a piece-
wise cubic curve and � � � , these are the two times eight
numbers displayed in Section 2.

2. For each Bézier segment

a (create component enclosures) Compute
the second differences e �� � of the Bézier coefficients.
Depending on their sign use them to scale the upper
enclosure 	���� �[��� or the lower enclosure �
��� �[��� in the
linear combination:

� � � c � �g� D � � �#
� $ � �
� � �[��� � e �� � � � Dx	
� � �[��� � e �� � � � �

� � � c � �g� D � � �#
� $ � �
� � �[��� � e �� � � � DR	�� � �[��� � e �� � � � .

Repeat this for
� ,

.

b (compute � � and � � by (3) of Section 3.1). Nor-
malize � � � � ��� .

c (select extreme line segments) For each
line segment of the control polygon compute and store
the direction � � ! � � � D � � � � . For each vector dimen-
sion � set

if � �
��� � � then
� � �
��� ! � � � �
��� � � � �
��� ! � � � �
��� �

else
� � �
��� ! � � � �
��� � � � �
��� ! � � � �
��� .

Here
� �� is a linear bounding segment in the direction� � and
� �� is the enclosure in the opposite direction (

� ��
and

� �� are precursors of the curve enclosure).

d (find the furthest intersections)
For each line segment for each anchor point � � ,
compute the intersection of the line through � �
in the direction � � with the extreme enclosures:� � D�� �� � } � � � � �"� � ���

�� D ���
�} , ~ 6 N +q� � � +EDF�VP .

By Cramer’s rule,

� �� � } � ���
	M��� � � � � � � � � � } �
���
	�� � � � � � � � } � .

3. (create antipodal pairs) For each anchor point � �
compute the antipodal pair

� �� ! � � � D HKJVLON � �� � � � � � � �� � � � � P � � �� �� ! � � � D HTS2UEN � �� � � � � � � �� � � � � P � � .
4. (form the enclosure) For each line segment connect� �� � � �� � � and connect � �� � � �� � � to obtain the enclosure seg-

ments � �� and � �� .

The algorithm is stable, unless the approximate normal � � is par-
allel to the approximate secant

� � � � } . In such a pathological case,
subdivision is triggered, since the midpath is a poor approximation
to the curve.

4 Enclosures of tensor-product polyno-
mial pieces

The point of developing the material in one variable in such detail
is not just to explain the fundamental ideas with less machinery but
that we can bootstrap the techniques by tensoring. A tensor-product
polynomial

���
� �
� � of degree
E� �
{� is in Bézier form if

� �
� ��� � � � n# ��$ � � m#} $ � � � } & � m} � � � & � n� �
� � �
where & �� ��=-� �
)(�
�� � � (�E(� �"� = � � � � = � .

For example, a bi-cubic patch in � � has � � coefficients � � } 6�� � .
We enclose the function for

�
� �
� � 6k/ ! � 0 � .2. �43 � by � ��� -
piecewise bilinear functions�# ��$ �

�#} $ � � � } < �} � � � < �� �
� � 678 ��� 8 � .
The hat functions

< �� ��=-� were already defined in Section 2. We
now simply apply the inequality (2) twice, once in � and once in

�
.

To make this simple idea precise, let ���} be the antidifference
functions of degree
 defined for � � ~ 6 N � � .�.�. �
*� �MP bye �� � �} ��� if � �C~ � e �� � �} ��� if ���� ~ � � �} � � � ��� �} � � � ��� .
Let

� � ��=-� be the univariate Bézier polynomial with coefficients� � � � � � � � .�.�. � � � � m and
� } ��=-� the polynomial with coefficients��� } � ��� } � .�.�. � � � n } . Just as in Section 2, we compute for the pa-

rameter �
� �� ! � �#} $ � ���� } < �} � � ��! �i� � � � �|� � � D � � � m �

D � m � �#} $ � �
� � m} � � HTS2UEN e �} � � � �QP Dx	
� � m} � � HKJVLON e �} � � � �QP �
� �� ! � �#} $ � � �� } < �} � � ��! �i� � � � �|� � � D � � � m �

D � m � �#} $ � �
� � m} � � HKJVLON e �} � � � �QP"Dx	
� � m} � � HTS2UEN e �} � � � �QP �
and, again, now in

�
, � } ! � Y � n��$ � � �� } & � n� , � } ! � Y � n��$ � � �� } & � n� ,�# ��$ � � � } < �� �
� � ! � � � } � �I� � � D � � n } �

D � n � �# ��$ � �
� � n� ��� HTS2UEN e �� � } � �QP"Dx	
� � n� ��� HKJMLON e �� � } � �QP ��# ��$ � � � } < �� �
� � ! � � � } � �I� � � D � � n } �
D � n � �# ��$ � �
� � n� ��� HKJVLON e ���� } � �QP"Dz	
� � n� ��� HTS2UEN e ���� } � �QP .

Then

� � �
� �
� � ! � �#} $ � �# �%$ � � � } < �� �
� � < �} � � �
�

�#} $ � � � n# �%$ � � �� } & � n� �
�E��� < �} � � � � � n# ��$ �
�#} $ � � �� } < �} � � � & � n� �
� �

� � �
� �
� � � � n# �%$ � � m#} $ � � � } & � m} � � � & � n� �
� � � � �
�

� n# ��$ �
�#} $ � � �� } < �} � � � & � n� �
�E� � �#} $ � � � n# �%$ � � �� } & � n� �
� ��� < �} � � �

� � � �
� �
� ��! � �#} $ � �# �%$ � � � } < �� �
� � < �} � � � .
Analogous to midpaths in one variable, we can now define the mid-
patch

�
of
�

as the � �
� -piece bilinear function in 8 � � 8 � with

Figure 10: Four pieces of an upper piecewise bilinear enclosure�
� and four pieces of a lower bilinear facets

�
� . The nine cubes

represent point enclosures. Note the gaps and overlaps.

values corresponding to interior points
� �� � }� � of / , the

� � �
or
� � � -boundary, the � � � or � � � -boundary, respectively a

corner of / :

� � +
� �

~
�
� ! �

>???@ ???A
�� � � � D �

�
�4� �� � }� � if + �6 N � � �qP and ~ �6 N � � �`P ��� � � �� D � �� �4� }� � if +b6 N � � �qP and ~ �6 N � � �`P ��� � � �} D � �} �4� �� � if + �6 N � � �qP and ~ 6 N � � �`P �� � } if +b6 N � � �qP and ~ 6 N � � �`P .

That is, we associate the average of a bivariate enclosure with the
interior, the average of a univariate enclosure with the boundaries,
and a constant with the vertices of / , so that adjacent midpatches
match up continuously along boundaries.

4.1 Cost and approximation under refinement

At run time, we need only scale the univariate table entries with
the second differences and add the result either to the upper or to
the lower bound depending on the sign of the second difference.
Since the maximal second difference reduces to at most ��: � th of its
original size under subdivision at the midpoint, the width

� �K� � �
shrinks to 1/4.

4.2 Interval patch enclosures

For / � 0 � � we each have an upper and a lower bound yielding eight
candidates for enclosures (Figure 12) for

� �
� in the domain square0 + . . + D �43%: � � � 0 ~ . . ~ DF�43%: �`� :	 2345 4� 4
 �
	 2345 4� 6
 � 	 2345 6� 4
 �

	 2345 6
� 6
 � 	 2 65 4� 4
 �

	 2 65 4� 6
 � 	 2 65 6� 4
 �
	 2 65 6

� 6
 .
All combinations with positive weights summing to 1 of the eight
enclosures form a shell that is a 3D enclosure of the surface piece
(Figure 12, surfaces with parameter grid). The union of the shells
of all patches form an enclosure of the surface.

Since the pieces are bilinear, we can also view the shell as a bi-
linear combination of the four point enclosures 8 � �
 � } � � � � � �i6N � � �VP of the corner points 0 / � +{D � � ~ D � � � 0 � + D � � ~"D � � � � � +{D� � ~�D � � 3 �

. A point enclosure 8 � � } is an axis-parallel box whose
vertices are the eight combinations of the corner points of the com-
ponent enclosures (the boxes displayed in Figures 10, 11 and 12):	 2345 4� 4
 � +� � ~� � � 	 2345 4� 6
 � +� � ~� � � 	 2345 6

� 4
 � +� � ~� � � 	 2 65 4� 4
 � +� � ~� � � etc.

That is, the function enclosures directly yield a bilinear enclosure
in interval Bézier representation.

� � � } � � � � � � � }

� � � � � } � �
� � }

� � }
� � � } � � � � � � � }

� � � � � } � �

Figure 11: A single bilinear facet of the midpatch with direction� � } , anchor points � � } and normal direction � � } .

� �� � � � } � � � �� � � � } � �

� �� � � � }
� �� � � � }

� � � �� }
� ��� �� }

� � � �� }

� �� } � �� }

Figure 12: Antipodal pairs � �� } and � �� } as interpolation points of

the two sheets � ��� �� } , � � � �� } and � ��� �� } , � � � �� } of the surface enclosure
of eight bilinear facets (with parameter grid) whose extreme pair
is
� �� } and

� �� } . (The black spot is due to Matlab’s depth sorting
algorithm in the presence of many overlapping surfaces).

5 Constructing surface enclosures

The bilinear interval enclosures just defined have three shortcom-
ings for efficient use: nonlinearity, multiplicity and gaps or inter-
sections. The bilinearity of the facets implies that intersections be-
tween enclosures result in algebraic curves of degree 4 and force
iterative techniques for intersections with rays as opposed to short
explicit formulas for triangles. Slivers arise when computing the ex-
act union of the shells which entails intersection of bilinear facets
and trimming bilinear patches. Multiplicity, i.e. the choice from
eight possible bilinear function enclosures implies up to 64 nonlin-
ear intersection tests when intersecting two patch enclosures.

5.1 Gaps, Intersections and Slivers

Just as in the case of one variable, anchor points � � } and normal � � }
(Figure 11) allow the construction of antipodal points � �� } and � �� }
that serve as the vertices of the two triangle pairs � � � �� } � � � � �� } and

� ��� �� } � � ��� �� } . The surface enclosure is thus a tent-like construction

with support beams in the direction � � } as shown in Figure 12.

5.2 Multiplicity

Just as in the case of one variable, we select an extreme pair of
bilinear facets from the eight possible choices with the help of the
direction

� � } ! � � � � � � � } � �b� � � � } � � � � � � } � �b� � � � � � } � .
normal to the facet of the midpatch at its central point. For each
spatial vector dimension � , we choose, if � �
��� } � � , the � th compo-

nent of the upper function enclosure
� ��� �
��� } and for the other sheet

� � � �
��� } . If � �
��� } � � , we reverse the choice.

5.3 Bilinearity

The new challenge is to replace the extreme bilinear facets by two
pairs, say � � � �� } and � � � �� } of triangles (Figure 12). We have to be
careful in two respects: we have to choose the diagonal correctly
so as not to intersect the bilinear facet, and we have to trim or ex-
trapolate the triangles to avoid overlaps and gaps that would result
in many sliver pieces.

A subtle point is that the extrapolation of a triangle interpolat-
ing three vertices of a bilinear facet may intersect the extrapolated
bilinear facet and ceases to be a one-sided approximation. Fortu-
nately, we need not actually bound the extension of the extreme
bilinear facets but, at vertices, only their extension by faces of the
point enclosures and, along the boundaries, linear combinations of
the edges of point enclosures. Therefore the surface is still enclosed
by the extensions of the extreme triangle pairs.

To pick the correct diagonal crease when defining the triangle
pairs

�
� and

�
� as interpolants to the four vertices of the bilinear

facet, we compute the crease direction of the bilinear facet. With�
��� denoting the inner product of two vectors, the boolean variable

crease02 � } ! � � � � � } D � � � � � } � �b� � � � � � } � � � � } � � � � � } � � �
records the direction in which the +�~ bilinear facet turns
with respect to its direction � � } . If crease02 � } � �
then

�
� with coefficients 0 � �� } � � �� � � � } � � �� � � � } � � � � �� � } � � 3 is

enclosed from the
� � � � } � direction by the two triangles0 � �� } � � �� � � � } � � �� � � � } � � 3 and 0 � �� } � � �� � � � } � � � � �� � } � � 3 , i.e. is creased

along the diagonal 0 � �� } � � �� � � � } � � 3 , otherwise by the two triangles0 � �� } � � �� � � � } � � �� � } � � 3 and 0 � �� � } � � � � �� � � � } � � �� � � � } � � 3 . The diagonal
of
�
� is 0 � �� � � � } � � �� � } � � 3 if crease02 � } and 0 � �� � } � � �� � � � } � � 3 other-

wise.

5.4 Putting it all together

All three points, nonlinearity, multiplicity and slivers, have to be
addressed simultaneously. For, given � and � of a anchor point,
we can, in principle, pick out one upper and one lower bilinear
facet from the eight candidates by extrapolating the bilinear facets
beyond their domain unit square and look for the furthest inter-
cept. However, the resulting collection of bilinear facets would
have cracks, gaps and intersections. The cracks and gaps can be
filled by planar sections. But that would increase the overall num-
ber of facets of the enclosure considerably compared to the facets
in the control polyhedron of the surface.

The formal algorithm for generating surface enclosures is given
in the Appendix. It is easy to check that the cost of the algorithm is
linear in the number of anchor points and therefore in the number
of bilinear facets and antipodal points. and that the calculations are

stable, unless
���
	�� � � � � � � } � � � � � � �ba � � i.e. unless the approx-

imate normal to the surface is coplanar with the tangent plane of the
midpatch. Just as in the case of one variable, this anomaly triggers
a refinement of the surface representation since the midpatch does
not represent the surface well.

6 Extensions and Applications

So far, we focused on the fundamental construction and the (tensor-
product) Bézier representation. Since NURBS surfaces and the reg-
ular, tensor-product part of Catmull-Clark subdivision surfaces [3]
can be represented in terms of Bézier patches, this gives us some
mileage (near extraordinary nodes, a combination of refinement and
the generic bounding box construction can be used to cap the en-
closure of a Catmull-Clark surface).

We challenge the general construction therefore by applying the
approach to total degree, three-sided Bézier patches and use the
information on position and normal inherent in the enclosure con-
struction to drive adaptive evaluation.

6.1 Adaptive refinement

For complex objects, optimized enclosures are so tight that they ap-
pear indistinguishable from a finely triangulated version of the true
surface. Only zooming in and slicing as in Figure 1 shows how the
surface is ‘sandwiched’. In Figure 14, we therefore illustrate adap-
tive refinement showing just a single three-sided Bézier patch (the
required tables of numbers 	
� � ��� � and ��� � ��� � for three-sided, total
degree patches, as well as the tables for tensor-product surfaces will
be available in the electronic, CD version of the paper.) We normal-
ize by projecting the point enclosures of the normal direction to the
unit sphere and take the dot product with the viewing direction to
identify regions near the silhouette. To obtain high resolution near
the silhouette, we enforce that the width of the surface enclosure is
proportional to this dot product. The resulting partition of the do-
main is shown in Figure 13. To avoid gaps, the boundary points of
the finer enclosure are placed on the boundary of the coarser enclo-
sure.

7 Summary

The construction for enclosing curved surfaces by two matching tri-
angulations presented in this paper is both simple and supported by
a theory that provides guaranteed error bounds as well as reduction
of the width under uniform refinement of the surface representation.

Optimized, refinable surface enclosures are therefore building
blocks for extending efficient triangle-based or mesh-based, dis-
crete algorithms to curved surfaces.

Acknowledgments

References

[1] Julien Basch. Kinetic Data Structures. PhD thesis, Stanford
University, 1999.

[2] R. C. Buck. Applications of duality in approximation theory.
In Approximation of Functions (Proc. Sympos. General Mo-
tors Res. Lab., 1964), pages 27–42. Elsevier Publ. Co., Ams-
terdam, 1965.

[3] E. Catmull and J. Clark. Recursively generated B-spline sur-
faces on arbitrary topological meshes. Computer Aided De-
sign, 10:350–355, Oct 1978.

[4] Jonathan Cohen, Amitabh Varshney, Dinesh Manocha, Greg
Turk, Hans Weber, Pankaj Agarwal, Frederick P. Brooks,
Jr., and William Wright. Simplification envelopes. In
Holly Rushmeier, editor, SIGGRAPH 96 Conference Pro-
ceedings, Annual Conference Series, pages 119–128. ACM
SIGGRAPH, Addison Wesley, August 1996. held in New Or-
leans, Louisiana, 04-09 August 1996.

[5] A. Crosnier and J. R. Rossignac. Technical section — tribox
bounds for three-dimensional objects. Computers and Graph-
ics, 23(3):429–437, June 1999.

[6] R. DeVore. One-sided approximation of functions. J of Ap-
proximation Theory, 1:11–25, 1968.

[7] Gerald Farin. Tighter convex hulls for rational Bézier curves.
Comput. Aided Geom. Design, 10:123–125, 1993.

[8] S. Gottschalk, M. C. Lin, and D. Manocha. OBBTree: A hier-
archical structure for rapid interference detection. Computer
Graphics, 30(Annual Conference Series):171–180, 1996.

[9] Chun-Yi Hu, Takashi Maekawa, Evan C. Sherbrooke, and
Nicholas M. Patrikalakis. Robust interval algorithm for
curve intersections. Computer-aided Design, 28(6-7):495–
506, 1996.

[10] Chun-Yi Hu, Nicholas M. Patrikalakis, and Xiuzi Ye. Robust
interval solid modelling part I: representations. Computer-
aided Design, 28(10):807–817, 1996.

[11] Chun-Yi Hu, Nicholas M. Patrikalakis, and Xuizi Ye. Ro-
bust interval solid modelling part II: boundary evaluation.
Computer-aided Design, 28(10):819–830, 1996.

[12] Timothy L. Kay and James T. Kajiya. Ray tracing complex
scenes. In David C. Evans and Russell J. Athay, editors, Com-
puter Graphics (SIGGRAPH ’86 Proceedings), volume 20,
pages 269–278, August 1986.

[13] James T. Klosowski, Joseph S. B. Mitchell, Henry Sowizral,
and Karel Zikan. Efficient Collision Detection Using Bound-
ing Volume Hierarchies of k-DOPs. IEEE Transactions on
Visualization and Computer Graphics, 4(1):21–36, January
1998.

[14] James Thomas Klosowski. Efficient collision detection for
interactive 3d graphics and virtual environments. PhD thesis,
State Univ. of New York at Stony Brook, May 1998.

[15] Leif P. Kobbelt, Katja Daubert, and Hans-Peter Seidel. Ray
tracing of subdivision surfaces. In Rendering Techniques ’98
(Proceedings of the Eurographics Workshop), pages 69–80,
New York, June 1998. Springer-Verlag.

[16] David Lutterkort. Envelopes for Nonlinear Geometry. PhD
thesis, Purdue University, May 2000.

[17] D. Nairn, J. Peters, and D. Lutterkort. Sharp, quantitative
bounds on the distance between a polynomial piece and its
Bézier control polygon. Computer Aided Geometric Design,
16(7):613–633, Aug 1999.

[18] Allan M. Pinkus. On � � -approximation. Cambridge Univer-
sity Press, Cambridge, 1989.

[19] U. Reif. Best bounds on the approximation of polynomials
and splines by their control structure. Comput. Aided Geom.
Design, 17(6):579–589, 2000.

[20] P.V. Sander, Xianfeng Gu, S.J. Gortler, H. Hoppe, and J. Sny-
der. Silhouette clipping. Computer Graphics, 34(Annual Con-
ference Series):327–334, 2000.

[21] T. W. Sederberg and R. T. Farouki. Approximation by interval
bezier curves. IEEE Computer Graphics and Applications,
12(5):87–95, September 1992.

[22] Thomas W. Sederberg, Scott C. White, and Alan K. Zundel.
Fat arcs: A bounding region with cubic convergence. Comput.
Aided Geom. Design, 6:205–218, 1989.

[23] S. T. Tuohy, T. Maekawa, G. Shen, and N. M. Patrikalakis.
Approximation of measured data with interval B-splines.
Computer-aided Design, 29(11):791–799, 1997.

[24] E. Welzl. Smallest enclosing disks (balls and ellipsoids). In
Hermann Maurer, editor, Proceedings of New Results and
New Trends in Computer Science, volume 555 of LNCS, pages
359–370, Berlin, Germany, June 1991. Springer.

8 Appendix: Tensor-Product Surface En-
closure Algorithm

We state the surface enclosure algorithm for a surface defined by
Bézier patches

�
of degree

�
 � �
 � � with normal direction � ! �� o��� � � o� � of degree
�'y
)�h�C� � y
{�"�C� � . The enclosure patches are

to be partitioned into
y � � triangles.

Precondition: The Bézier patches are consistently oriented
and regularly parametrized.

1. (read basic enclosures) Read the coefficients of
the piecewise bilinear upper and lower enclosures �
������ � ,	
������ � with for the degree and partition levels

�
 � � � 6N �
 � � � � � �
 � � � � � �'y
 � ��� � � � � y
 � ��� � �9P . For a bicubic
surface and � ��� � � , these are two times eight numbers.

2. For each Bézier patch

a (create spatial component enclosures)
Compute the vector-valued

� �� } and
� �� } , and � �� } and

� �� } according to (4).

b (compute anchor points and normals) Set� � } ! � � � �� � }� � and � � } to the vector � � �� � }� � , nor-
malized. Where the surface is not tangent continuous,
the � � } have to be averaged and normalized.

c (select the extreme bilinear facets)
For each bilinear facet compute and store the direction

� � } ! � � � � � � � } � �b� � � � } � � � � � � } � �b� � � � � � } � .
For each spatial dimension � set

if � �
��� } � � then
� � �
��� } ! � � � �
��� } � � � �
��� } � � � �
��� } �

else
� � �
��� } ! � � � �
��� } � � � �
��� } � � � �
��� } .

Here
� �� } is a bilinear bounding facet in the direction� � } and
�
�� } is the enclosure in the opposite direction.

(The enclosures
� �� } and

� �� } are precursors to the sur-
face enclosure).

d (establish the crease direction) For
each bilinear facet set the boolean

crease02 � } ! �� � � } D � � � � � } � �b� � � � � � } � � � � } � � � � � } � � � .
Here

�
��� denotes the inner product of two vectors.

Figure 13: Adaptive refinement of the domain of the patch in Figure
14.

e (find the furthest intersections) For
each bilinear facet, for each of the four anchor points�
 where � � ! � � � � } , � � ! � � � � � � } , � � ! � � � � � � } � � ,� � ! � � � � } � � , intersect the line through �
 in the
direction �
 with the three triangles that include a
point with index � . That is, if crease02 � } , intersect with0 � �� � � � � � � �� 3 � 0 � �� � � �� � � �� 3 and 0 � �� � � �� � � �� 3
else intersect with0 � �� � � � � � � �� 3 � and 0 � �� � � �� � � �� 3 � 0 � �� � � �� � � �� 3 .
The equation in � � � � � � corresponding to the triangle� � � � } � � � is

� D � � � � � D �]��� } � � � � D � ��� � � � � �
and the solution for � is

� �
���
	M��� � � � � � � � � } � � � � � � �
���
	�� � � � � � � } � � � � � � � .

Record the maximal � -value, � �� } , when intersecting
with the

�
� triangles, and the minimal � -value, � �� } ,

when intersecting with the
�
� triangles over all bilin-

ear facets attached to an anchor point � � } .
3. (create antipodal pairs) For each anchor point � � }

compute the antipodal pair

� � } D � �� } � � } � � � } D � �� } � � } .
4. (form the enclosure triangles) For each bilinear

facet connect the � � } D � �� } � � } according to crease02 � } and

(2e) to form the two triangles � ��� �� } , � ��� �� } and connect the� � } D � �� } � � } , with opposite crease, to form the pair � ��� �� } ,

� ��� �� } .

Figure 14: Adaptive refinement near the silhouette. (The right cor-
ner is not part of the silhouette.) The cones correspond to projected
point enclosures of the normal direction.

