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Abstract

Every compact orientable boundaryless surface M can
be cut along simple loops with a common point v0, pair-
wise disjoint except at v0, so that the resulting surface is a
topological disk; such a set of loops is called a fundamen-
tal system of loops for M. The resulting disk is a polygon
in which the edges are pairwise identified on the surface;
it is called a polygonal schema. Assuming that M is tri-
angulated, and that each edge has a given length, we are
interested in a shortest (or optimal) system homotopic to
a given one, drawn on the vertex-edge graph of M. We
prove that each loop of such an optimal system is a short-
est loop among all simple loops in its homotopy class. We
give a polynomial (under some reasonable assumptions) al-
gorithm to build such a system. As a byproduct, we get a
polynomial algorithm to compute a shortest simple loop ho-
motopic to a given simple loop.

1. Introduction

1.1. Background and previous work

From the classification of surfaces in Topology, any com-
pact orientable boundaryless surface M is, up to homeo-
morphism, a sphere, a torus, or, more generally, a g-torus –
a gluing of g tori – for some integer g. We focus on surfaces
homeomorphic to a g-torus (g > 0). It is a well-known fact
that such a surface can be obtained from a 4g-gon by pair-
wise identifications of its edges; such a polygon is called a
polygonal schema. For a general reference on this subject,
see for example [11, Chapter 1.4].
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In this paper, we consider the case of reduced polygo-
nal schemata: all the vertices of the polygon get identified
to a single point v0, the basepoint, on the surface. This
corresponds to a cutting of the surface along simple loops
having v0 as common vertex, pairwise disjoint except at v0,
such that the complement of the union of these loops is a
topological disk. Such a set of loops is called a fundamen-
tal system of loops, or system for short. A system is called
canonical if, in addition, the loops around the correspond-
ing reduced polygonal schema appear in the order of the
form S1, S2, S̄1, S̄2, S3, S4, S̄3, S̄4, . . ., where the bar indi-
cates opposite orientation.

Computing a (canonical) system of loops on a surface
is known to be useful in several problems where a corre-
spondence between the surface and a topological disk needs
to be established. Important applications are surface pa-
rameterization [4] and texture mapping [9, 10]. Canonical
systems also allow to construct homeomorphisms between
surfaces of same genus: given a canonical system for each
of two such surfaces, it is sufficient to establish a corre-
spondence between their two complementary disks that pre-
serves the order of the loops on their boundary.

The surface M is assumed to be triangulated (or, more
generally, to be a polyhedral 2-manifold – the faces are ar-
bitrary simple polygons, and the intersection of two faces
is either empty, a vertex, or a common edge). In a com-
binatorial setting, the loops are closed paths on the vertex-
edge graph G of M; to mimic the continuous setting, two
loops of a system are allowed to go along a same edge of G,
provided that they “do not cross” if we conceptually spread
them apart with a thin space. This informal idea yields a rig-
orous combinatorial structure, the edge-ordered set of loops.
Furthermore, we assume that each edge of G has a positive
length, or weight; the length of a system is the sum of the
lengths of its loops.

Lazarus, Pocchiola, Vegter, and Verroust [8] gave two
methods to compute a canonical system of loops on a tri-
angulated surface. While both their algorithms have worst-
case optimal asymptotic complexity, they usually produce
jaggy and irregular loops as they do not take into account
the geometry of the surface. The work by Erickson and Har-
Peled [3] partly overcomes the geometric aspect: they study
the problem of cutting a combinatorial surface into a topo-
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logical disk whose boundary has minimal length. However,
their method leads to schemata that are neither reduced nor
canonical, hence not suited to the construction of homeo-
morphisms between surfaces.

1.2. Novelty of this paper

We say that two systems with the same basepoint are ho-
motopic if the sets of homotopy classes of the loops in both
systems are the same. A system with minimal length in its
homotopy class is called optimal.

This paper is based on a conceptually very simple Ele-
mentary Step which transforms a system into another ho-
motopic system by shortening one loop as much as possible
while keeping the other ones fixed. A natural question is
to ask what we obtain when this process is iterated forever.
Quite surprisingly, this simple iterative scheme converges
(in a polynomial number of steps) to an optimal system. We
prove that:

• the iterative scheme reaches stability in length and
yields a system in which each loop is a shortest loop
among all simple loops in its homotopy class (hence
this system is optimal). This directly implies a theo-
retical, non-trivial fact: any optimal system is made of
shortest simple homotopic loops;

• this scheme can be implemented efficiently, lead-
ing to an algorithm which, given a system S,
computes a homotopic optimal system in time
O(µ5α3g3n3 log(µαn)), where n is the combinatorial
complexity of the surface, α is the longest-to-shortest
edge ratio, and µ is the maximal number of times a
given loop in S passes through a given vertex in M;

• these results can be used to compute a shortest simple
loop homotopic to a given simple loop.

A slightly different version of the algorithm (yielding the
same result) has been implemented.

Let us stress out that these results are a priori non-
obvious. First of all, a shortest loop homotopic to a simple
loop may itself not be simple; hence, computing a shortest
system homotopic to a given system cannot be obtained by
just searching for a shortest loop homotopic to each loop
in the system. Even if we find shortest simple homotopic
loops, it could still happen that these loops intersect. Fur-
thermore, consider the related problem of finding a shortest
loop within a given homotopy class. A natural tool for this
is the universal covering of M, since the problem reduces
to find a shortest path in this space. However, if the shortest
path we are looking for is composed of k edges, then we
should a priori visit all vertices at a distance at most k from
a lift of the basepoint, and this number of vertices can be
exponential in k.

This paper is organized as follows. We first adapt the
definition of a system of loops to combinatorial surfaces in
Section 2. Section 3 is devoted to the proof that we end
with loops individually as short as possible among simple
homotopic loops; Section 4 provides the details to obtain a
practical algorithm. In Section 5, we analyze the complex-
ity of the algorithm. Section 6 applies these results to the
computation of a shortest simple loop homotopic to a given
simple loop. We end with experimental results.

2. Framework of the paper

Consider a triangulated oriented surface M (or, more
generally, a polyhedral 2-manifold), possibly with bound-
ary; let G = (V, E) be its vertex-edge graph. In this paper,
we consider three types of paths: piecewise linear paths on
M , denoted by lowercase letters (e.g., p), paths in G, writ-
ten in typewriter fonts (e.g., P), and loops in a combina-
torial structure, the edge-ordered set of loops (EOSL for
short), written in uppercase letters (e.g., P ). This section
aims at describing more precisely these settings. PL paths
shall be used as a tool for the proof of the algorithm correct-
ness, as it relies on topological theorems, while the EOSL
is the relevant framework for systems on the 1-skeleton of a
combinatorial manifold.

2.1. The PL setting

Let G∗ = (V ∗, E∗) be the dual graph of G, naturally
embedded in M (each vertex f ∗ of G∗ is in the face f of
G; each edge e∗ of G∗ crosses its dual edge e and only this
edge).

In this paper, a loop ` is a piecewise linear path (i.e., a
continuous mapping [0, 1] → M ) such that `(0) = `(1);
this point is called the basepoint of `. A path p (resp. a
loop `) is simple if p (resp. `|[0,1)) is one-to-one. A bouquet
of circles is an ordered set of simple loops meeting at their
common basepoint, which are pairwise disjoint except at
this basepoint.

An admissible set of paths on M is a set of piecewise lin-
ear paths on M which is in general position in the following
sense:

• no path contains a vertex of G∗;

• the set of intersection points of each path with the
edges of G∗ is finite, and each such intersection is a
crossing;

• the set of (self-)intersection points between the paths
is finite and disjoint from the union of the edges of G∗,
and each such intersection is a crossing.

If M is boundaryless, and v0 is a vertex in M , a (funda-
mental) system of loops s = (s1, . . . , sn) on M , or system
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Figure 1. A system of loops (example for
g = 2). From left to right: the loops meet-
ing at the basepoint; the same situation after
cutting along the loops; and a view of the
polygonal schema after this cutting. In this
example, the system is canonical.

for short, is a bouquet of circles with basepoint v0, such
that the complement of this bouquet of circles is a topolog-
ical disk. From the theory of the classification of surfaces
(see [11]), it is known that any system on M is made of
n = 2g loops, where g is the genus of the surface. See Fig-
ure 1. In this paper, all systems of loops considered are on
the manifold M, and the basepoint v0 is fixed.

2.2. Paths on the vertex-edge graph

We choose an arbitrary orientation on the edges of G,
and we denote by E+ the set of edges of E with this orien-
tation and by E− the set of edges with opposite orientation.
Let Eor = E+ ∪ E−. If e ∈ E+, let e∗ be the correspond-
ing edge of E∗, oriented such that e crosses e∗ “from left
to right”. If e ∈ Eor, −e means the edge e with reverse
orientation.

Let p = (p1, . . . , pn) be an admissible set of paths on M .
For i = 1, . . . , n, consider the list of edges of G∗ crossed by
pi; by duality, this yields a list of edges e0

i , . . . , e
mi

i in Eor

which is a path Pi on G. The walk-edges of this set of paths
are the pairs (i, j), where 0 ≤ j ≤ mi; (i, j) corresponds
to edge ej

i ∈ Eor.
The same process can be done for an admissible set of

loops ` on M ; in this case, the basepoint of path Li (cor-
responding to `i) is the source of e0

i ; the predecessor of a
walk-edge (i, j) is (i, j − 1) if j 6= 0 and (i, mi) otherwise.

We assume that each (undirected) edge of G has a posi-
tive length, or weight; the length of a path (or loop) p is the
length of P in the weighted graph G. In this paper, we do
never consider the length of a path on the manifold itself.

2.3. Edge-Ordered Set of Loops

An edge-ordered set of loops (EOSL for short) is a set L
of loops in G, with the data, for each edge e ∈ E+, of a
linear order �e on the set We of the walk-edges of L that
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Figure 2. A representation of an edge-ordered
set of loops in the star of a vertex of G, whose
incident edges are e1, . . . , e4. On the left, the
intersections between the loops and the dual
edges e∗1, . . . , e

∗

4 are represented. This yields
the EOSL represented on the right: each
walk-edge corresponds to a crossing of a
loop with an edge of G∗. In this example, no
crossing occurs between the loops.

correspond to e or −e. If L is an EOSL, and e ∈ E−, we
define the order �e on We by the rule: a �e b if and only
if b �−e a. Let ` be an admissible set of loops on M ; we
define an EOSL L = ρ(`) on G as follows (Figure 2): we
consider the corresponding set of loops L in G; if e ∈ E+,
the elements of We correspond to the intersection points of
` with e∗, and this set is linearly ordered by the orientation
of e∗.

Let v ∈ V , and e1, . . . , en be the CCW-ordered list of
edges in Eor whose source is v. We define a cyclic order �v

on the walk-edges meeting at v by enumerating its elements
in this order: first the walk-edges in We1

in �e1
-order; then

the walk-edges in We2
in �e2

-order; and so on. Consider
two walk-edges w1 and w2 of L with common source v ∈
V ; we say that w1 and w2 cross if, in the cyclic order �v,
w1 and its predecessor separate w2 from its predecessor.

A combinatorial bouquet of circles is an edge-ordered
set of loops with common basepoint, such that no crossing
occurs except between walk-edges of the form (i1, 0) and
(i2, 0). If ` is a bouquet of circles, then ρ(`) is a combina-
torial bouquet of circles.

If L is a combinatorial bouquet of circles, there exists a
bouquet of circles ` such that ρ(`) = L: pictorially, this
means that we consider all walk-edges along a given edge
of E+ and spread them by a thin space. A combinatorial
system of loops is a combinatorial bouquet of circles S such
that a bouquet of circles in ρ−1(S) is a system (clearly, this
property does not depend on the particular bouquet consid-
ered in ρ−1(S)).
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3. Our theoretical result

We consider our polyhedral 2-manifold M, whose
vertex-edge graph is denoted by G.

Let s be a system on M with basepoint v0, and k ∈
[1, 2g]; we define fk(s) to be the system s where sk has
been removed and replaced by a loop s′k, such that the re-
sulting set of loops is a system homotopic to s and s′k has
minimal length with this property. Similarly, if S is a com-
binatorial system, we define Fk(S) to be a shortest homo-
topic system resulting from S by the replacement of Sk by
another loop S′

k. Throughout this paper, we refer to this
shortening process as an Elementary Step.

Let f = f2g ◦ . . . ◦ f1 and F = F2g ◦ . . . ◦ F1. We call
an application of f (or F ) a Main Step.

Theorem 1 Let s0 be a system with basepoint v0, and
sn+1 = f(sn). For some m ∈ N, sm and sm+1 have the
same length and, in this situation, sm is a system homo-
topic to s0 made of loops which are individually as short as
possible among all simple loops with basepoint v0 in their
homotopy class. In particular, sm is an optimal system1.

Of course, this theorem can be rephrased in purely com-
binatorial terms, replacing s by S and f by F , and both
versions are trivially equivalent. The goal of this section is
devoted to the proof of Theorem 1; the remaining sections
make use of this theorem.

3.1. Topological preliminaries

In this subsection, we briefly recall the vocabulary of ho-
motopies and universal coverings. See [5] or [11] for more
details.

A homotopy between two loops `0 and `1 with basepoint
v0 on a surface M is a continuous map h : [0, 1]× [0, 1] →
M such that h(0, .) = `0, h(1, .) = `1, and h(., 0) =
h(., 1) = v0. If such a map exists, we say that `0 and `1 are
homotopic: in an intuitive language, there is a continuous
deformation from one to the other. A loop is null-homotopic
if it is homotopic to a constant loop.

The universal covering of M is a simply connected sur-
face, M̃ (i.e., each loop is null-homotopic) together with a
continuous projection π from M̃ onto M satisfying: each
point x of M has an open, arcwise connected neighborhood
U so that π−1(U) is a union of disjoint open sets (Ui)i∈I

and π|Ui
: Ui → U is a homeomorphism. A translation τ in

M̃ is a projection preserving homeomorphism: π ◦ τ = π.
The main properties of M̃ used in this paper are:

1Remark. The proof of Theorem 1 extends to the case where we con-
sider the real length of PL systems drawn on M (and not on its vertex-edge
graph), provided that the suitable definition of a crossing is used: we have
to take into account that two loops can partly overlap without crossing.

• the lift property: let p be a path in M with source point
y; let x ∈ M̃ be such that π(x) = y. Then there is a
unique path p̃ in M̃ , starting at x, such that π(p̃) = p;
p̃ is a lift of p;

• the homotopy property: two paths p1 and p2 with the
same endpoints are homotopic in M if and only if they
have two lifts p̃1 and p̃2 with the same endpoints in M̃ ;

• the intersection property: a path p in M self-intersects
if and only if either a lift of p self-intersects, or two
lifts of p intersect.

Let π1(M, v) be the set of homotopy classes of loops
with basepoint v on M . If ` is a loop with basepoint v, let
[`] denote its homotopy class; `1.`2 denotes the concatena-
tion of `1 and `2. The set π1(M, v) equiped with the law
[`1].[`2] = [`1.`2] is a group, called the fundamental group
of (M, v); its unit element (the class of null-homotopic
loops) will be denoted by ε.

3.2. Crossing words and reductions

We consider the universal covering M̃ of M. Fix a lift
vε
0 of v0 in M̃. For α ∈ π1(M, v0), the lifts of all paths in

α starting at vε
0 end at the same lift of v0, which we call vα

0 ;
this gives a one-to-one correspondence between π1(M, v0)
and the lifts of v0. If ` is a loop with basepoint v0, α ∈
π1(M, v0), we denote by `α the lift of ` starting at vα

0 .
Let A be the set of symbols of the form kα or k̄α, where

k ∈ [1, 2g] and α ∈ π1(M, v0). The set A∗ of words on
A is the set of finite sequences of elements in A. Fix i ∈
[1, 2g]; consider a system of loops s, and a simple loop ti

with basepoint v0, homotopic to si. We assume that this
set of 2g + 1 loops is admissible. tε

i crosses the loops sα
k

(for k ∈ [1, 2g] and α ∈ π1(M, v0)) at a finite number of
points. We walk along tεi and, at each crossing encountered
with a lift sα

k of s, we write the symbol kα or k̄α, according
to the orientation of the crossing (with respect to a fixed
orientation of M̃). The resulting element of A∗ is called
the crossing word of ti with s, and denoted by [s/ti]. Note
that, for this definition, the fact that two loops meet at the
basepoint is not considered as a crossing.

We say that a symbol kα or k̄α is initial if α ∈ {ε, [s̄k]}
(here, bar is used for reverse orientation), or, equivalently,
if vε

0 is one of the endpoints of sα
k . Similarly, such a symbol

is final if α ∈ {[ti], [ti.s̄k]}; i.e., if the target of tεi coincides
with one of the endpoints of sα

k . We define two types of
reductions on a word in A∗:

• a parenthesized reduction consists in removing an ex-
pression of the form kαk̄α or k̄αkα;

• an extremal reduction consists in removing the first
(resp. last) element of the word, if it is an initial (resp.
final) symbol.
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Let w, w′ ∈ A∗. We say that w reduces to w′ if w′

can be obtained from w by some reductions; w is an irre-
ducible word if no reduction is possible on w. A reduction
consisting in the removal of kα or k̄α (or both) is called a
k-reduction. We define in the straightforward way the k-
irreducible words and the fact that a word k-reduces to an-
other word. We define g(w) (resp. gk(w)) to be the unique
irreducible (resp. k-irreducible) word derived from w. Let
ε be the empty word of A∗. The next subsection is devoted
to the proof of the following key proposition:

Proposition 2 g([s/ti]) = ε.

3.3. Reducibility of [s/ti]

Lemma 3 Let M be an oriented surface with boundary. We
consider an admissible set of paths in M made of simple
pairwise non-intersecting paths c1, . . . , cn, each of which
separates M into two connected components, and of a loop
` in the interior of M . Let L be the list of crossings between
` and the ck, in this order on `, taking into account the ori-
entation of the crossing (with or without a bar). Then L is
a parenthesized expression.

PROOF. Omitted.

An isotopy between two simple loops is a homotopy with
the additional property that the loop remains simple at each
stage of the homotopy. We will need the following theorem
by Epstein [2, Theorem 4.1].

Theorem 4 Let `0 and `1 be piecewise linear, homotopic,
simple loops with common basepoint in M, such that they
are not null-homotopic. Then, there is a piecewise linear
isotopy between `0 and `1, keeping the basepoint fixed.

Let D be an open disk around v0. We say that a loop
u with basepoint v0 is D-clean if u “enters D only once”,
i.e., considering u to be a mapping from the circle into M,
u−1(D) is connected. If u is D-clean, let u̇ denote the path
consisting of the part of u outside D.

Lemma 5 Let D be an open disk containing v0, and let
u and u′ be piecewise linear homotopic loops on M with
basepoint v0, which are D-clean and simple. Then, there
are two paths p and p′ on the boundary of D so that
u̇−1.p.u̇′.p′ is null-homotopic in M\ D.

PROOF. u and u′ are piecewise linearly isotopic on M,
with the basepoint v0 fixed, by Theorem 4. Let h : [0, 1] ×
[0, 1] → M be the isotopy: for each t, h(t, .) : [0, 1) → M
is one-to-one, and h(t, 0) = h(t, 1) = v0; h(0, .) = u, and
h(1, .) = u′.

h−1(D) is a neighborhood of the compact set [0, 1] ×
{0, 1}, hence there exists an ε > 0 such that h([0, 1] ×
([0, ε] ∪ [1 − ε, 1])) ⊂ D. Let h′ be the restriction of h to
[0, 1]× [ε, 1 − ε].

Let r : M\{v0} → M\D be a continuous map which
is the identity on M \ D and which maps D \ {v0} onto
the boundary of D. Since h is an isotopy and h(., 0) =
h(., 1) = v0, h′′ = r ◦ h′ is a well-defined continuous map.
h′′(., ε) and h′′(., 1− ε) are on the boundary of D; h′′(0, .)
(resp. h′′(1, .)) is made of a path on the boundary of D, u̇
(resp. u̇′), and another path on the boundary of D; from
these facts, it is easy to derive the paths p and p′, and the
desired homotopy.

PROOF OF PROPOSITION 2. Let s′i be a simple PL loop
homotopic to si such that it does not cross any of the loops
sk, k ∈ [1, 2g] (for example, let s′i “go along” si, suffi-
ciently near si). Let D and D′ be two open disks such that
v0 ∈ D′ and the closure of D′ is included in D. By choos-
ing disks small enough, we can ensure that all loops sk, ti
and s′i are D- and D′-clean and do not cross inside D (ex-
cept at v0).

Let M′ = M\D′, and let M̃′ be its universal covering.
By Lemma 5, there are two paths p and p′ on the boundary
of D such that any lift ` of ṡ′−1

i .p.ṫi.p
′ is a loop in M̃′ (D′

is included in D).
For any D′-clean loop u, denote by ü the part of u out-

side D′. It is easy to see that each lift of s̈k is a separating
curve in M̃′; applying Lemma 3, we obtain that the list of
crossings of ` with the lifts of s̈ = (s̈1, . . . , s̈2g) is paren-
thesized.

Recall that π is the projection from M̃ onto M. Note
that M̃′ is a covering space (in fact, the universal covering)
of M̃ \ π−1(D′). In particular, crossings between paths in
M̃′ project to crossings in M̃. Hence the list of crossings
of any lift of `′ = p.ṫi.p

′ in M̃ with the lifts of s̈ is also
parenthesized. Considering the lift of `′ containing the part
of tεi which is outside π−1(D), we see that [s/ti] can be
deduced from this expression by extremal reductions, which
concludes the proof.

3.4. Uncrossing the loops

In this subsection, we fix i and j in [1, 2g], and we con-
sider a continuous system s and a simple loop ti homotopic
to si. Let r = fj(s). We always assume that s and ti (resp.
r and ti) constitute an admissible set of loops. Intuitively,
the strategy is to show that, if ti is as short as possible, then
applying fj to s unties the intersections between ti and sj .
More precisely, we prove in this subsection:

Proposition 6 There exists a simple loop t′i homotopic to
and not longer than ti, such that [r/t′i] = gj([s/ti]) (and,
of course, r and t′i constitute an admissible set of paths).

5



PSfrag replacements tεi

sα
j rα

j

x

y

Figure 3. The crossings of the part of tεi be-
tween x and y with lifts of sj and rj . The same
properties hold if x and y are both on the same
component of the boundary of the strip.

Lemma 7 gj([r/ti]) = gj([s/ti]).

PROOF. A k-symbol is a symbol of the form kα or k̄α.
Consider [s/ti] where all j-symbols are removed; this list
is the same as [r/ti] where all j-symbols are removed. To
prove our lemma, it is sufficient to consider, in [s/ti] and
[r/ti], the lists of j-symbols between two consecutive non-
j-symbols (and also before the first and after the last non-
j-symbol), and to prove that they reduce to the same ex-
pression by applications of parenthesized j-reductions (and
possibly initial or final j-reductions for the initial and final
parts of [s/ti]).

Two successive non-j-symbols in [s/ti] correspond, in
M̃, to two intersections x and y of tε

i with the lifts of sk

(k 6= j). Let p denote the part of tε
i between x and y, and

[s/p] be the list of crossings of p with the lifts of s (hence
only lifts of sj); p is on an infinite strip bounded by lifts
of sk = rk for k 6= j (see Figure 3). It is easy to see that
[s/p], to which we apply as much as possible parenthesized
j-reductions, is the list of the lifts of sj that separate x from
y. But sα

j separates x from y if and only if rα
j does, because

they are paths with the same endpoints on the boundary of
the strip; hence [s/p] and [r/p] are equal up to parenthesized
j-reductions.

The reasoning for the initial and last parts of [s/ti] and
[r/ti] is quite similar.

Define a lens of two paths (or loops) p1 and p2 to be
two strict subpaths of p1 and p2, with the same endpoints,
so that these two subpaths concatenated together make a
simple loop bounding a topological disk. The corners of
this lens are the two endpoints of the subpaths.

Lemma 8 Suppose a j-reduction is possible on [r/ti].
Then, there is a lens of ti and rj which is crossed neither
by ti nor by any of the rk .

PROOF. We first claim that there is a lens L̃, in M̃, of tεi
and rα

j for some α, which is crossed by no lift of r. Indeed,
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this is true for parenthesized and extremal j-reductions (in
the latter case, one corner of the lens is a lift of the base-
point).

The projection L of L̃ on M crosses no path rk. It is
thus contained in the polygonal schema defined by r. By
the Schoenflies Theorem, L bounds a disk D and is also
a lens of ti and rj . The intersection of ti with D is a set
of simple paths whose endpoints lie on rj . Considering an
innermost such curve (Figure 4), we get the result.

PROOF OF PROPOSITION 6. We will use the following
property: if p is a path with endpoints a and b, and c is a
point on p not lying on any edge of G∗, then the length of p
is the sum of the lengths of the parts of p between a and c
and between c and b.

If [r/ti] is j-irreducible, then we are over by Lemma 7.
Otherwise, we apply Lemma 8; let x and y denote the cor-
ners of the lens, and txy

i and rxy
j be the parts of ti and rj

constituting the lens. By the admissibility property, x and y
are on no edge of G∗.

Suppose that txy
i is shorter than rxy

j . Then, by replacing
the part rxy

j of rj by a path going along txy
i , we get a path

r′j , homotopic to rj , such that the replacement of rj by r′j
in r yields a homotopic system of loops, and r′j is shorter
than rj . This contradicts the definition of fj .

We replace the part txy
i of ti by a path going along rxy

j ,
just outside the lens; call t′i the resulting path. [r/t′i] is de-
duced from [r/ti] by a j-reduction. Note that r and t′i form
an admissible set of loops, and t′i is not longer than ti. We
end by induction.

3.5. Conclusion of the proof

Lemma 9 Let u be an admissible system, and vi be a sim-
ple loop homotopic to ui, with minimal length, so that u and
vi constitute an admissible set of loops. If [u/vi] = ε, then
the ith loop of f(u) has the same length as vi.

PROOF. Omitted (use Proposition 6).
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PROOF OF THEOREM 1. Fix i ∈ [1, 2g]. Let t0i be a
shortest simple loop homotopic to s0

i , such that t0i and s0

constitute an admissible set of loops.
By Propositions 6 and 2, one can construct a sequence

(tni )n∈N of loops, having the same length as t0i , homotopic
to s0

i , such that the length of the expression [sn/tni ] strictly
decreases with n until it is the empty word. Then for some
n, [sn/tni ] = ε, and, by Lemma 9, sn+1

i has the same length
as t0i . This proves that the length of sn becomes stationary
at some stage of the algorithm.

Let m be the first integer such that at sm and sm+1 have
the same length. One can prove: for any j ∈ [1, 2g],
there exists t′i, of minimal length, such that [sm/t′i] =
gj([s

m/tmi ]) (using arguments as in Subsection 3.4, and in-
duction). Hence, iterating this process, we get that there ex-
ists t′i, of minimal length, such that [sm/t′i] = ε. Then, by
Lemma 9, sm+1

i has the same length as t0i . This concludes
the proof.

4. Shortest paths on cylinders

We will develop the tools used to process an Elementary
Step. Note that Fi(S) consists in the replacement of Si by
S′

i such that this loop:

1. crosses no Sj for j 6= i;

2. is homotopic to Si;

3. is as short as possible;

4. is simple.

The key idea for this section is that, if we are able to com-
pute (in a particular way) a loop satisfying the first three
hypotheses, then the last one will be automatically estab-
lished. Finally, we will reduce the problem to that of find-
ing a shortest path in some graph. Recall from Section 2
the notations p, P, and Si; in this section, we will use the
applications p 7→ P and Si 7→ Si implicitely.

4.1. The cylinder M(s, i)

Let s = (s1, . . . , s2g) be an admissible system of loops
on M. We define M(s, i) to be the bounded cylinder ob-
tained after the cutting of M along the loops s1, . . . , s2g ,
except si. The extremities of si are no more identified on
M(s, i). We denote by φ the quotient map from M(s, i)
onto M. Note that the ith loop of fi(s) satisfies Condi-
tion 1, hence is in M(s, i). Analogously, the ith loop of
Fi(S) is to be searched for in some graph embedded on
M(s, i), which we now describe.

We first explain how G∗ is transformed after the cutting
of M into M(s, i). Intuitively, we refine G∗ on M by
adding vertices at the intersection points between its edges
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and the paths sj (for j 6= i); after that, by cutting along the
loops sj , we are able to build a new graph G∗(s, i), embed-
ded on M(s, i), such that φ(G∗(s, i)) = G∗ (see Figure 5).
More formally, the set of vertices of G∗(s, i) is made of the
preimage, by φ, of the union of two sets: the set of vertices
of G∗, and the intersection points between the edges of G∗

and the paths sj (j 6= i). Two vertices of G∗(s, i) are adja-
cent if and only if they can be linked, in M(s, i), by a path
whose image by φ is included in an edge of G∗.

Each edge of G∗(s, i) maps naturally to an edge of G∗.
Consider now the dual graph G(s, i) of G∗(s, i) in M(s, i).
By duality, each edge of G(s, i) also maps to an edge of G;
by abuse of notation, we still denote this map by φ. G(s, i)
can be embedded in M(s, i) (Figure 5, right), and the edges
of G(s, i) in a given set φ−1(e) are “parallel”.

By definition, the weight of an edge e of G(s, i) is the
weight of φ(e). The fundamental property of G(s, i) is the
following: any admissible path in M(s, i) “retracts” to a
combinatorial path in G(s, i) of the same length, and the
converse is true. Hence, computing Fi(S) reduces to com-
pute a path in G(s, i) satisfying only Conditions 2, 3, and 4.

Let M̃(s, i) be the universal covering of M(s, i), and
let π be its projection. M̃(s, i) can be viewed as the surface
with boundary resulting from stitching along si infinitely
many copies of the polygonal schema associated to s (Fig-
ure 6). We now define a graph G̃(s, i) embedded on M̃(s, i)
by: G̃(s, i) = π−1(G(s, i)). In other words, G̃(s, i) is the
natural covering of G(s, i) in M̃(s, i).

The algorithmic construction of all these graphs is easy
and skipped in this abstract.
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4.2. Simplicity of a shortest path

To achieve Condition 4, a shortest homotopic path in
G(s, i) must be chosen in a particular way to “break the
ties”. Specifically, we need an algorithm which, given two
vertices a and b of G̃(s, i), computes a shortest path SP(a, b)
such that:

• if c ∈ SP(a, b), then SP(a, b) is the concatenation of
SP(a, c) and SP(c, b);

• SP is invariant by any translation τ in the universal
covering G̃(s, i): SP(τ(a), τ(b)) = τ(SP(a, b)).

Note that SP(a, b) and SP(b, a) may differ. It can be
checked that a slight variant of Dijkstra’s algorithm can be
used for that problem: before everything, we choose a lin-
ear ordering on the oriented edges of G(s, i). During the
relaxation step of Dijkstra’s algorithm (see [1]), if equality
occurs between the stored distance and the new computed
distance, we have two shortest paths arriving to a vertex,
whose last edges differ: we simply select the path whose
last edge (projected in G(s, i)) is minimal.

Consider the path si viewed in M(s, i), and let a and b
be two vertices of G̃(s, i) which are the endpoints of a lift
of si in M̃(s, i). Let P̃ = SP(a, b), and P = π(P̃). The
following proposition says that P is nearly the ith loop of
Fi(S):

Proposition 10 Let Ŝ be the EOSL resulting from S by the
removal of Si. It is possible to insert a loop S ′

i in Ŝ such
that S

′
i = φ(P), and the resulting EOSL S ′ is a system of

loops homotopic to S.

Note that p is a path which crosses no sj for j 6= i, is ho-
motopic to si, and as short as possible. Hence the ith loop of
Fi(S) cannot be shorter than P. By the above proposition,
we can let Fi(S) = S′.

SKETCH OF PROOF. We prove the existence a simple
admissible path p in M(s, i) whose corresponding path in

G(s, i) is P. This implies that there exists an admissible
system of loops s′, resulting from s by the replacement of
si by a loop s′i = φ(p), such that the length of s′i equals the
length of P. Considering ρ(s′) yields the result.

The idea of the proof is to start with some simple admis-
sible path p̃0 corresponding to a lift P̃0 of P. If p = π(p̃0)
self-intersects then, by the intersection property, p̃0 must
intersect some other lift p̃1 of p. By the Jordan Curve Theo-
rem in M̃(s, i), these two lifts must intersect at least twice.
We then consider two subpaths of p̃0 and p̃1 sharing their
extremities and oriented the same way. By the properties of
our shortest-path algorithm, these two subpaths are shortest
paths, and the parts of P̃0 and P̃1 corresponding to these
subpaths are identical. We can thus swap their projections in
p without changing its corresponding path P. This strictly
reduces the number of self-intersections of p. The proof is
ended by induction.

Actually, it can be checked that there is only one way to
insert S′

i in Ŝ. Moreover, this insertion can be done in time
linear in the complexity of S ′

i.

5. Complexity analysis

We now give a (crude?) upper bound on the complexity
of our algorithm. Let n be the complexity of M and g be
its genus. Let S be a combinatorial system homotopic to
some given S0 on M; let s and s0 be respective associated
continuous systems.

Lemma 11 Suppose there exists a shortest simple loop ti

homotopic to si such that both s0
i and fi(s)i cross ti at

most Ci times. Then, computing Fi(S) is possible in time
O(p log p), where p = (n+|S|+|S0|)Ci. (|S| is the number
of edges of system S.).

PROOF. Consider a part t̄i of ti (resp. a part s̄0
i of s0

i )
which goes from one boundary of M(s, i) to the other one.
A lift of fi(s)i in M̃(s, i) crosses at most 2Ci + 1 lifts of
s̄0

i , hence fi(s)i is confined to the space made of 2Ci + 2
patches delimited by two consecutive lifts of s̄0

i in M̃(s, i).
This corresponds to a search in a graph of complexity O(p),
since the graph G(s, i) has size O(n + |S|). In practice, it
is not required to know Ci in advance: searching through
an exponentially increasing number of patches leads to the
announced complexity.

Let µ be the multiplicity of any loop in S0, i.e., the max-
imal multiplicity of any vertex of M in a loop of S0. In
particular the complexity of a loop is bounded by µn. The
next lemma follows easily:

Lemma 12 Consider an EOSL made of S0 and of a loop
T ; let k ∈ [1, 2g]. The number of crossings between S0

k and
T is bounded by µ|T |.
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Let L be the maximum over i of the maximal number of
edges of any shortest simple loop Ti homotopic to S0

i . By
the preceding lemma, there exists a shortest simple loop ti

homotopic to s0
i such that s0 and ti cross O(gµL) times;

this is also an upper bound on the number of Main Steps
required, by Propositions 2 and 6. Whence the total number
of Elementary Steps is O(g2µL).

Note that, during the algorithm, the values of Ci

(Lemma 11) are bounded from above by the maximal num-
ber of crossings between S0

i and any shortest simple loop
Ti homotopic to S0

i , hence by µL. Let m be the maxi-
mum of (n + |Sj | + |S0|) over the shortening iterations.
From Lemma 11, an Elementary Step can be processed in
time O(µLm log(µLm)). The total time spent by the al-
gorithm is thus O(g2µ2L2m log(µLm)). We further intro-
duce the longest-to-shortest edge ratio, α, in M. Since an
Elementary Step cannot increase the length of a loop, we
have L = O(αµn) and m = O(gαµn). Putting all this
together, we get:

Theorem 13 Given a system of loops with multiplicity µ
on an orientable triangulated surface M, with longest-to-
shortest edge ratio α, there is an algorithm that computes
an optimal homotopic system in O(µ5α3g3n3 log(µαn))
time.

Remark. According to [6], the logarithmic term in the
theorem can be removed.

The definition of µ can be slightly modified to imply a
weaker condition so that the above complexity still applies
(details are omitted). Moreover, with this new definition, it
can be proved that µ = 2 holds true for any system com-
puted as in [8].

6. Shortest simple loop

In this section, we study the problem of computing a
shortest simple loop homotopic to a given simple loop.
While an exhaustive search in the universal cover of M
again leads to an exponential algorithm, a simple applica-
tion of the previous results gives us a polynomial algorithm.
Let T be an EOSL on G made of a single simple loop with
multiplicity µ.

Theorem 14 Among all EOSLs made of a simple loop
homotopic to T , a shortest one can be computed in
O(µ5α3g3n3 log(µαn)) time (the parameters α, g, and n
are defined as in Theorem 13).

PROOF. First suppose that T does not separate M. Us-
ing [8, Part 5, Step 1], it is possible to extend T to a com-
binatorial system of loops containing T , so that the multi-
plicity of each loop is at most 2µ. This is easy if µ = 1:
indeed, in this case, T is a simple loop on M, and it is

possible to ensure that T is a part of the graph G described
in that paper. In the general case, we have to refine M to
simulate that µ = 1, compute the system, and then recon-
tract the surface. In all cases, it remains to apply Theorem
13 to compute an optimal system containing a simple loop
homotopic to T ; by Theorem 1, this is the desired loop.

Suppose on the contrary that T separates M. Our inter-
mediate goal is to compute a simple EOSL of M made of
a system for M and of T , so that the multiplicity of each
loop is at most 2µ. Again, this is easy to do if µ = 1: in this
case, we consider the manifolds M1 and M2 which result
from the cutting of M along T ; we close M1 and M2 with
a single face, and we compute systems for each of these two
surfaces, with the basepoint corresponding to the basepoint
of T . The “union” of T with both systems in M yields the
result. If µ > 1, like above, it is possible to conclude using
a refinement of the manifold.

Applying Theorem 13, we compute an optimal system
S′ homotopic to S. Then, we insert in S ′ a shortest loop
T ′ among all loops homotopic to T and which do not cross
S′: this reduces to find a shortest path in a topological disk
(the polygonal schema associated to S ′), hence T ′ is simple.
We claim that T ′ is a shortest simple loop homotopic to T .
Indeed, let t′ be a simple loop associated to T ′, and let t′′

be a shortest simple loop homotopic to t′; as in the proof
of Proposition 2, [s′/t′′] reduces to the empty word; as in
the proof of Lemma 8, there exists a simple loop homotopic
to t′′ and which does not cross s′; hence t′ and t′′ have the
same length.

7. Implementation

We have implemented a slightly different version of the
algorithm using the C++ based CGAL library (in this ver-
sion, we do not need to compute partial covering spaces of
M(s, i) as suggested in Section 4.1).

In order to make comparisons, we also implemented a
simple local optimization that produces geodesic loops on
the surface of M: we visit each vertex star of M and re-
place pieces of loops in the star by shortest paths in the star.
We repeat this operation until the shortening gain is below a
given threshold. The resulting loops are geodesics (not nec-
essarily the shortest ones) and keep their homotopy class.

Figure 7 shows a simple example run on a genus 2 torus
with 1536 facets. Euclidean distances were used for the
edges. More pictures can be seen on
http://www-sic.univ-poitiers.fr/lazarus/opt-sys.html.

8. Discussion

Natural extensions of our work concern the case of non-
orientable and/or bordered surfaces. Another interesting

9



A B C D E

Figure 7. A: A canonical system, S, obtained after [8]. The basepoint is on the back side of the double
torus. B: F (S). C: F 2(S). D: F 3(S) = F 4(S). E: The local optimization was applied to this optimal
system to get a geodesic system on the surface (4,000 star optimizations were performed).

continuation is to replace the combinatorial systems by
piecewise linear systems using the induced metric on some
polyhedral surface immersed into R

3. This would somehow
extend the work of Hershberger and Snoeyink [7] to much
more general surfaces.

Our work also suggests some open questions. What is
the influence of the basepoint position? How would it be
possible to get the shortest system, among all systems, re-
laxing the homotopy condition? Comparing with the work
of Erickson and Har-Peled [3], we expect this last problem
to be much less tractable than those solved in the present
paper.
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