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Abstract

We introduce a promising new approach to rigid body
dynamzic simulation called impulse-based simulation. The
method is well suited to modeling physical systems with large
numbers of collisions, or with contact modes that change
frequently. All types of contact (colliding, rolling, sliding,
and resting) are modeled through a series of collision im-
pulses between the objects in contact, hence the method is
sempler and faster than constraint-based simulation. We
have implemented an impulse-based simulator that can cur-
rently achieve interactive simulation times, and real time
semulation seems within reach. In addition, the simulator
has produced physically accurate results in several qualitative
and quantitative experiments. After giving an overview of
tmpulse-based dynamic simulation, we discuss collision de-
tection and collision response in this context, and present
results from several experiments.

1 Introduction

The foremost requirement of a dynamic simulator is phys-
ical accuracy. The simulation is to take the place of a phys-
ical model, and hence its utility is directly related to how
well it mimics this model. A second important requirement
is computational efficiency. Many applications (e.g. elec-
tronic prototyping [9]) benefit most from interactive simula-
tion; others (e.g. virtual reality) demand real time speeds.

This paper discusses a new approach to dynamic simu-
lation called impulse-based simulation, founded on the twin
goals of physical accuracy and computational efficiency. The
initial results from our impulse-based simulator look very
promising, both from speed and accuracy standpoints. In
this paper we give an overview of the impulse-based ap-
proach, then discuss collision detection and resolution and
results from several experiments.
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1.1 Related work

Moore and Wilhelms give one of the earliest treatments of
two fundamental problems in dynamic simulation: collision
detection and collision response [14]. Hahn also pioneered
dynamic simulation, modeling sliding and rolling contacts
using impact equations [8]. His work is the precursor of our
method, although we extend the applicability of impulse dy-
namics to resting contacts, and model multiple objects in
contact with impulse trains as well. These early approaches
all suffered from inefficient collision detection and unrealis-
tic assumptions concerning impact dynamics (e.g. infinite
friction at the contact point).

Cremer and Stewart describe Newton [7, 17], probably
the most advanced general-purpose dynamic simulator in use
today. Newton’s forte is the formulation and simulation of
constraint-based dynamics for linked rigid bodies, although
the contact modeling is fairly simplistic. Baraff has studied
multiple rigid bodies in contact [1, 2], and shown that com-
puting contact forces in the presence of friction is NP-hard
[3]. A summary of his work in this area appears in [4].

There are few full treatments of frictional collisions.
Routh [16] is still considered the authority on this subject,
and more recently, Keller gives an excellent treatment of
frictional collisions [10]. Our analysis is extremely similar to
that of Bhatt and Koechling, who independently derived the
same key equation for integration of relative contact veloc-
ities during impact. They give a classification of frictional
collisions, based on the flow patterns of tangential contact
velocity [6].

Wang and Mason have studied two-dimensional impact
dynamics for robotic applications, based on Routh’s ap-
proach [18]. Finally, a number of researchers have inves-
tigated several problems and paradigms for dynamic simu-
lation and physical-based modeling [5, 19, 20].

2 The impulse-based method

One of the most difficult aspects of dynamic simulation
is dealing with the interactions between bodies in contact.
Most of the work which has been done in this area falls into
the category of constraint-based methods [4, 5, 7, 19]. An
example will illustrate the approach. Consider a ball rolling
along a table top. The normal force which the table ex-
erts on the ball is a constraint force that does no work on
the ball, but only enforces a non-penetration constraint. In
the Lagrangian constraint-based approach, this force is not
modeled explicitly, but is accounted for by a constraint on
the configuration of the ball (here, its z-coordinate is held
constant). Alternatively, one may model the forces explic-
itly, solving for their magnitudes using Lagrange multipli-



ers. However this still requires complete, exact knowledge of
the instantaneous state of contact between the objects, since
that determines where and when such forces can exist.

A problem with this method is that as a dynamic sys-
tem evolves, the constraints may change many times, e.g.
the ball may roll off the table, may hit an object on the
table, etc. Determining the correct equations of motion for
the ball means keeping track of these changing constraints,
which can become complicated. Moreover, it is not even al-
ways clear what type of constraint should be applied; there
exist at least two models for rolling contact which in some
cases predict different behaviors [11]. Finally, impacts are
not easily incorporated into the constraint model, as they
generally give rise to impulses, not constraint forces present
over some interval. These collision impulses must be handled
separately, as in [1].

In contrast to constraint-based methods, impulse-based
dynamics involves no explicit constraints on the configura-
tions of the moving objects; when the objects are not collid-
ing, they are in ballistic trajectories. Furthermore, all modes
of continuous contact are handled via trains of impulses ap-
plied to the objects, whether they be resting, sliding, or
rolling on one another. Under impulse-based simulation, a
block resting on a table is actually experiencing many rapid,
tiny collisions with the table, each of which is resolved using
only local information at the collision point.

Now consider the case of a ball bouncing along the terrain
shown in figure 1. Under constraint-based simulation, the

Figure 1: A nightmare for constraint-based simulation.

constraints change as the ball begins traveling up the ramp,
leaves the ramp, and settles into a roll along the ground. All
these occurrences must be detected and processed. Impulse-
based simulation avoids having to worry about such transi-
tions. In this sense, it is a more physically sound treatment
since 1t does not establish an artificial boundary between,
for example, bouncing and rolling, but instead handles the
entire continuum of contact between these phases.

We do not wish to discredit constraint-based methods of
dynamic simulation; indeed, there are many situations for
which they are the perfect tool. We believe the impulse-
based method is better suited to simulating many common
physical systems, especially those which are collision inten-
sive, or that have many changes in contact mode. We ex-
amine the possibility of using both methods of simulation
together, combining the strengths of each, in section 6.

Two obvious questions concerning impulse-based simula-
tion are: (1) Does it work, i.e. does it result in physically
accurate simulations?, and (2) Is it fast enough to be practi-
cal? We defer more thorough answers to these questions to
section 5, but for now state the following: impulse-based dy-
namic simulation does produce physically accurate results,
and the approach is extremely fast. Simulations can cer-
tainly be run interactively with our current implementation,
and we believe real time simulation is a reachable goal.

3 Collision detection

Impulse-based dynamic simulation is inherently collision
intensive, since collisions are used to affect all types of inter-
action between objects. Hahn found collision detection to be

the bottleneck in dynamic simulation [8], and efficient data
structures and algorithms are needed to make impulse-based
simulation feasible.

Currently in our simulator, all objects are geometrically
modeled as convex polyhedra or combinations of them. The
polyhedral restriction is not at all severe, because our colli-
sion detection system is very insensitive to the complexity of
the geometric models, permitting fine tessellations. Indeed,
some of the simulations described in section 5 use polyhedral
models with over 20,000 facets, with negligible slowdown.

3.1 Prioritizing collisions

Obviously, checking for possible collisions between all
pairs of objects after every integration step is too inefficient.
Instead, collisions are prioritized in a heap (see figure 2). For
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Figure 2: Prioritizing collisions in a heap.

each pair of objects in the simulation, there is an element
in the heap, which also contains a lower bound on the time
of impact (TOI) for the given pair of objects. The heap is
sorted on the TOI field, thus the TOI field of the top heap
element always gives a “safe” value for the next collision free
integration step.

After an integration step, the distance between the ob-
jects on the top of the heap (call them A and B) must be
recomputed. In our implementation, we use the Lin-Canny
closest features algorithm [12]. This is an extremely effi-
cient algorithm which maintains the closest features (ver-
tices, edges, or faces) between a pair of convex polyhedra.
It is fastest in applications like dynamic simulation, when
the objects move continuously through space and geometric
coherence can be exploited.

Collisions are declared when the distance between objects
falls below some threshold e.. First suppose the distance
between A and B lies above .. In this case, the dynamic
states of A and B along with the output of the Lin-Canny
algorithm are used to compute a new conservative bound
on the time of impact of A and B. The A-B heap pair
is updated with this new value, possibly affecting its heap
position, and the integrator is ready for another step.

If the distance between A and B is less than ., a collision
is declared. The collision resolution system computes and
applies collision impulses to the two objects, changing their
dynamic state. At this point the TOI is recomputed for these
objects as before, however another step is necessary: the
TOI between all object pairs of the form A-z and B—z must
also be recomputed. The reason is that the TOI estimator
uses a ballistic trajectory assumption to bound the time of
impact for a pair of objects. Applying collision impulses to
objects violates this assumption, and so every previous TOI
involving such an object becomes invalid. Note that this is
an O(n) update step.

3.2 Further reducing collision checks and TOI updates

The strategy described above reduces collision checks sig-
nificantly, especially between objects which are far apart or



moving slowly. However, the number of collision checks is
still O(n2) because they are performed periodically between
every pair of objects. A more serious problem is the O(n)
TOI update step that must be performed every time a colli-
sion impulse is applied to an object. What the heap scheme
misses is the fact that some objects never come near each
other, and collision checks as well as TOI updates for such
pairs of objects are unnecessary.

To alleviate this problem, we employ a spatial tiling tech-
nique based on Overmars’ efficient point-location algorithms
in fat subdivisions [15]. For each object 7 in the simulation,
one can easily find an enclosing, axis-aligned rectangular vol-
ume B; which is guaranteed to contain the object during the
next integration step. This is possible because of the ballistic
trajectory assumption.

The idea is to keep track of which objects are near each
other, by keeping track of which bounding boxes overlap.
To this end, the physical space is partitioned into a cubical
tiling with resolution p. Under this tiling, Coordinates in
physical space are mapped to integers under the tiling map
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Let S; be the set of tiles which B; intersects. We store 7z in a
hash table multiple times, hashed on the coordinates of each
tile in .S;. Clearly objects ¢+ and j can only possibly collide
during the next integration step if ¢ and j are both present in
some hash bucket. Only in this case do we keep object pair
-7 in the collision heap. Furthermore, if object ¢ experiences
a collision impulse, T'OIs need only be recomputed for object
pairs -k, where object k shares a hash bucket with object s.

This scheme tremendously reduces the number of collision
checks and TOI computations that must be performed, since
most objects are generally in the vicinity of only a small
subset of the set of all objects. Collision detection is still
O(n2) in the worst case, but almost always better. Consider
for example the case of simulating a vibratory bowl feeder
sorting hundreds of small parts. Since the number of parts
near another part can be bounded by a constant, the number
of collision checks are O(n).

One added wrinkle is that one must actually employ a
hierarchy of spatial tilings and hash tables of varying resolu-
tions, in order to prevent having to hash a sofa according to
tiles the size of ice cubes. The hierarchy is needed to keep
the rate of bucket updates small. See Overmars for more
information on this multiple resolution hashing scheme [15].

3.3 Time of impact estimator

The time of impact (TOI) estimator takes the current
dynamic state (pose and velocity) of two objects as well as
the closest points between them, and returns a lower bound
on the time of impact for those two objects. We assume
the objects are convex; concavities are handled by convex
decomposition.

Let ¢; and ¢; be the current closest points between two
objects ¢ and j on a collision course. Let d be a unit vector
in the direction of ¢; — ¢;, and d be the distance between c;
and c¢;. A convexity argument shows that no matter where
the ultimate contact points are located, these contact points
must cover the distance d in the direction of d before collision
can occur. From this one obtains a conservative bound on
the time of collision:

d
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where v denotes center of mass velocity, r denotes maximum
“radius,” w denotes maximum angular velocity magnitude,
and the subscripts refer to the body. This bound assumes
both objects are ballistic, so that gravitational effects cancel
out. If, for instance, object ¢ is a fixed table top, then the
gravitational acceleration of j must be accounted for.

The conservation of momentum can be used to bound the
angular velocity magnitude of a body in a ballistic trajec-
tory:
|ets Jyioy. o) | "

min(Jg, Jy, J2) ’

where J is the vector of diagonal elements of the diagonalized
mass matrix, and w is the current angular velocity.
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4 Computing collision impulses

When two bodies collide, an impulse p must be applied to
one of the bodies to prevent interpenetration; an equal but
opposite impulse —p 1s applied to the other. Once p and
its point of application are known, it is a simple matter to
compute the new center of mass and angular velocities for
each body. After updating these velocities, dynamic state
evolution can continue, assuming ballistic trajectories for all
moving objects. The point of application is computed by the
collision detection system, and hence the central problem
in collision resolution is to determine the collision impulse
p. Accurate computation of this impulse is critical to the
physical accuracy of the simulator. We now discuss how p
may be computed; a more detailed discussion can be found
in [13].

4.1 Assumptions for collisions

For impulse-based simulation, it is not feasible to make
gross simplifying assumptions such as frictionless contacts
or perfectly elastic collisions. Our approach for analyzing
general frictional impacts is similar to that of Routh [16],
although we derive equations which are more amenable to
numerical integration. Keller also gives an excellent treat-
ment [10], and Bhatt and Koechling’s analysis is quite sim-
ilar to ours [6]. There are three assumptions central to our
analysis:

1. Infinitesimal collision time
2. Poisson’s hypothesis
3. Coulomb friction model

The infinitesimal collision time assumption is commonly
made in dynamic simulation [10]. It implies that the po-
sitions of the objects can be treated as constant over the
course of a collision. Furthermore, the effect of one object
on the other can be described by an impulse, which unlike
a normal force can instantaneously change velocities. This
assumption does notimply that the collision can be treated
as a discrete event. The velocities of the bodies are not
constant during the collision, and since collision (frictional)
forces depend on these velocities, it is necessary to examine
the dynamics during the collision. In short, a collision is a
single point on the time line of the simulation, but to deter-
mine the collision impulses which are generated, one must
use a magnifying glass to “blow up” this point, examining
what happens inside the collision.

Poisson’s hypothesis is an approximation to the complex
deformations and energy losses which occur when two real
bodies collide. Trying to explicitly model these stresses and
deformations is too slow for interactive simulation; Poisson’s



hypothesis is a simple empirical rule that captures the basic
behavior during a collision. A collision is divided into a com-
pression and a restitution phase, based on the direction of
the relative contact velocity along the surface normal. The
boundary between these phases is the point of maximum
compression, at which point the relative normal contact ve-
locity vanishes. Let piotai be the magnitude of the normal
component of the impulse imparted by one object onto the
other over the entire collision, and p,. be the magnitude of
the normal component of the impulse just over the compres-
sion phase, i.e. up to the point of maximum compression.
Poisson’s hypothesis states

Ptotal = (1 + 6)prnc (4)

where e is a constant between zero and one, called the coef-
ficient of restitution, that is dependent on the objects’ ma-
terials.

Our final assumption is the Coloumb friction law. At a
particular point during a collision between bodies A and B,
let u be the contact velocity of A relative to B, let u; be
the tangential component of u, and let i; be a unit vector
in the direction of u;. Let f,, and f: be the normal and
tangential (frictional) components of force exerted by B on
A, respectively. Then

w0 = fi= _H”fn”ﬁt (5)
w =0 = |fif < ulfa (6)

where p is the coefficient of friction. While the bodies are
sliding relative to one another, the frictional force is exactly
opposed to the direction of sliding. If the objects are sticking
(i.e. u; vanishes), all that is known is that the total force
lies in the friction cone.

4.2 Initial collision analysis

A possible collision is reported whenever the distance be-
tween two bodies falls below the collision epsilon, e.. This
is only a possible collision, because the objects may be re-
ceding. If the normal component of the relative velocity of
the closest points has appropriate sign, no collision impulse
should be applied. Note we are assuming the existence a nor-
mal direction; polyhedral objects have discontinuous surface
normals, however reasonable surface normals can always be
found.

Establish a collision frame with the z-axis aligned with
the collision normal, directed towards body 1. Let u =
u; — uz be the relative contact velocity between bodies 1
and 2. When u. < 0, a collision impulse must be applied to
prevent interpenetration; it is necessary to analyze the dy-
namics of the bodies during the collision to determine this
impulse. We use 4 to denote the collision parameter; that
is, v is a variable which starts at zero, and continuously in-
creases through the course of the collision until it reaches
some final value, v;. All velocities are functions of v, and
p(7) denotes the impulse delivered to body 1 up to point
v in the collision. The goal is to determine p(vy), the final
total impulse delivered.

Initially, one might choose v to be time since start of
impact, but in fact this is not a very good choice. If the
dynamics are studied with respect to time, the collision im-
pulses are computed by integrating force. Unfortunately,
the forces generated during a collision are not easily known;
one can assume a Hooke’s law behavior at the contact point,
begging the question of how to choose the spring constants.
Nonetheless, a variety of “penalty methods” do attempt to
choose such spring constants.

A way of avoiding this problem is to choose a different
parameter for the collision, namely v = p., the normal com-
ponent of the impulse delivered to body 1. The scalar p; is
zero at the moment the collision begins, and increases during
the entire course of the collision, so it is a valid parameter.
Let Au(y) denote the total change in relative contact ve-
locity at point v in the collision, and p(y) be the impulse
delivered to body 1 up to this point. Straightforward physics
leads to the equation

Au(y) = Mp(7) (7)

(see [13] for a detailed analysis). Here, M is a 3 x 3 matrix
dependent only upon the masses and mass matrices of the
colliding bodies, and the locations of the contact points rel-
ative to their centers of mass. By our infinitesimal collision
time assumption, M is constant over the entire collision. It is
useful to differentiate equation 7 with respect to the collision
parameter v, obtaining

u'(y) = Mp'(7). (8)

4.3 Sliding mode

While the tangential component of u is non-zero, the bod-
ies are sliding relative to each other, and p’ is completely
constrained. Let 6(v) be the relative direction of sliding
during the collision, that is § = arg(us + tuy).

Lemma 1 If the collision parameter v is chosen to be p.,
then while the bodies are sliding relative to one another,

—pcosb
p=| —psing |. (9)
1
Proof: p, = 31;’; = dg;fdcgz = ffdthz’ where f is the instan-
taneous force exerted by body 2 on body 1. Under sliding
conditions, f; = —(pcosf)f. = —(pucosb) dgt‘ . Combining
results gives pj, = —p cosd. The derivation for pj, is similar.
. dp, —

Finally, p, = ﬁ =1.0

It is now clear why p. is a good choice for the collision
parameter. By applying the results of lemma 1 to equation 8,
with 6 expressed in terms of u; and u,, we obtain:

gy ——tx

u, Vo=
) =M | —p—2_ |. (10)
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This nonlinear differential equation for u is valid as long as
the bodies are sliding relative to each other. By integrating
the equation with respect to the collision parameter v (i.e.
pz), we can track u during the course of the collision. Pro-
jections of the trajectories into the wg-u, plane are shown
in figure 3 for a particular matrix M; the crosses mark the
initial sliding velocities.

The basic impulse calculation algorithm proceeds as fol-
lows. After computing the initial u and verifying that w.
is negative, we numerically integrate u using equation 10.
During this integration, w. will increase’. When it reaches
zero, the point of maximum compression has been attained.

1Baraff and others have noted that it is possible to construct
cases for which u, decreases as p, increases [3]. However, this sit-
uation seems to be extremely rare; it has not occurred in any of our
simulations.
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Figure 3: Solution trajectories of equation 8 projected into
the uz-uy plane.

At this point, p, is the total normal impulse which has
been applied during compression. Multiplying this value by
(1 + €) gives the terminating value for the collision param-
eter, v¢s. The integration then continues to this point, to
obtain Au(vyys). Inverting equation 7 then gives the total
collision impulse p(vy).

4.4 Sticking mode

When the relative tangential velocity vanishes, the direc-
tion of the frictional force is not known a priori, and lemma 1
no longer applies. We assume like Routh that if the frictional
force is strong enough to maintain the sticking condition, it
will do so. To see if this is the case, we set uj, = uy, = 0 in
equation 8, and solve for p’. There is a unique solution for
which p, =1, say p’ = (o, 8, 1)7. Tf

o 4+ 52 < i, (11)

the friction is sufficient to maintain sticking, and so w, =
#y = 0 and p’ = (o, 5,1)7 for the remainder of the collision.

If o 4+ 32 > p?, the friction is not sufficient to maintain
sticking, and sliding will immediately resume. Equation 10
is not valid when u, = u, = 0, and so is of no help in
predicting the initial direction of sliding. In the case depicted
in figure 3, there is a unique sliding direction leaving the
origin; sliding must resume along this direction. It can be
proven that the trajectories of equation 10 projected into the
uz-uy plane never spiral around the origin, and we conjecture
that in cases when the friction is not sufficient to maintain
sliding there is always exactly one sliding direction away
from the origin. Once u; or u, is nonzero, equation 10 again
applies.

Our previous algorithm for computing collision impulses
must be slightly modified to account for possible sticking.
If at any point during the integration of u, u, and u, both
vanish, the integration halts. If the criterion given by equa-
tion 11 is met, sticking is maintained for the duration of the
collision and both u and p vary along a straight line. Oth-
erwise, we solve a quartic equation to determine the inward
and outward sliding directions for the collision, and take the
next integration step along the (conjectured unique) outward
sliding direction. Once the sliding has resumed, the normal
integration can continue;

Figure 4 illustrates some of the possible trajectories of u
for different collisions. Path A represents a collision under
low friction, in which the tangential component of relative
contact velocity never vanishes, and the two objects slide on
one another during the entire collision. Path ' corresponds
to a collision in which the frictional forces bring the sliding

contact to a halt; as the object rebound off each other there
is no relative sliding velocity. Finally, path B corresponds to
a case in which sticking occurs momentarily, but the friction
is insufficient to maintain this condition and sliding resumes.
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Figure 4: Trajectories through relative contact velocity space
for three different collisions.

4.5 Static contact and microcollisions

The collision resolution method described thus far is suit-
able for resolving colliding contacts, but is not enough to
model continuous contact as objects come to rest upon one
another. In this case, the collisions must not produce an
energy loss in the colliding objects, since they are modeling
static forces which do no work.

Two important questions are: how can this static situa-
tion be detected using only local information at the contact
point, and how should the collision model be modified to
give the correct macroscopic behavior? Certainly the initial
relative normal velocity at the contact point must be small;
static contact only occurs as objects begin to settle onto
one another. We define “small” precisely with the threshold
ve, the velocity an initially resting object acquires as it falls
through the collision envelope:

ve = v/2g¢., (12)

where g is the acceleration of gravity. If the relative normal
velocity is below this threshold, a check is made to see if the
impulse required to reverse the initial relative velocity lies
within the friction cone, and if so, it is applied to resolve the
collision. Such a collision is called a microcollision. One can
show that microcollision impulses do no work on the object,
just like the physical static contact forces that they model.

Microcollisions also solve another problem. Consider a
block sitting on a shallow ramp with high friction, and mod-
eling the contact as an impulse train. Even though the fric-
tion is sufficient to bring the sliding velocity to zero at every
collision, the block will tend to creep down ramp because of
the time it spends in a ballistic phase. However, the elas-
tic nature of microcollisions will negate the effect of gravity
during the intervening ballistic phases, by giving the block
a small “kick” back up the ramp, once the tangential con-
tact velocities become small enough. Figure 6 shows that
microcollisions can bring the block to a complete stop.

The question arises as to whether microcollisions are not
just some ad-hoc modification necessary to make impulse-
based dynamics work. After all, one of the attractive fea-
tures of the impulse-based method is that one need not en-
force strict continuous contact constraints between obstacles.



Are microcollisions just such a constraint in disguise? The
answer is no. As objects settle on one another, they expe-
rience a number of small collisions, none of which are ini-
tially microcollisions. Gradually, microcollisions account for
a larger and larger fraction of total collisions, until eventu-
ally all collisions are microcollisions. In other words, there is
a smooth transition between colliding and continuous con-
tact. Moreover, the decision to apply a microcollision is
based solely on local information at the contact point, not
on some global information about the state of the system.

5 Results and Analysis

We have tested our simulator on a wide variety of prob-
lems. We now describe some qualitative and quantitative
results.

5.1 Pool break

This simulation involved breaking a rack of fifteen pool
balls with a high velocity cue ball. Constraint-based simu-
lators have trouble with this example because of the large
number of mutual contacts between the racked balls. Baraff
has shown that the problem of finding a set of contact forces
that instantaneously obey the Coulomb friction law at every
contact point is NP-hard [3]. Furthermore, the contact con-
straints are quite transient, making it difficult to integrate
along equations of motion derived from them.

The impulse-based method avoids these problems by
treating the contacts as a series of closely spaced collisions.
The racked balls (of standard size) were initially placed 0.1
millimeters apart. This distance is below €., and thus when
the cue ball strikes the rack, many collisions occur before the
balls even begin to roll. Figure 5 show the high number of
collisions that occurred during this simulation, especially at
the point of the initial break. However, the simplicity of the
collision model still permits fast simulation (see table 1). Af-
ter the break, the collision rate stabilizes at roughly 3 kHz;
these collisions are primarily between the balls and the table.

Pool Break Collision Rate
thousands of collisions per second

12,00 t

initial break

10.
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Figure 5: Collision rate during a pool break.

5.2 Block on ramp experiments

A good set of benchmarks for the physical accuracy of
the collision model are “block on ramp” tests, involving a
block sliding down a ramp with friction. We used a 20°
ramp; the critical coefficient of friction at which the frictional
force exactly resists the tangential component of gravity was
ite = tan 20° = 0.37.

For the first test, the coefficient of friction was set to
@ = 0.5 > p., and the block was given an initial velocity
down the ramp of 125 cm/sec. The theoretical and simu-
lated velocities of the block down the ramp are shown in fig-
ure 6. The jaggedness of the simulated velocity curve is due

vel em/s)  Block Decelerating Down Ramp
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Figure 6: Block velocity, p = 0.5 > pu..

to the discrete impulse train modeling the contact, however
the average simulated velocity and the simulated position
(figure 7) closely agree with theory.

pos (cm)  Block Decelerating Down Ramp
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Figure 7: Block position, 4 = 0.5 > u..

In a second test, the coefficient of friction was lowered
to g = 0.25 < p., with the block beginning at rest. The
theoretical and simulated velocities and positions are shown
in figures 8 and 9, respectively. There is close agreement
between simulation and theory; the slopes of the two velocity
curves are nearly identical, indicating that the impulse-based
model predicts the correct frictional force on the block.

5.3 Measuring the strike pocket

We used our simulator to study the effect of a hooking
ball on the width of the “strike pocket” in standard tenpin
bowling. The best place for the ball to hit the pins is between
the head pin and a second row pin; good bowlers throw a
hooking ball, which hits the pins moving toward the center
of the arrangement.

How does a hooking ball affect the chances of bowling a
strike? The chaotic nature of the system makes a mathemat-
ical analysis nearly impossible, and it is also difficult to per-
form real experiments with sufficient control over conditions.
In short, the problem is ideal for stochastic simulation. It is
also a perfect application for impulse-based dynamics—the
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evolution is collision intensive, with many transient contacts
between objects, and there is a gradual change in contact
mode between the ball and the alley (bouncing to sliding
to rolling). For our simulations, we used accurate physical
dimensions for the alley, ball and pin sizes and masses, pin
spacing, etc.; a slight approximation was made in the shape
of the pins.

In the first batch of simulations, a straight ball was
thrown down the alley by launching the ball with zero angu-
lar velocity, and a center of mass velocity in the 4y direction
(see figure 10). We performed 320 trials, keeping the initial
ball velocities constant, but varying the initial z-coordinate
of the ball’s center of mass over a 40 centimeter window,
recording the number of felled pins for each trial. In a sec-
ond batch of 320 trials, the initial ball velocity conditions
were altered to produce a right-hander’s hooking ball: an-
gular velocity of -12 rad/s in the +y direction and a linear
velocity at an angle of —2° from the y-axis.

Figure 11 shows the number of felled pins versus the ball
position as it crossed the pin line (ordinates are averaged
over 5 mm wide abscissa windows). The hooking ball is
slightly better than the straight ball at most positions along
the pin line, and is significantly better over a range between
the head pin and rightmost second row pin (—|—6 to +12 cm
on the pin line). This agrees with the accepted wisdom that
a right-handed bowler’s best strategy is to throw a hooking
ball between these two pins. The plots also illustrate the dip
in felled pins due to splits, when the ball hits the head pin
dead on.

We could improve our model by more carefully specifying
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Figure 10: Set up for the measurement of the strike pocket.
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Figure 11: Results from the strike pocket study.

the shape of the pins and location of the ball’s center of mass,
which is not in general at the geometric center. However, this
experiment demonstrates the feasibility and utility of using
impulse-based dynamics for modeling a complex system and
generating physically accurate results.

5.4 Other simulations

We briefly mention several other simulator problems we
have tried, and summarize the execution time results for our
simulator (see figure 12 for simulation snapshots).

Ball on spinning platter. This simulation involves a
ball rolling on a disc that is spinning at high velocity. The ex-
ample 1s interesting because of the nonholonomic constraint
between the ball and disc, and in fact there are two clas-
sical models for this rolling contact which predict different
behaviors! Experimental results show that the ball rolls in
circles of gradually increasing radii, eventually rolling off the
platter [11]. Our impulse-based simulator produces this re-
sult, demonstrating correct macroscopic behavior from the
impulse-based contact model.

Block dropped on block. One block is dropped onto
another, the former coming to rest on the latter.

Dominos. A line of seven dominos is set in motion by
bumping the lead domino.

Chain of balls. Five balls the are placed next to each
other in a straight line, and a rolling ball strikes the chain
on one end. The momentum is transferred to the other end
of the chain, launching the end ball.



Coins. Eight coins are tossed onto the same general area
of a flat plate, and come to rest with some partially on top of
others. This simulation is a good test case for all the contact
modes: colliding, sliding, rolling, and resting.

Balls in dish. Seven balls are dropped into a shallow
dish approximated by planar wedges. The balls come to rest
in the physically accurate minimum energy configuration:
one ball at the center of the dish, surrounded by the six
other balls.

Table 1 gives the simulation times for all of the experi-
ments. Virtual time is the length of time which passed in the
simulation, real time is the actual time needed to compute
the simulation?®, and slowdown is the ratio of the latter to the
former (a 1.0 slowdown corresponds to real time simulation).

virtual real slow-
simulation time (s) | time (s) | down
pool break 3.0 95 32
dec. down ramp 1.5 41 27
acc. down ramp 1.0 23 23
bowling a strike 5.0 167 23.9
ball on platter 40 129 3.2
block drop 0.78 6.7 8.6
dominos 1.2 17 14
chain of balls 2.5 7.3 2.9
coins 3.6 50 14
balls in dish 7.8 95 12

Table 1: Simulation times for experiments.

6 Conclusions

We have described the impulse-based approach to dy-
namic simulation, and reported results from several simu-
lation problems. Interactive simulation speeds have already
been attained, and we believe real time simulation is ul-
timately possible. Also encouraging is the wide variety of
physical systems that we have successfully simulated; no
special tweaking was performed for any of the simulations
we have described. One important efficiency point is that
the impulse-based approach is highly parallelizable. Because
there are no global constraints on the state of the system, the
dynamic integration of an n body system is neatly decom-
posed into n small pieces. Such a decomposition is not pos-
sible when there are explicit constraints between the states
of different bodies.

The issue of physical accuracy is also an important one to
consider. Modeling a rock sitting on a table through a series
of impulses seems at first questionable. However, we are not
making the claim that the rock is actually experiencing mi-
crocollisions; only that by modeling the contact in this way,
the correct macroscopic behavior is affected. Our simulator
has produced physically plausible results for many problems.
Furthermore, quantitative results withstand scrutiny when
compared to theoretical models. More study is needed here,
but the initial results are encouraging.

As stated previously, we do not intend impulse-based dy-
namics to be a complete replacement for constraint-based
dynamics. A perfect application for the latter is the mod-
eling of a hinge joint. In principle, one could model the
joint in an impulse-based way, enforcing the hinge constraint
through collisions between the hinge pin and sheath. How-
ever, the impulse-based approach is clearly the wrong tool

?Real times were computed by averaging over several trials. All
simulations were performed on an SGI Indigo I.

for this natural constraint-based problem. We are currently
adding a multibody capability to our simulator, in order
to model linked rigid body structures. We are using a hy-
brid approach: constraint-based methods are used to enforce
joint constraints, while impulse-based dynamics are used to
model contact between bodies not connected via joints. We
are optimistic that using the right tool for the right problem
can greatly extend the frontier of dynamic simulation.
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