Impulse-based Dynamic Simulation

Brian Mirtich, Unwversity of California, Berkeley, CA, USA
John Canny, University of California, Berkeley, CA, USA

We introduce a promising new approach to dynamic
simulation called impulse-based simulation. The dis-
tinguishing feature of this method is the unification
of all types of contact (colliding, rolling, sliding, and
resting) under a single framework; non-colliding con-
tacts are stmulated as a series of tiny microcollisions.
The approach is stmpler and more robust than previous
constraint-based methods. Simulation results agree with
physical experiments, and the method is fast enough to
make real time simulation possible. In the course of
describing tmpulse-based simulation, we present an ef-
ficient collision detection scheduling scheme and a fully
general treatment of frictional collisions. We conclude
with some of the results generated by our simulator.

1 Introduction

The goal of dynamic simulation is to make the com-
puter into a tool which mimics the physical world; the
applications of such a tool are countless. Electronic
prototyping allows the engineer to interactively test
and modify designs while they are still on the drawing
board, before an actual prototype is ever constructed
[8]. Experiments which are too costly or impracti-
cal to perform can be simulated, such as failure mode
tests of bridges or dams. Even experiments which are
performed today, such as automobile crash tests, can
be done at much lower cost and under more varied
conditions. Finally, dynamic simulation is an integral
part of the expanding area of virtual reality. In ev-
erything from architectural walk-through programs to
flight simulators, virtual environments need to behave
as closely as possible to the actual physical world we
inhabit.

The foremost requirement of dynamic simulation is
physical accuracy. The goal of a simulation system is
not simply to produce an animation sequence which
“looks right” to a human; the sequence must be right.

The simulation is to take the place of a physical model,
and hence its utility is directly related to how well it
mimics this physical system. Assumptions such as fric-
tionless collisions may be allowable for generating re-
alistic looking graphics, but they have no place in a
system designed to model reality.

The second major requirement is computational effi-
ciency. Clearly in virtual reality applications, the sim-
ulation must run in real time. Furthermore, in engi-
neering applications it is most beneficial when the user
can make changes to a design, and see the results at
fully interactive speeds. If the designer must wait hours
or even days to analyze the behavior of a system, the
electronic prototype loses its great advantage over an
actual physical prototype.

This paper discusses a new approach to dynamic
simulation called impulse-based simulation. We have
focused on the twin goals of physical accuracy and
computational efficiency. Our simulator can accurately
model complex dynamic systems in real time. The or-
ganization of this paper is as follows. Section 2 gives
an overview of the impulse-based method for dynamic
simulation, highlighting its differences from and advan-
tages over more traditional constraint-based methods.
Section 3 describes collision check scheduling, and how
this standard bottleneck in dynamic simulation can be
streamlined. Section 4 discusses our method of resolv-
ing collisions between bodies. We treat collisions in
a fully general manner, accounting for friction as well
as non-perfectly elastic behavior. Correctly computing
collision impulses is critical for achieving physically ac-
curate simulations. Finally, section b describes some of
the simulations we have performed with our simulator,
illustrating the speed and accuracy of the approach,
and mentions some future work.



1.1 Related work

Moore and Wilhelms give one of the earliest treatments
of two fundamental problems in dynamic simulation:
collision detection and collision response [13]. Hahn
also pioneered dynamic simulation, modeling sliding
and rolling contacts using impact equations [7]. His
work is the precursor of our method, although we ex-
tend the applicability of impulse dynamics to resting
contacts, and give a more unified treatment of multi-
ple objects in contact. Furthermore, these early ap-
proaches all suffered from inefficient collision detection
and unrealistic assumptions concerning impact dynam-
ics (e.g. infinite friction at the contact point). Our
method combines fast collision detection with a fully
general treatment of frictional collisions. Cremer and
Stewart describe Newlon [6], probably the most ad-
vanced general-purpose dynamic simulator in use to-
day. Newton’s forte is the formulation and simulation
of constraint-based dynamics for linked rigid bodies.
It has been used to simulate a high degree of freedom
walking robot [16], although the contact modeling is
fairly simplistic. Baraff has published a great deal on
simulation of bodies in contact [1, 2]. His work fo-
cuses on the resolution of forces when bodies are in
resting (non-colliding) contact. His earlier work is for
frictionless collisions, and he later showed that comput-
ing contact forces in the presence of friction is NP-hard
[3]. A summary of his work in this area can be found
in [4].
lisions. Routh [15] is still considered the authority on
this subject, and is the source cited by most mechanics
texts which address it. More recently, Keller gives a
slightly different treatment of frictional collisions [9];
our approach is quite similar to his. Wang and Mason
have studied impact dynamics for robotic applications;
their approach is based on Routh’s, but deals only
with the two-dimensional case [17]. Finally, a number
of researchers have investigated several problems and
paradigms for dynamic simulation and physical-based
modeling. We refer the reader to [5, 18, 19].

There are few full treatments of frictional col-

2 Constraint-based
impulse-based simulation

versus

One of the most difficult aspects of dynamic simula-
tion is dealing with the interactions between bodies in
contact. Most of the work which has been done in this
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area falls into the category of constraint-based methods
[5, 18, 6, 4]. An example will illustrate the approach.
Consider a ball rolling along a table top. The normal
force which the table exerts on the ball is a constraint
force that does not do work on the ball, but only en-
forces a non-penetration constraint. In a constraint-
based system, this force is not modeled explicitly but
is instead accounted for by a constraint on the config-
uration of the ball (in this case, the ball’s z-coordinate
is held constant). The problem with this method is
that as a dynamic system evolves, the constraints may
change many times, e.g. the ball may roll off the table,
may hit an object on the table, etc. Determining the
correct equations of motion for the ball means keeping
track of these changing constraints, which can become
complicated. Moreover, it is not even clear what type
of constraint should be applied; there exist at least two
models for rolling contact which in some cases predict
different behaviors [10]. Finally, impacts are not easily
incorporated into the constraint model, as they gener-
ally give rise to impulses, not constraint forces present
over some interval. These collision impulses must be
handled separately, as in [1].

In contrast, our system is based on a method we call
impulse-based dynamic simulation. Unlike constraint-
based methods, no constraints are imposed on the con-
figurations of the moving objects; when the objects are
not colliding, they are in ballistic trajectories. The
key advantage of the impulse-based method is the uni-
fication of all types of contact under a single model.
The model used for collisions between objects can also
be used for continuous contact situations in which one
object is resting, sliding, or rolling on another object.
Consider for example a block resting on a table. Under
impulse-based simulation, the block is actually experi-
encing many rapid, tiny collisions with the table, each
of which can be resolved as any other collision. Dur-
ing this small, vibratory motion, different corners of
the block will collide and rebound with the table. We
call these small, frequent collisions between objects in
continuous contact microcollisions.

Now consider the case of a ball bouncing along a
terrain as shown in figure 1. Under constraint-based
simulation, the constraints change as the ball begins
traveling up the ramp, leaves the ramp, and settles into
a roll along the ground. All these occurrences must
be detected and processed. Impulse-based simulation
avoids having to worry about such transitions. In fact,
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Figure 1: A nightmare for constraint-based simulation.

it is a more physically sound treatment since it does not
establish an artificial boundary between, for example,
bouncing and rolling, but instead handles the entire
continuum of contact between these states.

Two obvious questions concerning impulse-based
simulation are: (1) Does it work, i.e. does it result
in physically accurate simulations?, and (2) Is it fast
enough for simulation purposes? We defer more thor-
ough answers to these questions to section 5, but for
now state the following: impulse-based dynamic simu-
lation does produce physically accurate results, even for
cases which have been problematic for previous simu-
lators. The microcollision contact model produces the
correct macroscopic behavior; simulations agree with
physical experiments. What is even more surprising is
that the approach is extremely fast. Because of the
simplicity of the model, the large number of collisions
which must be resolved is not prohibitive. In fact, real
time simulation is possible.

In summary, there are several advantages to impulse-
based dynamic simulation:

1. All types of contact (colliding, rolling, sliding,
sticking) are unified under a single approach; it
1s not necessary to classify the contact types and
deal with them separately or in different manners.

2. It is not necessary to maintain a set of constraints,
nor to determine when this set changes.

3. Simulating various types of contact with microcol-
lisions gives rise to the correct macroscopic physi-
cal behavior, as verified experimentally.

4. The method is conceptually simpler and more ro-
bust then constraint-based dynamic simulation.

5. The method is fast. Despite the large numbers of
collisions, real time simulation is possible.

3 Collision detection

Impulse-based dynamic simulation is obviously quite
collision intensive—consider for example the high num-
ber of microcollisions which occur as a ball rolls across
a table top. Furthermore, the naive approach to col-
lision detection is inherently quadratic in the number
of moving objects. Hahn and others have found colli-
sion detection to be the bottleneck in dynamic simula-
tion [7], and certainly much effort should be put into
streamlining it.

The heart of our collision detection system 1s the Lin-
Canny closest features algorithm [12]. This algorithm
returns the closest features (vertices, edges, or faces)
between a pair of convex polyhedra. It is especially
suited to applications like dynamic simulation, where
a sequence of queries are made as objects move con-
tinuously in space. In these cases, geometric coherence
can be exploited to achieve a constant expected query
time. Non-convex objects can be handled by decom-
position into convex pieces, and there is even an ex-
tension of the algorithm to curved surfaces [11]. Once
the closest features are known, computing the distance
between the two objects is a simple operation. The col-
lision detection system reports a possible collision when
this distance falls below some epsilon, ¢.. In our sim-
ulations using standard single-precision floating point
arithmetic, €. i1s about three to four orders of magni-
tude smaller than the dimensions of the objects. For
bowling simulations using a 60’ alley and 18” inch pins,
€. 1s one millimeter.

The basic simulation loop comprises three steps: dy-
namic state evolution, collision detection, and collision
A naive approach for collision detection
would test for possible collisions between all pairs of
objects after each dynamic state evolution step. For a
simulation involving n moving objects, this gives rise
to an O(n?) collision detection step, despite the effi-
cient constant time distance query. A second problem
is how to choose the length of the integration time step,
i.e. for how long should the dynamic state be evolved
before the collision detection step is executed? Often,
this integration step size is chosen to be “small enough
so that no collisions are missed” (such as in [6]), but
this is ad hoc and forces a small step size even when
one is not necessary. We employ a strategy which re-
duces the number of collision checks from the naive
approach, facilitates an adaptive step size for dynamic

resolution.



state evolution, and insures no collisions are missed.

3.1 Prioritizing collisions

The basic idea is to find a lower bound on the time
of collision when two objects have not yet collided.
Such a conservative bound is computed as a function of
the distance between the closest points on the objects
and the current dynamic state. It is also necessary to
bound the linear and angular accelerations of the ob-
jects, since these also affect the minimum time to col-
lision. By making the assumption that the objects will
continue to travel in ballistic trajectories until impact,
one can bound the linear acceleration of the center of
mass to be g, the acceleration of gravity. Bounding
the angular acceleration is a little trickier, but such a
bound can be found as a function of the current angu-
lar velocity and the mass matrix of the object, again
assuming a ballistic trajectory. We mention that the
collision detection algorithm, which returns a soonest
possible time of collision if the objects are not colliding,
is in contrast to most other algorithms which simply
compute a predicate indicating if the objects interpen-
etrate or not. For these latter algorithms, the exact
time of collision is usually found by forward evolution
and backtracking, using a binary search or other itera-
tive method.

The information returned by the collision detection
algorithm is stored in a heap; each heap item consists
of a pair of objects and the soonest possible time at
which these objects could collide. The heap is prior-
itized by collision time, so that at any moment, the
object pair on the top of the heap is the nearest pair
to collision. At each dynamic evolution step, the in-
tegration is performed up to the time of collision of
the top item in the heap. At this point, collision de-
tection is performed for this single pair of objects. If
the objects have collided, the collision resolution step
is performed, otherwise the time of impact 1s recom-
puted and the heap updated appropriately. When two
objects do collide and experience collision impulses, the
ballistic trajectory assumption is violated and all times
of collision involving either of these objects must be
updated in the heap. This strategy greatly reduces
collision checks. If two objects are far apart or mov-
ing very slowly, collision checks between them will be
very infrequent. As the objects approach one another,
collision checks will increase as necessary.
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3.2 Further reducing collision checks

Although the above strategy considerably lowers the
asymptotic constant considerably, collision detection 1s
still an O(n?) proposition. The problem is that colli-
sion checks between every pair of objects must still be
performed at regular intervals, even if the pair of ob-
jects never come near one another. To alleviate this
problem, some sort of spatial decomposition scheme
must be built on top of the collision time priority queue.
We now describe a method to eliminate these unneeded

checks.

First, a basic time period ; is chosen over which
the swept volumes of moving objects will be bounded.
It is convenient to choose t; to be the frame period
for the simulation, e.g. t; = 31—0 s. Let ¢ denote the
current time. For an object O,a rectangular bounding
volume B with faces parallel to the global coordinate
planes is computed. Bo bounds the volume occupied
by O during the time interval [t,t 4 ¢;]. Let ro be the
“radius” of object O, that is the greatest distance of
any point on O from O’s center of mass. Bo can be
found by noting the position of O’s center of mass at
the current time ¢, at the time ¢ 4+ ¢;, and possibly at
the apex of its parabolic trajectory, should this occur
during the interval [t,¢ + ¢;]. The box which bounds
these two or three points is then grown by ro to give
the final bounding volume, By (see figure 2).

Figure 2: The bounding box for an object O’s swept vol-
ume.

At the beginning of each frame, the bounding boxes
for all objects are computed in linear time. The in-
tersections between these n boxes are then found; for
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cubical boxes, Overmars has given an algorithm for do-
ing this in O(n(1 + log R)) time, where R is the ratio
of largest to smallest box size [14]. If two bounding
boxes do not intersect, then the corresponding objects
will not collide during the next frame, and no distance
or time of impact calculations need be performed for
that pair of objects. If the boxes do intersect, these cal-
culations are performed, and the upcoming collision is
inserted into the heap. The simulation then proceeds as
before, using an adaptive dynamic evolution step based
on the pending time of collision at the top of the heap.
Upon collision, the swept volume bounding boxes of the
colliding objects are recomputed. These new bound-
ing boxes are then intersected with the other bounding
boxes, and object pairs are inserted or removed from
the heap as appropriate. Note that distance and time
of collision calculations are never performed for a pair
of objects that never come near each other.

4 Computing collision impulses

When two bodies collide, an impulse p must be ap-
plied to one of the bodies to prevent interpenetration;
an equal but opposite impulse —p 1is applied to the
other. Once p and its point of application are known,
it is a simple matter to compute the new linear cen-
ter of mass velocity and the new angular velocity for
each body. After updating these velocities, dynamic
state evolution can continue, assuming ballistic trajec-
tories for all moving objects. Thus, the central problem
in collision resolution is to determine the collision im-
pulse p. Accurate computation of the impulses arising
between colliding bodies or bodies in rolling or slid-
ing contact is critical to the physical accuracy of the
simulator.

4.1 Assumptions for collisions

For impulse-based simulation, it is not feasible to make
gross simplifying assumptions such as frictionless con-
tacts or perfectly elastic collisions. Our approach for
analyzing general frictional impacts is similar to that
of Routh [15], although we derive equations which are
more amenable to numerical integration; Keller also
gives an excellent treatment [9]. Before describing our
method of computing p, we state the assumptions.

Assumption 1 (Infinitesimal collision time) The
duration of a collision is negligible compared to the time

over which stmulated objects move appreciably. As a re-
sult, (1) the configurations of two colliding objects may
be taken as constant during the entire collision, and (2)
the effect of one object on the other can be described by
an impulse, giving rise to instantaneous changes in the
linear and angular velocities of the object.

This is a common assumption made in dynamic simula-
tion [9]. The second part simply means that, unlike or-
dinary forces which can only affect accelerations instan-
taneously, the collision impulses can instantaneously
affect velocities. Such behavior 1s necessary if we are to
prevent objects from interpenetrating once they come
into contact. What assumption 1 does not imply is that
the collision can be treated as a discrete event. Even
though the positions of the bodies are constant dur-
ing the collision, the velocities are not. Since collision
forces are functions of these velocities, 1t is necessary
to examine the dynamics during the collision. One way
to think of this is that the collision is a single point on
the time line of the simulation, but to determine the
collision impulses which are generated, we must use a
magnifying glass to “blow up” this point, and examine
what happens inside the collision.

In reality no body is completely rigid. When two
bodies collide, there is a period of deformation in which
elastic energy is stored in the bodies, and a restitution
phase during which the bodies return to their original
shapes (if the collision is non-destructive), rebounding
off each other as the stored energy is released (see fig-
ure 3). One could use finite element analysis to study
the stresses and strains occurring during a collision,
but such a method is certainly not reasonable for real
time simulation—furthermore, 1t is overkill. A simple
empirical rule captures the essential behavior which oc-
curs during this compression-restitution sequence.

Assumption 2 (Poisson’s hypothesis) For a colli-
ston between two objects, let piorar be the magnitude of
the normal component of the impulse imparted by one
object onto the other over the entire collision. Let pp,.
be the magnitude of the normal component of the im-
pulse imparted by one object onto the other up to the
point of maritmum compression. Then

Ptotal = (1 + e)pmc

where e 1s a constant between zero and one, dependent
on the objects’ materials, and called the coefficient of
restitution.
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Figure 3: A collision consists of a compression and a
restitution phase. The boundary between these phases is
the point of maximum compression, at which the relative
contact velocity in the normal direction vanishes. f(t) and
p(t) = ff(t)dt are the force and total impulse delivered at

time t in the collision.

In other words, the normal impulses delivered during
the compression and restitution phases are in the ratio
1: e. If e =1, the collision is totally elastic; no energy
is lost. If e = 0, the collision is totally plastic; in gen-
eral not all the energy is lost, but the objects do not
separate after collision. Poisson’s hypothesis 1s useful
for resolving collisions because it relates final impulse
values to maximum compression impulse values. The
point of maximum compression is easier to characterize
than the point at which the collision ends. It is sim-
ply the point at which the normal component relative
contact velocity vanishes.

The tangential component of the impulse has not
vet been mentioned. Analyzing frictionless collisions is
easy since this component vanishes, but in the presence
of friction this component cannot be ignored.

Assumption 3 (Coulomb friction) At a particular
point during a collision between bodies 1 and 2, let u
be the contact velocity of body 1 relative to body 2, let
u; be the tangential component of u, and let Gy be a
unit vector in the direction of uy. Let £, and f; be the
normal and tangential (frictional) component of force
exerted by body 2 on body 1, respectively. Then

w A0 = = —p|lf,]]d,
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u =0 = [fif| < plifal

where p 1s the coefficient of friction.

While the bodies are sliding relative to one another,
the frictional force is exactly opposed to the direction
of sliding. If the objects are sticking (i.e. the tangen-
tial component of relative velocity is zero), all that is
known is that the total force lies in the friction cone.

4.2 Initial collision analysis

A collision takes place between body 1 and body 2, as
shown in figure 4. We introduce the following notation
(the subscript ¢ indicates the body number):

m; mass

J;  mass matrix

v; linear velocity of center of mass

w; angular velocity

u; absolute velocity of contact point

r; contact point position relative to c.o.m.
p impulse imparted by body 2 on body 1

The vectors are expressed in the collision frame, which
is some frame with z-axis perpendicular to the surfaces
at the point of contact, and pointing from body 2 to
body 1. When the colliding objects are polyhedra, the
surfaces are not continuous, but reasonable surface nor-
mals can always be found. If one of the closest features
is a face, the surface normal is the normal to this face;
if the two closest features are edges, the normal is the
vector mutually perpendicular to both edges; etc.

A possible collision is reported whenever the distance
between two bodies falls below the collision epsilon, ¢..
The closest points on the objects are computed, and
the collision frame is determined. A priori, the colli-
sion detection system only reports a possible collision,
If the closest
points are moving away from each other, no collision

because the objects may be receding.

impulse should be applied. (c.f. Baraff’s constraint,
Fx(£) = 0 [1].) The contact velocities are computed
from

u; = v; +w; Xr;. (1)
The relative contact velocity u is simply u; — us. If
the z-component of u is non-negative, the objects are
not colliding, and no action is taken.

When u has negative z-component, a collision im-
pulse must be applied to prevent interpenetration; it is



Impulse-based, Real Time Dynamic Simulation

Figure 4: Possible collision between two bodies.

necessary to analyze the dynamics of the bodies dur-
ing the collision to determine this impulse. We use ~
to denote the collision parameter, that is v is a vari-
able which starts at zero, and continuously increases
through the course of the collision until it reaches some
final value, v;. All velocities are functions of v, and
p(y) denotes the impulse delivered to body 1 up to
point v in the collision. The goal is to determine p(y;),
the total impulse delivered.

Initially, one might choose ¥ to be “time since start
of impact,” but in fact this is not a very good choice.
If the dynamics are studied with respect to time, the
collision impulses are computed by integrating force.
Unfortunately, the forces generated during a collision
are not easily known; one can assume a Hooke’s law
behavior at the contact point, but this only leads to
the question of how to choose the spring constants.
Nonetheless, a variety of “penalty methods” do at-
In addition
to being chosen in a rather ad hoc way, these constants

tempt to choose such spring constants.

are very large, leading to stiff equations which are nu-
merically intractable [18].

A way of avoiding all of these problems is to choose
a different parameter for the collision, namely v = p,,
the normal component of the impulse delivered to body
1. The scalar p, i1s zero at the moment the collision
begins, and increases during the entire course of the
collision, so it is a valid parameter. In our analysis, we
will continue to use ¥ to denote the collision param-
eter, for clarity. Consider the change in the contact
point velocity of body 1 at a particular point during
the collision

Aui(y) =wm(y) —ui(0) = Avy + Awy x 1. (2)
Note that ry 1s a constant throughout the collision, by

assumption 1. Now Avi(y) and Awy(y) can easily be
expressed 1n terms of the collision impulse:

Avi(y) = milpw) (3)

Awi(y) = Ji' e x p(y)). (4)

Substituting these into equation 2 and rearranging
yields

Aw() = ol =), ()

where T is the 3 x 3 identity matrix, and r;* is the
canonical 3 x 3 skew-symmetric matrix corresponding
to ry. Performing a similar analysis for Aus (—p must
be used instead of p), and using u = u;—u; to compute
relative contact velocity, we obtain

Au(y) = Mp(y), (6)

where M is a 3 x 3 matrix dependent only upon the
masses and mass matrices of the colliding bodies, and
the location of the contact point relative to their cen-
ters of mass. By assumption 1, M s constant over the
entire collision. We can differentiate equation 6 with
respect to the collision parameter v to obtain

w'(y) = Mp'(y). (7)
4.3 Sliding mode

While the tangential component of u is non-zero, the
bodies are sliding relative to each other, and p’ is com-
pletely constrained. Let () be the relative direction
of sliding during the collision, that is 6 = arg(us +1uy).

Lemma 1 If the collision parametery is chosen to be
P2, then while the bodies are sliding relative to one an-
other,
—pcosf
p = | —psing |. (8)
1
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Proof: A df;z = %d% = fxd%, where f is
the instantaneous force exerted by body 2 on body
1. Under sliding conditions, assumption 3 implies

fo = —(pcos@)f, = —(psinf) dfl’; . Combining results

gives pj, = —pcos@. The derivation for pj is similar.
. dp,
Finally, p/, = d% =1.0

It is now clear why p. is a good choice for the colli-
sion parameter. By applying the results of lemma 1 to
equation 7, with # expressed in terms of u, and u,, we
obtain:

Uy
ulx _ﬂx/u§+u§

This nonlinear differential equation for u is valid as
long as the bodies are sliding relative to each other.
By integrating the equation with respect to the colli-
sion parameter ¥ (i.e. p.), we can track u during the
course of the collision. Because of the linear relation-
ship between p and Au (equation 6), we can also track
p throughout the collision. Projections of the trajec-
tories into the wuz-u, plane are shown in figure 5 for a
particular matrix M; the crosses mark the initial slid-
ing velocities. The trajectory plot is somewhat coun-
terintuitive since for some initial conditions the sliding
velocity increases although friction tends to resist slid-
ing (for this plot 1 = 0.55). This is because the sliding
velocity is also affected by the non-frictional (normal)
component of the collision impulse, as shown in fig-
ure 6.

The basic impulse calculation algorithm proceeds as
follows. After computing the initial u and verifying
that u, is negative, we numerically integrate u using
equation 9. During this integration, u, will increase®.
When it reaches zero, the point of maximum compres-
sion has been attained. At this point, p, is the total
normal 1mpulse which has been applied. Multiplying
this value by (1+e€) gives the terminating value for the
collision parameter, v;. The integration then contin-
ues to this point, and p(y;) is the desired total collision

impulse.

!Baraff and others have noted that it is possible to con-
struct cases for which u. decreases as p. increases [3]. How-
ever, this situation seems to be extremely rare; it has not
occurred in any of our simulations.
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Relative Sliding (Tangential) Velocity During Impact
5 ’

y velocity
. o

x velocity

Figure 5: Solution trajectories of equation 9 projected into
the uz-uy plane.

llt=0 Uy

p

before collision after collision

Figure 6: A situation where the tangential relative contact
velocity of the rod (u;) starts at zero and increases during
the course of the collision, even though the frictional force
resists this change in velocity.

4.4 Sticking mode

Thus far we have not considered what happens if u,
and u, both vanish, so that sliding motion ceases, and
the objects are sticking. In this case, the direction of
the frictional force 1s not known a priori, and lemma 1
no longer applies. The principle of virtual work implies
that if the frictional force is strong enough to maintain
the sticking condition, it will do so. To see if this is
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the case, we set uj, = u; = 0 in equation 7, and solve

for p’. There is a unique solution for which p/, = 1, say
p' = (o, 3, 1)T. Now if

0?4 57 < 42, (10)

the friction is sufficient to maintain sticking, and so
uy = uy = 0 and p’ = (a, 3, 1)T for the duration of the
collision.

If o? + 3% > p?, the friction is not sufficient to
maintain sticking, and sliding will immediately resume.
Equation 9 is not valid when u; = uy = 0, and so is of
no help in predicting the initial direction of sliding. In
the case depicted in figure 5, there is a unique sliding
direction leaving the origin; sliding must resume along
this direction. It can be proven that the trajectories
of equation 9 projected into the uz-u, plane never spi-
ral around the origin, and we conjecture that in cases
when the friction is not sufficient to maintain sliding
there is always exactly one sliding direction away from
the origin. Once u, or u, is nonzero, equation 7 again
applies.

Our previous algorithm for computing collision im-
pulses must be slightly modified to account for possible
sticking. If at any point during the integration of u,
uz; and uy both vanish, the integration is halted. If
the criterion given by equation 10 i1s met, sticking is
maintained for the duration of the collision and both
u and p vary along a straight line. Otherwise, sliding
resumes and the integration continues as before. Fig-
ure 7 illustrates some of the possible trajectories of u
for different collisions. Path A represents a collision
under low friction, in which the tangential component
of relative contact velocity never vanishes, and the two
objects slide on one another during the entire collision.
Path C' corresponds to a collision in which the frictional
forces bring the sliding contact to a halt; as the object
rebound off each other there is no relative sliding ve-
locity. Finally, path B corresponds to a case in which
sticking occurs momentarily, but the friction is insuf-
ficient to maintain this condition and sliding resumes.

4.5 Static friction under continuous contact

Consider a block sitting on a ramp, held at rest by fric-
tion. This continuous contact 1s modeled by a series of
microcollisions. Under the model described thus far,
the resulting behavior is exactly what would happen if

Uz

B

medium friction

Uy

plane of max.
L compression

A
C low friction
high friction

Figure 7: Trajectories through relative contact velocity

space for three different collisions.

the ramp were experiencing very low amplitude, high
frequency vibrations, namely, the block slowly creeps
down the plane. The small collision impulses repeat-
edly bring the sliding to a stop, but during the bal-
listic phases gravity pulls the block slightly down the
ramp. To eliminate this problem, a slight modifica-
tion is needed to correctly model static friction under
continuous contact.

A collision is characterized as a microcollision when
the relative contact velocity in the normal direction is
below some threshold. In this case, a check 1s first
made to see if the impulse required to exactly reverse
the contact velocity lies within the friction cone (using
equation 6). If so, this impulse is applied, otherwise
the full collision response computation is performed,
as previously described.

There is physical basis for handling microcollisions
in this manner. We are using impulses to model a con-
tact force. In the case of one object statically resting on
another, it is clear that this force does no work on the
object. If we choose an impulse that accelerates the
contact point velocity from u to —u, and treat that
impulse as a constant force acting for an infinitesimal
time interval, than the impulse does no work. This
is because the velocity of the contact point changes



linearly from u to —u (equation 7, with y denoting
time), therefore the time integral of force times veloc-
ity, 1.e. work done, vanishes. With this modification,
the collision response algorithm correctly models static
friction under continuous contact—the block does not
creep down the ramp.

5 Results

We describe a few results produced by our simulator.
All of these simulations were computed at close to real
time speeds, and would be real time on a slightly faster
platform (we are using a Silicon Graphics Iris Indigo
XZ). For example, the colliding coins simulation, which
involves eight moving objects and five fixed objects
simulated for five seconds, takes less than 15 seconds
to generate. These fast simulation times also reflect
the efficiency of the collision detection algorithm: the
bowling pins are 162-facet polyhedra; the marbles each
have over 5000 facets.

5.1 Simulation descriptions

The colliding coins simulation involves eight coins be-
ing tossed or rolled into the center of a platform; com-
plex interactions between the coins are followed by a
segment dominated by microcollisions as the coins set-
tle down or roll off the platform (figure 8).

In the bowling simulation, a bowling ball is thrown
down an alley, with the same 1nitial angular velocity
that a bowler gives the ball upon release. With the
low coefficient of friction between the alley and the
ball, the ball initially slides down the alley, but it grad-
ually accumulates a component of angular velocity in
the forward rolling direction. The slow shift from slid-
ing mode to rolling mode is complete as the ball hits
the pins. This process gives the ball the familiar hook
seen when good bowlers bowl. This portion of the sim-
ulation validates our collision model, and simulation
of continuous contact by microcollisions. In the latter
part of the simulation, the ball knocks down the pins,
in a complex assortment of colliding and continuous
contact (figure 9—it’s a strike!).

We have run various marbles simulations which
study the behavior of nearly elastic collisions between
rolling balls. One of particular interest is a simula-
tion in which one rolling black marble hits the end of a
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line of four stationary marbles, causing the blue mar-
ble at the other end of the line to roll away, while the
others remain basically at rest (figure 10). Constraint-
based simulators often do not predict the correct re-
sponse for these simultaneous or near-simultaneous col-
lisions. However, under impulse-based dynamics this
situation is treated no differently than any other se-
ries of collisions. Technically, the collisions are not
simultaneous—they are transferred through the marble
chain, just as they are in reality. It is not necessary to
go through any contortions to get the proper response.

A final simulation worth mentioning is the ball on a
spinning platter. What happens when a ball is placed
on a spinning platter with a high coefficient of fric-
tion, such that the initial contact velocities match (i.e.
the ball is rolling, not sliding)? The result is certainly
non-intuitive, but has been verified by an actual ex-
periment. The answer 1s that the ball rolls in circles,
not centered at the axis of the platter, which gradually
increase in radius until the ball rolls off of the plat-
ter [10]. When confronted with this problem, our sim-
ulator produced this very result, again verifying the
collision model and the feasibility of generating cor-
rect macroscopic behavior through microcollisions (fig-
ure 11).

5.2 Conclusion

The impulse-based method is an excellent, new tech-
nique for dynamic simulation for two reasons: speed
and accuracy. Simulations can be performed in real
time, producing physically verifiable results. Most en-
couraging is the variety of systems and behaviors that
can be modeled by our simulator; no ad hoc modifi-
cations or tweaking was necessary to produce results
in agreement with the physical world. The impulse-
based method is conceptually and algorithmically sim-
pler than constraint-based methods, and perhaps the
principle of Occam’s razor applies here. After all, it
seems most plausible that collisions forces in nature
are based on local properties like contact velocity, and
not on some global state configuration involving many
bodies in contact.

There are situations in which constraint-based meth-
ods are more appropriate than the impulse-based
approach—modeling an ideal hinge constraint by mi-
crocollisions between the hinge pin and its sheath
would be slow and unnecessary (unless one were con-
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cerned with the actual vibration and slipping of the pin
within the sheath). Future work should be done on in-
tegrating these two dynamic simulation methodologies
into a hybrid system which can model linked bodies.
We are also interested in enhancing our current simu-
lator to make it more of an analysis tool. Statistics on
contact forces and total impulses delivered would be
useful, as well as a visualization capability for examin-
ing the forces at contact or collision points.

Dynamic Simulator

Figure 8: Colliding coins.

Dynamic Simulator

Figure 9: Bowling.

Dynamic Simulator

Figure 10: Marbles. Snapshot taken just after the leftmost
marble hit the marble chain.

Dynamic Simulator

Figure 11: Ball on a spinning platter.
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