Hybrid Simulation: Combining Constraints and Impulses

Brian Mirtich *

Abstract

Impulse-based simulation has been shown to be a use-
Jul paradigm for rigid body simulation [12, 11], espe-
cially for systems which are collision intensive, or un-
dergo many changes in contact configuration. In this
paper we briefly describe the simulator Impulse, and re-
port some recent results in the domain of part feeding.

Since the impulse- and constraint-based approaches
work best for orthogonal situations, it 1s advantageous to
use both methods simultaneously. After describing the
range of impulse- to constraint-based contact interac-
tion, we examine how the impulsive collision resolution
may be extended to constrained systems. We also dis-
cuss some important open problems related to developing
an efficient simulator that uses both contact interaction
paradigms.

1 Introduction

Many simulators for simple physical systems employ
constraint-based approaches [1, 3, 5, 15]. Constraints
are used to describe the interactions between objects,
which often occur only through physical contact. A
large variety of contact interactions can be modeled effi-
ciently and accurately by hard constraints, however the
method is not well suited to situations like the one de-
picted in figure 1. Under constraint-based simulation,

Figure 1: A nmightmare for constraint-based simulation.

the constraints change as the ball begins traveling up
the ramp, leaves the ramp, bounces for a while, per-
haps sliding, and eventually settles into a roll along the
ground. All of these occurrences must be detected and
processed, and new equations of motion for the system
must be derived at every transition. Next consider a
vibratory part singulator (figure 2), which shakes small
parts into recesses for automated assembly. This sys-
tem has a very large number of degrees of freedom, and
there are also many collisions and very transient contact

*mirtich@cs.berkeley.edu, Department of Computer Science,
387 Soda Hall, University of California, Berkeley, CA 94720. Sup-
ported in part by NSF grant #FD93-19412.

Figure 2: High DOF, collision intensive, and transient
contact configurations.

configurations. All of these factors make it a difficult
system to simulate via constraints.

Inspired by examples like these, we have developed
a simulator based on a radically different approach to
rigid body simulation. The simulator is called Im-
pulse, and the main idea 1s that all contact interactions,
whether colliding, rolling, sliding or resting, are affected
via trains of collisions. There are no global constraints
governing the motion of the objects. Instead, the correct
macroscopic behavior results from processing individ-
ual collisions. The approach works well for systems like
those shown 1n figures 1 and 2. It is very efficient, and
produces physically valid simulations for a wide variety
of problems [12]. However, impulse-based contact mod-
eling is not always a good choice, especially in situations
which involve prolonged, close contact. A challenge is to
combine these two very different simulation paradigms,
using each one when appropriate.

In section 2 we give an overview of the impulse based
approach, focusing on the collision detection and res-
olution subsystems of Impulse. We also report some
results on simulation speed and physical accuracy of
the simulator. In section 3 we examine a spectrum of
systems ranging from collision intensive to highly con-
strained, and explore the relationship between impulse-
and constraint-based simulation. In section 4, we dis-
cuss how the two simulation paradigms might be com-
bined, mentioning some solved problems and some open
problems. We conclude in section 5.

2 Impulse-based simulation

The simulator Impulse demonstrates the feasibility
of modeling contact with collisions. We briefly describe
collision detection and response in this system, as well as
some results pertaining to efficiency and accuracy. More

details on the impulse-based approach may be found in

[12, 11].
2.1 Collision detection

Impulse-based dynamic simulation is inherently colli-
sion intensive, since collisions are used to affect all types
of interaction between objects. Hahn found collision de-
tection to be the bottleneck in dynamic simulation [7],
and efficient data structures and algorithms are needed
to make impulse-based simulation feasible.

All objects in Impulse are geometrically modeled as
convex polyhedra or compositions of them. A collision
is declared when the distance between two such objects
falls below some threshold. At the heart of the collision
detection system is the Lin-Canny closest features algo-
rithm [10]. This efficient algorithm exploits coherence
to return the closest pair of features (faces, edges, or
vertices) between two polyhedra in near constant time.
From this information, the intervening distance is easily
computed.

Collision checks are prioritized in a heap (figure 3).
Whenever collision detection is performed on a pair of

dynamic state

A B

Figure 3: Prioritizing collisions i a heap.

objects, a time of impact (TOT) estimator also computes
a lower bound on the time of collision of these two ob-
jects. This can be determined since the objects execute
ballistic trajectories between collisions, however if an
object experiences a collision, its TOI with all other ob-
jects must be recomputed. The objects pairs are kept in
a heap sorted on the TOI field. In this way, a dynamic
integration step may proceed safely to the time given by
the TOI field of the top heap element. At this point, a
collision check need only be performed between this top
pair, possibly causing it to drop in the heap, and then
dynamic integration may resume.

To further cull collision checks, a spatial partitioning
scheme 18 employed. Object pairs are only kept in the
heap if the objects are “close.” Closeness can be rapidly
determined by storing the positions of all objects in a
large hash table, based on a cubical tiling of physical
space, as described in [13]. This scheme tremendously
reduces the number of collision checks and TOI compu-
tations that must be performed, since objects are usu-
ally in the vicinity of only a small subset of the set of
all objects.

2.2 Computing collision impulses

When a collision 1s detected, the collision response
subsystem computes the appropriate impulses to apply
to the two objects. The points of application for these
equal and opposite impulses are determined by the col-
lision detection subsystem. The impulses must prevent
interpenetration, and also obey certain other physical
laws relating to friction and restitution. Central to our
analysis are the assumptions of: infinitesimal collision
time, Poisson’s hypothesis, and the Coulomb friction
model.

Since the frictional force is dependent on the relative
sliding velocity of the bodies in contact, and this velocity
is not constant during a collision, the dynamics of the
object must be analyzed during the collision. Let u
be the relative velocity between the two bodies at the
contact point, and Au be the change in this quantity
over the course of the collision. If p is the collision
impulse imparted by one body on the other, one can
show [11] that

Au(y) = M p(y). (1)

Here M is a 3 x 3 matrix dependent only upon the
masses and mass matrices of the colliding bodies, and
the locations of the contact points in the body frames.
Note that M is constant for a given collision. We com-
pute p by tracking u during the collision, and then in-
verting equation (1).

Using the Coulomb sliding friction law, one can de-
rive the following differential equation for u:

Uy

u;; _ﬂx/u§+u§

u! M| —p—— 2
uij ﬂ\/m) (2)
z 1

where differentiation is with respect to the normal com-
ponent of impulse. These equations are integrated by
the collision response subsystem to track the evolution
of u during a collision. If sticking occurs during this
integration (u, = u, = 0), the model changes and a
simpler set of differential governs the evolution of u.

2.3 Computational efficiency

We have tested Impulse on a wide variety of rigid
body simulation problems, some of which exhibit quite
interesting physics. We have generally worked with
small scale physical systems: on the order of five to ten
moving objects, and a similar number of fixed objects.
Nonconvex objects have been used in some simulations.
Simulation times for a battery of tests are shown in ta-
ble 1. Virtual time is the length of time which passed
in the simulation, real time is the actual time needed to
compute the simulation!, and slowdown is the ratio of

1Real times were computed by averaging over several trials. All
simulations were performed on an SGI Indigo 2 (R4400 CPU).

virtual real slow-
simulation time (s) | time (s) | down
dominos 1.2 9.0 7.50
chain of balls 2.5 3.7 1.5
colns 3.6 17 4.9
pool break 3.0 44 14.7
bowling a strike 5.0 78 15.6
ball on platter 40 65 1.6
balls in dish 7.8 22 2.8
rattleback tops 5.0 18 3.6
part feeding 5.0 66 13.2

Table 1: Simulation times for experiments.

the latter to the former (a 1.0 slowdown corresponds to
real time simulation).

The slowdowns for these experiments range from 1.5
to 15.6. Impulse is roughly an order of magnitude off
real time simulation for systems of this size.

2.4 Physical accuracy

Physical accuracy is of paramount importance for a
dynamic simulator. We have tested the accuracy Im-
pulse with several experiments, many of which are de-
tailed in [12]. A more recent “real world” problem
solved with Impulse was the estimation of the stable
pose distribution for a small part dropped onto a flat
surface. This is an i1mportant problem in designing
production lines and parts for automated assembly [4].
Such knowledge is useful in estimating feeder through-
put as well as in modifying part designs to optimize as-
sembly speed or success rates. For the experiment, we
used the small, plastic test part shown in figure 4. This

Figure 4: Test part for stable pose distribution test.

part has six stable poses, illustrated in the histogram of
figure 5 (two stable poses have been grouped together).

Experimental results were obtained by performing
over 1000 physical drop tests with this part, under con-
trolled conditions. Two predictions for the stable pose
distribution were also obtained, one from a quasi-static
algorithm [14], and the other from a series of over 2000
drop tests using Impulse, performed under similar con-
ditions to the actual drop tests. As can be seen by the

Stable Pose Histogram

Frequency

50%

45% D Experiment

40% I:l Quasi-Static Model
35% - Dynamic Simulation

30%

25%

20%

15%

10%

T 2 N

Final state

” —

&

27

Figure 5: Results from the stable pose distribution test.

histograms of figure 5, the results from dynamic simu-
lation are quite good; the maximum deviation from the
experimental data is 4%. The drop tests took less than
45 minutes to perform using Impulse. Such results are
encouraging, but more testing is needed to verify that
impulse-based simulation is a valuable tool for this kind
of problem.

3 A spectrum of systems

While there is a large range of contact interactions
that can be modeled via trains of impulses, there are
also limitations of this approach. Constraints often play
important roles in many mechanisms common in our
everyday lives. Consider one of the most simple con-
strained mechanisms: a hinge joint (figure 6). In prin-

Figure 6: A nightmare for impulse-based simulation.

ciple, one could model the joint in an impulse-based
way, enforcing the hinge constraint through collisions
between the hinge pin and sheath. However, due to the
enormous amount of collision detection and resolution
that would be necessary to model this contact, impulse-
based simulation would be far too slow; constraint-based
dynamics should be used instead.

Consider the spectrum of physical systems depicted
in figure 7. On the right most end are jointed manip-

transient contact

< collision intensive constraint intensive>

jol

billiards & interactive inted
manipulators

part feeders bowling environments

mechanisms

impulse—based domain constraint-based domain

Figure 7: A spectrum of physical systems.

ulators, a class of systems for which a constraint-based
simulation approach is clearly the appropriate tool. The
motion of these systems of rigid links is governed by ex-
plicit, well-understood, and permanent constraints, such
as those imposed by revolute or prismatic joints. Com-
puting the forward dynamics of these systems is a clas-
sical problem of robotics, and a variety of methods exist
for doing so [6, 9]. Note that the interaction between the
manipulator and the environment (typically occurring
at the end effector) is not so clearly a constraint-based
interaction, since often this contact is transient or not as
accurately modeled by a hard constraint. The contact
can still be modeled this way, and closed-loop methods
exist for computing the dynamics of a manipulator in
contact with its environment.

Moving toward the left on the spectrum, we en-
counter mechanisms, a class of systems which are also
highly constrained. Here the constraints are not always
permanent; mechanisms often have multiple modes dur-
ing a complete cycle of operation. Nonetheless, there are
usually relatively large ranges of motion over which the
contact configuration does not change, and constraint-
based simulation works well. Baraff’s blockfeeder and
double-action jack are excellent examples of constrained
simulation of 2D mechanisms [2].

On the other end of the spectrum are part feeders
and similar systems. For these collision intensive sys-
tems, impulse-based dynamics is a natural choice for
simulation. Moving to the right, we encounter billiards
and bowling. In these systems, collisions still play a
major role in determining the dynamics, and the con-
tact modes change frequently. The rolling and sliding
of objects along horizontal surfaces can also be easily
modeled with impulses.

The middle ground of the spectrum is thus far the
least studied, however there are many applications
which fall in this category. Some important examples
are interactive environments. Collisions provide much
of the interaction between agent and environment, es-
pecially if the agent is constrained by walls and other
fixed objects or has the ability to move or throw objects
around the environment. Many of the contact modes are

transient as the agent grabs, pushes, or pulls objects in
the environment. On the other hand, there are several
nicely constrained objects as well: hinged doors between
rooms, simple mechanical structures like see-saws, etc.
We believe that the fastest route to real time simula-
tion of interesting interactive environments will involve
combining both simulation paradigms.

4 Hybrid simulation

We now discuss some of the issues involved in com-
bining impulse- and constraint-based simulation.

4.1 Colliding constrained bodies

Consider a constrained body coming into contact
with part of its environment (figure 8). Prolonged con-
tact may suggest establishing a constraint between the
body and environment, but at least initially the con-
tact should be handled via impulses. The goal is to

!&Q’C

Figure 8: The constrained end effector collides with its
environment.

determine the collision impulse p which should be ap-
plied to the manipulator. Analogous to the situation
for colliding (unconstrained) rigid bodies, this is done
by relating the change in relative contact velocity to the
collision impulse.

Let q be the vector of manipulator joint positions.
The dynamics of the manipulator are given by [9]:

d=H"q) [r—C(a,q) a—G(a)+J"(a)], (3)

where 7 is the vector of joint torques (or forces), q is
the vector of joint positions, H is the joint space inertia
matrix, C' is the matrix of Coriolis and centripetal force
terms, G i1s the vector of gravitational forces, J is the
manipulator Jacobian, and f is the vector of external
forces and moments exerted on the last link.
Integrating (3) through time results in an expression
for the change in joint velocities Aq. Consider integrat-
ing this equation over the course of a collision. Since the
Coriolis, centripetal, gravitational, and actuated joint
forces are all of finite magnitude, over an infinitesimal
time interval the contributions of these forces to Aq are
negligible. Another way of thinking of this is that the
impulsive impact forces dominate all other forces dur-
ing a collision; the identical assumption is made in rigid

body collision analysis when gravity is neglected during
a collision. As a result, we have:

si= | CH M) ST (a®) £ d, (@)

where t. is the duration of the collision. As t. ap-
proaches zero can be treated as a constant, thus

Aq=H "(q) J"(q) p, (5)

where p is the collision impulse. If the object contact-
ing the manipulator is constrained to be motionless, the
relative velocity at the contact point is given by

u=J(q) q (6)

From (5) and (6) we obtain the desired relation between
change in relative contact velocity and applied impulse:

Au = J(q) H ' (q) J'(q) p. (7)

Compare this result to equation (1). The key feature is
that Au and p are related by a constant matrix. Inci-
dentally, this constant matrix is exactly the operational
space inertia matrix A(x) developed by Khatib [8]. The
assumptions that the object the manipulator contacts
1s fixed, and that the collision occurs at the end effector
can both be relaxed. Collision impulses can be com-
puted using the same approach which worked for simple
rigid body collisions.

4.2 Switching between constraints and impulses

For a given simulation, one could predetermine which
types of contact interaction would be processed by im-
pulses and which by constraints, for all time. For ex-
ample, the interaction between an agent and a door
could be modeled by impulses, while the door’s inter-
action with the doorjamb was modeled as a hinge con-
straint. While this is more powerful than either ap-
proach used alone, a more flexible approach is better.
The interactive environment example motivates the use
of “paradigm shifts” in contact modeling.

Consider an agent arranging objects in a room. As
he places objects on tables or shelves, impulse-based
simulation provides very realistic settling behavior dur-
ing the transition from the initial contact to a resting
state. At some point, however, processing the collisions
to maintain this contact seems a bit ridiculous, since
much work is being done to make an object sit at rest
on a surface. The solution is to simply constrain the ob-
ject to sit on the surface, and stop processing collisions
at this contact. Impulse to constraint shifts can also be
more complicated. In the example of figure 1, one could
change from an impulse to a constrained model once the
ball had stopped bouncing, stopped slipping, and was
rolling along the floor.

Paradigm shifts can go the other way as well. Ba-
sically any time the agent interacts with objects previ-
ously following some constrained trajectories (e.g. kick-
ing a rolling ball or knocking down a tower of blocks), a
switch to the impulse-based model is appropriate. The
agent need not even be involved; constrained objects
can suddenly begin to interact in very complicated, col-
lision intensive ways, such as when a ball strikes a set
of bowling pins initially at rest.

How does one determine exactly when a paradigm
shift is necessary? Simple criteria such as constrain-
ing an object to be fixed when its velocity reaches zero
do not always work; when such a rule was placed into
Impulse, objects began to freeze in mid-air at the top
of their parabolic trajectories. Nonetheless, we believe
good rules governing the switches between contact mod-
els can be found, and should be implemented.

4.3 Collision detection

Another important challenge to meshing the two
simulation paradigms concerns collision detection.
Impulse-based simulation gains a lot from the fact that
objects follow ballistic trajectories between collisions.
From this knowledge, reasonably tight lower bounds on
times of impact can usually be found, and collisions are
never missed. When objects are constrained to follow
other trajectories, new methods are needed to predict
collision times. Or perhaps the current scheme based on
completely conservative time of impact bounds should
be significantly altered to handle constrained objects.
Since tight bounds on the motion of the end effector of
a manipulator are hard to obtain, it might be better to
predict the time of impact non-conservatively, and re-
cover gracefully if the prediction proves poor. We are
currently exploring the collision detection problem for
hybrid simulation.

5 Conclusion

Constraint-based simulation has a long and success-
ful history for many types of problems, and impulse-
based simulation has more recently proved its utility for
an orthogonal class of problems. A new challenge is to
unite these methods, combining the strengths of each.
Interactive environments are natural test problems for
using the two methods in tandem.

Rigid body collision resolution can be straightfor-
wardly extended to constrained systems; the approach
based on tracking the relative contact velocity during
collision will work. How to extend Impulse’s efficient
collision detection to handle constrained bodies is less
clear. It 1s also important to determine when to make
paradigm shifts in contact modeling, so that both the
impulse- and constraint-based methods are used at the
appropriate places and times. Solving these problems
should lead to a very powerful simulation capability.

References

[12]

[13]

[14]

[15]

David Baraff. Issues in computing contact forces for non-
penetrating rigid bodies. Algorithmica, 10:292-352, 1993.

David Baraff. Fast contact force compuation for nonpenetrating
rigid bodies. In SIGGRAPH. ACM Press, 1994.

Ronen Barzel and Alan H. Barr. A modeling system based on dy-
namic constraints. Computer Graphics, 22(4):179-188, August
1988.

Brian Carlisle, Ken Goldberg, Anil Rao, and Jeff Wiegley. A
pivoting gripper for feeding industrial parts. In International
Conference on Robotics and Automation. IEEE, 1994.

James F. Cremer and A. James Stewart. The architecture of
newton, a general-purpose dynamics simulator. In Interna-
tional Conference on Robotics and Automation, pages 1806—
1811. IEEE, May 1989.

R. Featherstone. The calculation of robot dynamics using
articulated-body inertias. International Journal of Robotics Re-
search, 2(1):13-30, 1983.

James K. Hahn. Realistic animation of rigid bodies. Computer
Graphics, 22(4):299-308, August 1988.

Oussama Khatib. A unified approach for the motion and force
control of robot manipulators: The operational space formula-
tion. IEEE Journal of Robotics and Automation, RA-3(1):43—
53, February 1987.

Kathryn W. Lilly. Efficient Dynamic Simulation of Robotic
Mechanisms. Kluwer Academic Publishers, Norwell, 1993.

Ming C. Lin and John F. Canny. A fast algorithm for incremental
distance calculation. In International Conference on Robotics
and Automation, pages 1008-1014. IEEE, May 1991.

Brian Mirtich and John Canny. Impulse-based dynamic simula-
tion. In K. Goldberg, D. Halperin, J.C. Latombe, and R. Wil-
son, editors, The Algorithmic Foundations of Robotics. A. K.
Peters, Boston, MA, 1995. Proceedings from the workshop held
in February, 1994.

Brian Mirtich and John Canny. Impulse-based simulation of rigid
bodies. In Symposium on Interactive 3D Graphics, New York,
1995. ACM Press.

M. Overmars. Point location in fat subdivisions. Information
Processing Letters, 44:261-265, 1992.

Jeff Wiegley, Anil Rao, and Ken Goldberg. Computing a statisti-
cal distribution of stable poses for a polyhedron. In $0th Annual
Allerton Conference on Communications, Control, and Com-
puting, 1992.

Andrew Witkin, Michael Gleicher, and William Welch. Interac-
tive dynamics. Computer Graphics, 24(2):11-22, March 1990.

