
Computing Contour Trees in All Dimensions
�

Hamish Carr y Jack Snoeyinkz Ulrike Axenx

Abstract

We show that contour trees can be computed in all dimen-

sions by a simple algorithm that merges two trees. Our

algorithm extends, simpli�es, and improves work of Tarasov

and Vyalyi and of van Kreveld et al.

1 Introduction

Many imaging technologies and scienti�c simulations
produce data in the form of sample points with intensity
values. This data may be converted into geometric
models by segmentation, often involving thresholding or
taking level sets, or the data may be studied in situ using
similar tools. In this paper, we focus on one tool that
can help in choosing threshold values or in interactive
exploration of such data: the contour tree.

Contour trees were proposed by van Kreveld et
al. [11] for computing isolines on terrain maps in geo-
graphic information systems. With terrain maps, a sur-
face model is computed from elevation values at sample
points in the plane. Isolines, often called contours, are
the curves consisting of points at a given height that
can be seen on any topographic map. Contours can be
traced from a surface model relatively easily, given a
starting point, or \seed" on each. van Kreveld et al. use
the contour tree to generate \seed sets" for any query
height value.

We are particularly interested in data from X-ray
crystallography for studying protein molecules. Our
data arrives as points in IR3, either on a lattice or
irregularly sampled, with intensity values. These values
are extended to IR3 by using the data points in a
decomposition of IR3 into simplices and interpolating
linearly.

The contour tree allows us not only to compute seed
sets for tracing isosurfaces, but also gives important

�Partial support from Canada's National Science and Engi-

neering Research Council in the form of a postgraduate scholar-

ship and a research grant.
yDept. of Computer Science, Univ. of British Columbia,

Vancouver, Canada. carr@cs.unc.edu
zUniversity of British Columbia, Department of Computer

Science, and University of North Carolina at Chapel Hill, NC,

USA. snoeyink@cs.unc.edu
xSchool of EECS, WashingtonState Univ, Pullman,WA, USA.

axen@eecs.wsu.edu

values of the parameter where topological changes occur
in the level sets; these changes may correspond to
important phenomena such as chemical bonds. While
van Kreveld et al. do discuss the extension of their
approach to IR3, their algorithm runs in quadratic time,
which is prohibitive.

Tarasov and Vyalyi [9] gave an O(N logN ) algo-
rithm for computing contour trees in IR3, where N is
the number of simplices in the decomposition of the
data. They resolve all multiple singularities and replace
them by simple singularities, then perform three sweeps
through the data. We later describe their algorithm and
the handling of singularities in more detail, but their ap-
proach multiplies the number of simplices by a factor of
360, which is again prohibitive.

Our algorithm for contour trees begins with Tarasov
and Vyalyi's idea of three passes through the data, but
makes the following simpli�cations and improvements.
The �rst two sweeps need not maintain level sets, but
simply produce two trees containing the nodes of the
contour tree. By sorting only these nodes, we can
form the contour tree by a simple merge procedure.
The resulting algorithm handles multiple singularities
and extends to all dimensions. Because there are some
applications in which multiple singularities must be
replaced by simple singularities, we also observe that
Tarasov and Vyalyi's approach to resolving singularities
can be extended to all dimensions.

After preliminary de�nitions in Section 2, we de�ne
contour trees and look at their properties in Section 3.
We give our algorithm to construct contour trees in
Section 4, and some comments on the implementation
for crystallographic data. Our observation on resolving
singularities is in Section 5.

2 De�nitions and Preliminaries

Suppose that we are given a set of n points
fp1; p2; : : : ; png in a �xed-dimensional space IRd, with
corresponding scalar measurements fh1; h2; : : : ; hng.
We assume that the hi are unique.

To extend the data to the entire space, we choose
a simplicial mesh with vertex set fp1; p2; : : : ; png, and
a piecewise-linear function f to interpolate values from
the data points given, such that



1. f is a linear function within each simplex, and

2. f(pi) = hi for all i = 1; : : : ; n.

Note that we may need to perturb our data to guarantee
uniqueness. Both our choice of perturbation and of in-
terpolation function may a�ect the construction below:
we do not achieve a canonical form.

A level set of f for some value x is the set fp 2
IRdjf(p) = xg. Topologically, a level set may consist
of 0, 1, or more connected components. Under our
assumptions of uniqueness and linear interpolation,
these connected components will be of dimension �

(d� 1).
In 2-D, a connected component is called an isoline,

and in 3-D an isosurface. We will sometimes use contour
as a general term for a connected component of a level
set in a space of arbitrary dimension.

The �eld of Morse theory [1, 4, 7] studies the
changes in topology of level sets of f as the parameter
x changes. Points at which the topology of the level
sets change are called critical points. Morse theory
requires that the critical points are isolated { i.e. that
they occur at distinct points and values. A function
that satis�es this condition is called a Morse function.
All points other than critical points are called regular

points and do not a�ect the number or genus of the
components of the level sets. Our de�nition of f { as a
linear interpolant over a simplicial mesh with unique
data values at vertices { ensures that f is a Morse
function, and that the critical points occur at vertices
of the mesh [1].

If we think of the parameter x as time and watch
the evolution of the level sets of f over time, then we
will see components of level sets appear, split, change
genus, join, and disappear. The contour tree, which we
de�ne next, is a graph that tracks components of the
level set as they split and appear or join and disappear.

3 De�nition and properties of the contour tree

In this section, we de�ne the contour tree and aug-
mented contour tree, and consider their properties.

3.1 The contour tree

The contour tree for a Morse function is de�ned as a
graph in which:

1. each leaf vertex represents the creation or deletion
of a component at a local extremum of the param-
eter

2. each interior vertex represents the joining and/or
splitting of two or more components at a critical
point

3. each edge represents a component in the level sets
for all values of the parameter between the values
of the data points at each end of the edge.

We refer to the vertices and edges of the contour tree as
supernodes and superarcs, respectively. This graph has
been shown to be a tree [11], hence the name contour

tree.

1

2

3

4

5

6

7

8
9

10

Figure 2: Contour tree for Fig 1

Figure 1 illustrates the level sets of a function
that, as the parameter x increases, evolve from a
solid, to a hollow ball, to a single component, to two
\cushions," to two rings, to four sticks. Figure 2
illustrates the corresponding contour tree. Starting
from the top and decreasing the parameter, we see
four leaves corresponding to the sticks. These merge
in pairs (5,6) forming rings and cushions. (Note that
the changes in genus from disk to torus to disk are
not re
ected in the contour tree | even though the
connected components change topology, each can still
be traced from a single seed point.) The cushions join
at (4). Then there is one component of the level set until
at (3) it encloses a hollow, at which point the level set

splits into an inner boundary and an outer boundary.
The inner boundary then contracts and disappears at
(2).

3.2 The contour tree as recording topological

events

We can describe the contour tree as recording what
happens to components of the level set in response to
certain events that correspond to the critical points,
if we continue to think of the parameter values as
time. First, we need some notation to describe the
components.

A component is created either by appearing, sep-
arated from all existing components, or by an existing
component splitting to become two or more new com-



Figure 1: Level sets of f(x) as x increases

ponents. Similarly, a component is destroyed either by
collapsing down to a single point and disappearing, or
by joining with another component to make a new, com-
bined component. Each component is assigned a name,
C�
�
, based on the time � when it is created and the

time � when it is destroyed. If we know only the cre-
ation time, �, then we say that the name C� is partially
assigned.

Thus, when the parameter h becomes equal to the
value of a critical point, the set of possible changes is
strictly limited to:

i) A new component Ch is created at a local mini-
mum.

ii) An existing component, Ck is destroyed at a local
maximum: we will rename the component Ch

k
.

iii) Two or more existing components,
Ck1; Ck2 ; : : :Ckm , are joined into a new com-
ponent at a saddle point. These components
are destroyed { their names are completed to
Ch

k1
; Ch

k2
; : : :Ch

km
{ and a new component Ch is

created.

iv) The topological genus of an existing component is
changed at a saddle point.

v) An existing component Ck is split into two or more
new components at a saddle point. This involves
destroying Ck, renaming it Ch

k
, and creating several

new components Ch.

vi) Any combination of iii) { v). Both splits and joins
can occur at a highly-degenerate multi-saddle.

We treat vi) saddle points with splits, joins, and changes
of genus as consisting of changes of genus to zero or more
of the components involved, followed by an optional
join, an optional split, and optional changes of genus
for all components involved. This simpli�es processing
of such points. As we will note later, changes of genus
do not a�ect the contour tree.

If we could determine types of events, then we
could construct the contour tree by a sweep through

the parameter values. Each component of the level set
is created at a critical point of type i), iii), or v), and is
destroyed at a critical point of type ii), iii) or v). We call
such a critical point a supernode. For each component,
we connect the supernode where it is created and the
one where it is deleted by an edge called a superarc.
The components then have a 1-1 relationship with the
superarcs.

One important observation can be made based on
the treatment of these events:

Lemma 3.1. The completed names for contour compo-

nents are unique.

Proof. The join events create names Ch

k1
and Ch

k2
only

when partial components Ck1 and Ck2 are di�erent. By
the uniqueness of event values, we know that k1 6= k2.

3.3 The augmented contour tree

For some purposes, such as the generation of isosurfaces,
information about regular points is also required. We
augment the contour tree with the regular points to
produce an augmented contour tree.

For each component, we sweep through the space
from the value at which it appears to the value at which
it disappears. Each data point swept through by this
component is then assigned to the superarc to which the
component corresponds. These points become nodes in

the contour tree. Clearly, the supernodes will also be
nodes: thus, all points in the dataset are nodes.

Along each superarc, we sort the associated nodes,
and connect them in sorted order by arcs. This
constructs a single path from the supernode at one end
of the superarc to the other.

3.4 Previous work

Van Kreveld et al. [11] reported the �rst e�cient al-
gorithm for constructing contour trees. This algorithm
performs the extraction in O(N logN ) time in 2-D data
�elds, and O(N2) time in higher dimensions, where N
is the number of simplices (triangles) in the mesh of the
n data points. The algorithm performs a sweep from
low to high value, maintaining each component of the



level set, and examines the data set locally to determine
when saddle points are encountered and how to deal
with them. Multi-saddle points are treated as a set of
ordinary saddle points. The most time-consuming step
is merging contours. In the plane, the running time to
O(N logN ) by always merging a smaller contour into a
larger; a coordinated search in both contours is used to
determine which is the smaller.

Tarasov and Vyalyi [9] presented a O(N logN )
algorithm for 3-D data �elds. Their algorithm performs
three sweeps: one sweep to identify joins, a second to
identify splits, and a third to combine the results of
the two sweeps. Again, the level set is maintained at
all times during the sweep. Multi-saddle points are
dealt with by a complicated preprocessing step (see
Section 5). Running time is again kept to O(N logN )
by the same method of merging the contours. Finally,
boundary e�ects at the edge of the dataset are handled
by special cases inside the algorithm.

In both algorithms, two factors contribute to the
runtime: the initial sort takes O(n logn) time, and
maintaining the level sets takes O(N logN ) time.
Bounds on number of simplices, N , in terms of the num-
ber of vertices, n, in �xed dimensions are N = 
(n) and
N = O

�
ndd=2e

�
. In any �xed dimension, it is possible

to construct a mesh such that n = �(n).

4 A new contour tree algorithm

We propose a new algorithm for constructing aug-
mented contour trees and augmented contour trees with
the following characteristics:

1. Input is assumed to be a simplicial mesh of n ver-
tices and N simplices, with data values measured
at each vertex,

2. Time requirements of O(n logn+N�(N )) for con-
structing augmented contour trees, in any number
of dimensions,

3. Space requirements of O(N ) for the mesh and O(n)
additional working storage,

4. Simple treatment of boundary e�ects, and

5. Simple treatment of multi-saddle points.

We will describe the algorithm in three subsections.
We follow Tarasov and Vyalyi [9] by �rst identifying
contour joins and splits, but we build a join tree and a
split tree, as described in Section 4.1. By merging these
two trees, in Section 4.2, we obtain the contour tree.
We discuss some implementation issues in Section 4.3.

4.1 Join and split trees

De�ne a join component to be a connected component
of the set fp 2 IRd j f(p) � xg. We will label a join

component J�� if it is created at � and destroyed at �
{ where we think of the parameter as time in the same
way as when we name level set components. By this
de�nition, if two points belong to the same component
of the level set, then they must belong to the same join
component. Thus, each join component corresponds to
at least one component of the level set, and possibly
more.

De�ne the join tree as a graph whose edges represent
join components. One vertex, the root of the tree,
represents the entire space. Other leaf vertices represent
the creation of a join component at a local minimum,
and internal vertices represent the merge of two or more
join components. Since components can only merge, it
is clear that this graph is a tree.

Join:

1

2

3

4

10

Split:

1

10

3

4

5

6

7

8
9

Figure 3: Join and split trees for the example of Figure 1

We also de�ne the split tree, which is what we obtain
when we construct the join tree using components of
the sets fp 2 IRd j f(p) � xg in order of decreasing
parameter x. Together, the join and split trees contain
all the supernodes of the contour tree. Figure 3
illustrates the join and split trees for our example from
Figure 1.

Lemma 4.1. The join and split trees for a Morse func-

tion f have the following properties:

1. Each node in the join or split tree is a supernode

in the contour tree.

2. Each edge in the join or split tree represents a union

of components from the contour tree.

3. Suppose that a v is a non-root leaf in the join or

split tree that is not an internal node of the other

tree. The join or split edge incident on v represents

a single component of the contour tree.

Proof. We consider only the join tree, because the split
tree is symmetric. Consider how the events that a�ect
the level sets a�ect the join components.



i) Local minimum. A new join component Jh is
created, corresponding to one component in the
level set.

ii) Local maximum. Nothing happens, unless the local
maximum is also the global maximum, in which
case all points now belong to one join component,
which is destroyed.

iii) Join: two or more join components are combined to
create a new join component. Note that this event
occurs in the join tree as well as the contour tree
because the components of fp 2 IRd j f(p) � h� �g

remain inside their contours immediately before the
critical value h.

iv) Change in genus: join components are unchanged.

v) Split: join components are unchanged, although
the number of corresponding components in the
level set will increase. This is the only way that the
number of corresponding components can increase.

We can establish the properties by observing the
events. For 1, local minima and join nodes in the join
tree show up as supernodes in the contour tree, and
every supernode in the contour tree is in either the join
tree or split tree. (Or possibly both, if it corresponds
to the global extremal values, or to a complicated
multi-saddle.) For 2 and 3, local minima start single
components; joins and splits may increase the number
of contour components represented by a join edge.

If the vertex values are sorted, then the join tree
can be constructed in nearly-linear time.

Lemma 4.2. The join tree can be constructed using

union-�nd in O(N�(N )) operations, if all vertex values

have been sorted.

Proof. We must identify the critical points in the mesh
and their parameter values, and decide which are nodes
of the join tree. Since critical points occur only at mesh
vertices, it su�ces to check, at each vertex pi, whether
pi is a local minimum, or whether there are two or more
components that join when the parameter reaches the
parameter value hi. By our interpolation, it su�ces
to know if two or more vertex neighbors of pi are in
di�erent components for hi � �. This can be tracked
using the set union-�nd structure of Tarjan [10].

Begin by placing every vertex in a singleton set
representing its own component. When two components
merge, we perform a union operation on their sets. To
determine the name of a component that contains a
given vertex, we perform a �nd operation, which returns
the unique current name for that component. Vertices
are in the same component i� they have the same names.

In fact, full sorting of all vertex values is not
necessary; only saddle points need to be sorted so
that they are incorporated into the tree in the correct
order.Moreover, one can re�ne the analysis of running
time to O(N�(t; N )), where t is the number of local
minima, which is one greater than the number of
unions performed. In dimension two, special union-�nd
algorithms can eliminate the superlinear factor. We
are experimenting with advanced data structures for
priority queues to determine if they have have an impact
on the observed running time.

We may wish to augment the join tree with extra
internal nodes corresponding to some or all of the
vertices in the mesh. By doing so we form an augmented

join tree.

Lemma 4.3. The augmented join tree with t nodes can

be constructed in O(N�(N ) + t log t) operations.

Proof. As we construct the join tree, we may make the
association between vertices and the join components
that �rst contain them. To augment the join tree with
the nodes corresponding to these vertices, we simply
need to re�ne the associated edges in the join tree. We
sort the new nodes by parameter value and insert them
as degree two vertices in their associated edges.

The augmented split tree is de�ned and constructed in
a similar manner. In the next section, we show how to
form the contour tree from the augmented join and split
trees.

4.2 Merging to form the contour tree

Use the algorithm of the previous section to compute a
join tree and a split tree, and augment each with the
nodes of the other to form the augmented join tree JT
and augmented split tree ST. Figure 4 illustrates the
results on our example from Figure 1. In this section
we show how to merge JT and ST in linear time to form
the contour tree, CT. If one augments JT and ST with
all vertices of the mesh, then the same merge algorithm
computes the augmented contour tree.

We identify a leaf in JT or ST that we can add as a
supernode to CT, and remove from both JT and ST. We
proceed inductively, generating one additional contour
tree superarc at each step.

Lemma 4.4. The join and split trees, JT and ST, can

be merged to form the contour tree in time proportional

to their size.

Proof. We assume that we have augmented join and
split trees, JT and ST, which contain all nodes for the
portions of the contour tree CT that have not yet been



JT:

1

2

3

4

5

6

7

8
9

10

+ST:

1

2

3

4

5

6

7

8
9

10

=)CT:

1

2

3

4

5

6

7

8
9

10

Figure 4: Augmented join and split trees merge to form the contour tree

constructed. At the leaves of JT and ST, we may have
some portions of CT constructed.

We also assume that if a non-root leaf node v of
JT (or ST) is incident on more than one unconstructed
contour component, then v is a split (or join) node in
the other tree. This holds initially by Lemma 4.1(3).

Choose a non-root leaf of JT or ST that is not a
split/join node of the other tree. Since there are more
leaves than split/join nodes, this can always be done.
Because the the cases are symmetric, we may assume
that a leaf v of JT is chosen, and not the root.

We move v and its incident edge from JT to the
contour tree CT. In ST, either v is a degree 2 node or
v is the root. In the former case, we suppress v in ST
while maintaining the connection; in the latter we delete
v from ST. We then have restored the property that JT
and ST are trees on the same set of nodes.

We must argue that any node that becomes a leaf in
one of the trees and has more than one incident contour
component must be a split/join node in the other tree.
In fact, the only node u that can possibly become a leaf
by our changes is the parent node of v in join tree JT.
If two contour components start from u, however, then
u is a split node, and appears as such in ST. Thus, our
merge can proceed by induction.

If we assemble the pieces, we obtain the following
results.

Theorem 4.1. The augmented contour tree for a func-

tion on n data points, interpolated over a mesh with N

simplices in IRd, for �xed dimension d, can be computed

in O(n logn + N�(N )) time. If the contour tree has t

nodes, it can be computed in O(t log t + N�(N )) time.

Both algorithms use O(n) working space in addition to

the O(N ) for the mesh.

4.3 Implementation issues

We undertook the extension of Tarasov and Vyalyi's
work [8] in order to generate and examine isosurfaces

in data sets from X-ray crystallography. We assumed
that for this purpose, we would acquire data in a 3-
D rectilinear grid. A number of issues arose that
complicated the implementation: the simplicial mesh,
runtime costs, implicit mesh representation, boundary
e�ects, and perturbation.

4.3.1 Simplicial Decomposition

Both van Kreveld et al. [11] and Tarasov and Vyalyi [9]
assume that the data is in the form of a simplicial mesh:
the simplices prevent ambiguities of the interpolating
function inside the mesh. In X-ray crystallography, the
data typically arrives in the form of measurements in a
rectilinear grid. Several consequences 
ow from this:

First, we must either modify the algorithm so that
it works with cubical cells, or we must convert the grid
into a simplicial mesh.

If we choose the former, we must deal with ambi-
guities of interpolation [3, 5]: as noted in Section 2, a
simplicial mesh avoids these. For this reason, we chose
to convert the grid to a simplicial mesh. A number of
schemes for doing this exist, including (see �g):

a) 5 simplices - the minimum possible

b) picking a major axis and dividing into 6 simplices
sharing the axis

c) the BCC (body-centered cubic) lattice, with 12
simplices

d) subdividing into face-centred square pyramids, for
a total of 24 simplices.

In choosing a subdivision, we wish to satisfy as many of
the following conditions as possible:

i) the subdivision should not magnify the dataset {
i.e. it should not require the addition of data points

ii) the interpolation function for a given point should
depend solely on the values at the vertices of the
cube containing the point



iii) the subdivision should be symmetrical: all vertices
should be treated equally in a given cell

iv) we should be able to represent the subdivision
implicitly, for more e�cient processing.

Of the possibilities mentioned above, schemes a)
and b) break condition iii), scheme c) breaks condition
ii), and scheme d) breaks condition i). Asymmetry could
be mitigated by randomizing the subdivision of cubes in
schemes a) or b). This would, however, violate condition
iv). On balance, we felt that violating condition i) was
preferable, so we chose subdivision d). Note that this
subdivision interpolates 4 new points for each existing
data point, potentially introducing artefacts into the
dataset.

4.3.2 Runtime Costs

If this decomposition were to be combined with
Tarasov's method of resolving multiple singularities,
each box would be subdivided 576-fold, and potentially
8640-fold. If the data set is 1003 in size, this would in-
volve between 5:76� 108 and 8:64� 109 simplices in a
O(N logN ) algorithm: larger datasets would be more
costly yet. In addition, Tarasov's resolution method
would interpolate at least two new data points per sim-
plex, resulting in at least 52 new data points for ev-
ery initial data point: we expect that artefacts would
severely limit the utility of the contour tree.

4.3.3 Regularity and Implicit Representation

A more useful consequence of a rectilinear grid, when
combined with our simplicial decomposition, was that
the number of vertices and simplices were proportional
to each other: n = �(N ).

Since we chose a subdivision which was identical
in all cubes of the grid, we were able to embed the
connectivity of the simplicial mesh in a set of lookup
tables, greatly reducing the time and space requirements
of the algorithm.

4.3.4 Boundary E�ects

Both van Kreveld and Tarasov assume that the contours
may extend to the boundaries of the dataset: this
complicates processing of the contour tree, results in
open surfaces, and adds additional splits and joins in the
contour tree. We resolved this by embedding the entire
dataset in a layer of zeroes (or some other value smaller
than all values in the dataset). This reduced the number
of splits and joins to process, and guaranteed that all
surfaces will be closed topologically. Also, if needed, the
outer layer may be omitted during rendering, since the
interpolation inside the original data set is una�ected
by the embedding process. Adding this extra layer of

data points was done in O(n) time (since the mesh was
represented implicitly).

4.3.5 Perturbation

Since we cannot guarantee that no two data points have
the same value: this requires either some pre-processing,
or some form of perturbation of the data. As in Simu-
lation of Simplicity [2], we add an � to each data point
based on its location in physical memory: this guaran-
tees uniqueness of values, but has one disadvantage. If
the global minimum is adjacent to the zero-embedding
layer, but not to the largest � value, a spurious join will
be added in the zero-embedding layer. This was resolved
by special case treatment of the zero-embedding layer,
which we could assume to belong to one component.

5 Resolving multiple singularities

The algorithm described by Tarasov and Vyalyi [9]
requires simple singularities, so they describe a method
for breaking multi-saddle points into multiple simple
singularities in timeO(N lgN ). Although our algorithm
handles multi-saddles, their method is of independent
interest for computation of Morse singularities in higher
dimensions; if non-simple singularities are resolved, then
a general function on a complex K is a Morse function.
We therefore brie
y show that their method applies in
all dimensions. We assume familiarity with concepts of
PL topology such as barycentric subdivisions, star, and
link [6].

We �rst summarize the subdivision and perturba-
tion given in [9] and extend it trivially to general di-
mensions. We then considerably simplify the proof that
this method resolves non-simple singularities, and we
extend it to all dimensions. Assume that K is a m-
dimensional simplicial complex, m � 3, in IRd and f

is a general function on K, (i.e., f(v) 6= f(w) for any
pair of vertices v; w 2 K). The �rst step is to construct
the barycentric subdivision, sdK, and extend f linearly
over sdK. This yields a new function f0 with the prop-
erty that no two critical points are adjacent, but which
may not be a general function. A small perturbation
described in [9] transforms f0 into a general function f1
over K1 = sdK.

Now the star of each non-simple singularity is
further re�ned. Let v be a non-simple saddle point.
For each k-dimensional simplex in the link of v, Lk(v),
a new so-called k-vertex is added in the star of v, St(v),
as follows. For each vertex w in Lk(v), a corresponding
0-vertex is added on the edge vw, at a point which is
1

4
distance from v to w. For each k-simplex � in Lk(v),

k � 1, a k-vertex is added in the (k+1)-simplex formed
by v and �, at 1

3
distance from v to the barycenter of

�. See Figure 5 for an illustration in 2 dimensions.



x

v

w

0-vertex

1-vertex

0-vertex

Figure 5: The subdivision of a 2-simplex vwx at a non-
simple singularity v.

Simplices of this subdivision are de�ned as follows.
Let � be a m-simplex in St(v), i.e., a simplex of highest
dimension; it contains m 0-vertices. These together
with v form a new m-simplex. The rest of � is then
a prism with two (m � 1)-simplices as bases. Now each
cell containing a 1-vertex is star triangulated from the
1-vertex, then each 2-vertex de�nes a star triangulation
to form tetrahedra, and so on up to the (m� 1)-vertex,
where the star triangulation results in m-simplices.

The neighborhoods of all non-simple singularities
are re�ned in this manner, yielding a new complex K2.
Now f1 is extended over K2 to yield a new function f2.
By de�nition, f1 = f2 at all vertices common to K1 and
K2. We now describe the extension of f1 to f2, again
very similar to that described in [9].

Let h be a linear function over IRd that has di�erent
values at all vertices of K2, and let H be the maximum
di�erence between any two values of h on K2, i.e.,
H = maxv;wfh(v)� h(w)g. Let � be the minimum gap
between successive values of f1 on K1. For each vertex
u added in the star of a non-simple singularity v, let

f2(u) = f1(v) +
�

2H
(h(u) � h(v)):

Function f2 on K2 now has the property that all
singularities are simple, i.e., that the level set at f2(v)
divides St(v) into at most three components. Indeed, it
is easy to see that all former regular points and simple
singularities are still regular or simple (see [9]), so we
will restrict ourselves here to proving that a former non-
simple singularity v is regular, and that all points added
in K2 are either regular or simple. To see that v is
a regular point, notice that after the local re�nement
around v, St(v) consists only of the simplices formed
by 0-vertices and v. f2 is by construction linear over
St(v) and so v must be a regular point. Now we use an
inductive proof to show that the added k-vertices are
either regular or simple. We de�ne the restricted star

or restricted link to be the restriction of the star or link
of an added point u to simplices formed only by vertices
added in K2.

Lemma 5.1. All k-vertices, k � 0, added in the subdivi-

sion around non-simple singularities are either regular

points or simple singularities of f2.

Proof. Let u be a 0-vertex. u is adjacent to two original
vertices from K1: the non-simple singularity v, and the
vertex w which was used to construct u. Otherwise,
u is only adjacent to other added vertices. Since f2 is
linear over the simplices formed by v and the added
vertices, the level set at f2(u) divides the restricted
St(u) into at most two connected components, one with
values greater than f2(u) and the other with values less
than f2(u). w either belongs to one of those connected
components or it forms its own connected component.
Thus, u is either a regular point or a simple singularity.

Now let u be a k-vertex, k � 1. By construction,
u is not adjacent to any vertices of K1 other than
the vertices of the k-simplex which de�ne u. Again,
the restricted St(u) and Lk(u) can be broken by the
level set at f2(u) into at most 2 components. We now
make the inductive assumption that a (k � 1)-simplex
� 2 Lk(u) from K1 divides Lk(u) further into at most
three components and show that under this assumption,
a k-simplex from K1 in Lk(u) cannot divide Lk(u)
further into more than three connected components.
Let � 2 Lk(u) be a (k � 1)-simplex from K1, and let
w 2 Lk(u) be the additional vertex from K1 that forms
a k-simplex in Lk(u). There are three cases to consider.

1. Suppose �rst that some vertices of � have value in
f2 greater than f2(u) and others have value less
than f2(u). Then w necessarily belongs to one of
the existing connected components.

2. Suppose � belongs to one of the connected compo-
nents of the restricted Lk(u). Then Lk(u) without
w consists of at most two components, and w can
increase this to at most three components.

3. Finally, assume that � forms a separate connected

component. w is adjacent to both � and vertices of
the restricted Lk(u), so regardless of the value at
f2(w), w will belong to an existing component.

These three cases complete the proof.

Note that in the proof we do not need to distinguish
between boundary simplices and interior simplices.

Acknowledgments

This work has been supported by NSERC through a
postgraduate fellowship and a research grant.



References

[1] T. F. Bancho�. Critical points and curvature for

embedded polyhedra. J. Di�. Geom., 1:245{256, 1967.

[2] H. Edelsbrunner and E. P. M�ucke. Simulation of
simplicity: A technique to cope with degenerate cases

in geometric algorithms. ACM Trans. Graph., 9(1):66{

104, 1990.
[3] W. Lorensen and H. Cline. Marching cuves: A high

resolution 3d surface construction algorithm Comput.

Graphics 21, 4:163{170, 1987.
[4] J. W. Milnor. Morse Theory. Princeton University

Press, Princeton, NJ, 1963.
[5] G. Nielsen and B. Hamann. The asymptotic decider {

Resolving the ambiguity in marching cubes. In Proc.

Vis '91, 1991.
[6] C. P. Rourke and B. J. Sanderson. Introduction to

Piecewise-Linear Topology. Springer-Verlag, 1972.

[7] Y. Shinagawa, T. L. Kunii, and Y. L. Kergosien.
Surface coding based on Morse theory. IEEE Comput.

Graph. Appl., 11:66{78, Sept. 1991.

[8] S. Tarasov and M. Vyalyi. Some pl functions on
surfaces are not height functions. In Proc. 13th Annu.

ACM Sympos. Comput. Geom., pages 113{118, 1997.

[9] S. P. Tarasov and M. N. Vyalyi. Construction of
contour trees in 3D in O(n log n) steps. In Proc. 14th

Annu. ACM Sympos. on Comput. Geom., pages 68{75,

1998.
[10] R. E. Tarjan. E�ciency of a good but not linear set

union algorithm. J. ACM, 22:215{225, 1975.

[11] M. van Kreveld, R. van Oostrum, C. Bajaj, V. Pas-
cucci, and D. Schikore. Contour trees and small seed

sets for isosurface traversal. In Proc. 13th Annu. ACM

Sympos. Comput. Geom., pages 212{220, 1997.


