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Abstract

Energy conservation is a critical issue in ad hoc wireless networks
for node and network life since the nodes are powered by batteries only�
One major approach for energy conservation is to route a communica�
tion session along the route which requires the lowest total energy con�
sumption� This optimization problem is referred to as Minimum�Energy
Routing� While the minimum�energy unicast routing problem can be
solved in polynomial time by shortest�path algorithms� it remains open
whether the minimum�energy broadcast routing problem can be solved in
polynomial time despite the NP�hardness of its general graph version� Re�
cently three greedy heuristics were proposed in ���� MST �minimum span�
ning tree�� SPT �shortest�path tree�� and BIP �broadcasting incremental
power�� They evaluated their approaches through simulations ���� but lit�
tle is known about their analytical performance� The main contribution
of this paper is a quantitative characterization of their performances in
terms of approximation ratios� By exploring geometric structures of Eu�
clidean MSTs� we were able to prove that the approximation ratio of MST
is between 	 and 
�� and the approximation ratio of BIP is between ��

�

and 
�� On the other hand� we show that the approximation ratio of SPT
is at least n

�
� where n is the number of receiving nodes� To the best of our

knowledge� these are the �rst analytical results for the minimum�energy
broadcasting problem�

� Introduction

Ad hoc wireless networks received signi�cant attention in recent years due to
their potential applications in battle�eld� emergency disaster relief� and other
application scenarios ��� ��� Unlike wired networks or cellular networks� no
wired backbone infrastructure is installed in ad hoc wireless networks� A com�
munication session is achieved either through a single�hop transmission if the

�Department of Computer Science� Illinois Institute of Technology� Chicago� IL ������

Emails� fwan� calinescu� xli� ophirg�cs�iit�edu�

�



communication parties are close enough� or through relaying by intermediate
nodes otherwise� Omnidirectional antennas are used by all nodes to transmit
and receive signals� Such antennas are attractive due to their broadcast na�
ture� A single transmission by a node can be received by many nodes within its
vicinity� This feature is extremely useful for multicasting	broadcasting commu�
nications� For the purpose of energy conservation� each node can dynamically
adjust its transmitting power based on the distance to the receiving node and
the background noise� In the most common power�attenuation model �
�� the
signal power falls as �

r�
where r is the distance from the transmitter antenna

and � is a real constant between � and � dependent on the wireless environment�
Assume that all receivers have the same power threshold for signal detec�

tion� which is typically normalized to one� With these assumptions� the power
required to support a link between two nodes separated by a distance r is r�� A
key observation here is that relaying a signal between two nodes may result in
lower total transmission power than communicating over a large distance due
to the nonlinear power attenuation� As a simple illustration� consider three
nodes p��p� and p� with kp�p�k � kp�p�k and assume � 
 �� See Figure
�� Node p� wants to send a message to node p�� It has two options� It can
transmit the signal directly to node p�� with a energy consumption of kp�p�k��
Alternatively� it can send the message to node p� and let it retransmit to node
p�� The latter option has a total energy consumption of kp�p�k� � kp�p�k��
Therefore if the angle �p�p�p� is obtuse� the second option consumes less total
energy� A crucial issue is then how to �nd a route with the minimum total en�
ergy consumption for a given communication session� This problem is referred
to as Minimum�Energy Routing ��� ���

p2 p3

p1

Figure �� Reduce energy consumption through relaying�

Minimum�energy broadcast	multicast routing in a simple ad hoc networking
environment was addressed by the pioneering work described in ���� To assess
the complexities one at a time� the nodes in the network are assumed to be
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static� namely without mobility� and randomly distributed in a two�dimensional
plane� Nevertheless� as argued in ���� the impact of mobility can be incorpo�
rated into this static model because the transmitting power can be adjusted to
accommodate the new locations of the nodes as necessary� In other words� the
capability to adjust the transmission power provides considerable �elasticity�
to the topological connectivity� and hence may reduce the need for hand�o�s
and tracking� In addition� as assumed in ���� there are su�cient bandwidth
and transceiver resources� Under these assumptions� centralized �as opposed
to distributed� algorithms were presented by ��� for minimum�energy broad�
cast	multicast routing� These centralized algorithms� in this simple networking
environment� are expected to serve as the basis for further studies on distributed
algorithms in a more practical network environment� where limited bandwidth
and transceiver resources exist� as well as node mobility�

Three greedy heuristics were proposed in ��� for the minimum�energy broad�
cast routing problem� MST �minimum spanning tree�� SPT �shortest�path tree��
and BIP �broadcasting incremental power�� They were evaluated through sim�
ulations in ���� but little is known about their analytical performance in terms
of the approximation ratio� The approximation ratio of a heuristic� in this con�
text� is the maximum ratio of the energy needed to broadcast a message based
on the arborescence generated by this heuristic to the least necessary energy
by any arborescence for any set of points� For the minimum�energy broadcast
routing problem� one may come up with several seemingly reasonable greedy
heuristics� Via simulation� it is di�cult to determine which heuristic is better
for an arbitrary con�guration� Purely� for illustration� another slight variation
of BIP� which is referred to as Broadcast Average Incremental Power �BAIP�� is
introduced in Section �� Indeed� all the three heuristics proposed in ��� only have
subtle di�erences� These subtle di�erences� however� can have a great impact
on the analytical performance of these heuristics� In fact� we will show that the
approximation ratios of MST and BIP are between 
 and �� and between ��

� and
�� respectively� on the other hand� the approximation ratios of SPT and BAIP
are at least n

� and �n
lnn � o ��� respectively� where n is the number of nodes� To

the best of our knowledge� these are the �rst quantitative characterizations of
heuristics for the minimum�energy broadcast routing problem�

The remaining of this paper is organized as follows� In Section �� we analyze
the challenges for minimum�energy broadcast routing and brie�y overview the
three greedy heuristics developed in ���� In Section �� we construct some con�
trived instances to illustrate the poor performances of SPT and BAIP� These
instances lead to the lower bounds on the approximation ratios of SPT and
BAIP� In Section �� we obtain lower bounds on the approximation ratios of
MST and BIP by constructing some instances� In Section �� we derive upper
bounds on the approximation ratios of MST and BIP� A cornerstone to the
analysis of the upper bounds is an elegant structure property of Euclidean MST
which is explored in Section 
� Finally� in Section �� we summarize our results
and highlight several future research directions�
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� Preliminaries

We assume that the network nodes are given as a �nite point� set P in a two�
dimensional plane� For any real number �� we use G��� to denote the weighted
complete graph over P in which the weight of an edge e is kek��

The minimum�energy unicast routing is essentially a shortest�path problem
in G���� Consider any unicast path from a node p � P to another node q � P �

p 
 p�p� � � �pm��pm 
 q�

In this path� the transmission power of each node pi� � � i � m��� is kpipi��k�
and the transmission power of pm is zero� Thus� the total transmission energy
required by this path is

m��X
i��

kpipi��k� �

which is the total weight of this path in G�� By applying any shortest�path
algorithm such as Dijkstra�s algorithm ���� one can solve the minimum�energy
unicast routing problem�

However� for broadcast applications �in general multicast applications�� Minimum�
Energy Routing is far more challenging� Any broadcast routing is viewed as an
arborescence �a directed tree� T � rooted at the source node of the broadcasting�
that spans all nodes� We use fT �p� to denote the transmission power of the
node p required by T � For any leaf node p of T � fT �p� 
 �� For any internal
node p of T �

fT �p� 
 max
pq�T

kpqk� �

in other words� the ��th power of the longest distance between p and its children
in T � The total energy required by T is

P
p�P fT �p�� Thus� the minimum�

energy broadcast routing problem is di�erent from the conventional link�based
minimum spanning tree �MST� problem� Indeed� while the MST can be solved
in polynomial time by algorithms such as Prim�s algorithm and Kruskal�s al�
gorithm ���� it is still unknown whether the minimum�energy broadcast rout�
ing problem can be solved in polynomial time� In its general graph version�
the minimum�energy broadcast routing can be shown to be NP�hard ���� and
even worse� it can not be approximated within a factor of ��� �� log�� unless
NP � DTIME

�
nO�log logn�

�
� by an approximation�preserving reduction from

the Connected Dominating Set problem ���� where � is the maximal degree
and � is any arbitrary small positive constant� However� this intractability of
its general graph version does not necessarily imply the same hardness of its

�The terms node� point and vertex are interchangeable in this paper� node is a network

term� point is a geometric term� and vertex is a graph term�
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geometric version� In fact� as shown later in the paper� its geometric version
can be approximated within a constant factor� Nevertheless� this suggests that
the minimum�energy broadcast routing problem is considerably harder than the
MST problem�

Three greedy heuristics were proposed for the minimum�energy broadcast
routing problem in ���� The MST heuristic �rst applies Prim�s algorithm to
obtain a MST� and then orients it as an arborescence rooted at the source node�
The SPT heuristic applies Dijkstra�s algorithm to obtain a SPT rooted at the
source node� The BIP heuristic is the node version of Dijkstra�s algorithm for
SPT� It maintains� throughout its execution� a single arborescence rooted at
the source node� The arborescence starts from the source node� and new nodes
are added to the arborescence one at a time on the minimum incremental cost
basis until all nodes are included in the arborescence� The incremental cost
of adding a new node to the arborescence is the minimum additional power
increased by some node in the current arborescence to reach this new node�
The implementation of BIP is based on the standard Dijkstra�s algorithm� with
one fundamental di�erence on the operation whenever a new node q is added�
Whereas Dijkstra�s algorithm updates the node weights �representing the cur�
rent knowing distances to the source node�� BIP updates the cost of each link
�representing the incremental power to reach the head node of the directed link��
This update is performed by subtracting the cost of the added link pq from the
cost of every link qr that starts from q to a node r not in the new arborescence�

The performance of these three greedy heuristics have been evaluated in
��� by simulation studies� However� their analytic performance in terms of the
approximation ratio remains an open issue� In subsequent sections� we derive
the bounds of their approximation ratios�

� Greedy Is Not Always Good

Greedy approaches are the most natural and widely used techniques in design�
ing practical heuristics for optimization problems� For the minimum�energy
broadcast routing problem� one may think of many greedy heuristics� in addi�
tion to the three greedy heuristics proposed in ���� The real challenge� however�
is how to come up with a provably good one� Two greedy heuristics may only
di�er slightly� but this small variation can have a great impact on the analyt�
ical performance of these heuristics� In addition� some heuristics may perform
quite well or even optimally in some situations� but may perform very poorly
in some other situations� For the purpose of an illustration� in this section� we
compare two example heuristics� one is SPT and the other is a new one� The
�hard� instance constructed in this section can not only lead to lower bounds
on the approximation ratios of these two heuristics� but also helps in designing
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an overall good greedy heuristic� For simplicity� we only consider � 
 � in this
section�

We begin with the SPT algorithm� Let � be a su�ciently small positive
number� Consider m nodes p��p�� � � � �pm evenly distributed on a cycle of
radius � centered at a node o �see Figure ��� For � � i � m� let qi be the point
in the line segment opi with koqik 
 �� We consider broadcasting from the
node o to these n 
 �m nodes

p��p�� � � � �pm�q��q�� � � � �qm�

The SPT is the superposition of paths oqipi� � � i � m� Its total energy
consumption is

�� �m ��� ��
�
�

On the other hand� if the transmission power of node o is set to �� then the
signal can reach all other points� Thus� the minimum energy consumed by all
broadcasting methods is at most �� So the approximation ratio of SPT is at
least �� �m ��� ��

�
� As � �� �� this ratio converges to n

� 
 m�

p1q1

q2

p3

q3

p2

pm

qm

1−ε ε o

Figure �� A bad instance for SPT�

The second greedy heuristic is similar to Chvatal�s algorithm ��� for the Set
Cover Problem and is a variation of BIP� Like BIP� an arborescence� which
starts with the source node� is maintained throughout the execution of the
algorithm� However� unlike BIP� many new nodes can be added one at a time�
Similar to Chvatal�s algorithm ���� the new nodes added are chosen to have the
minimal average incremental cost� which is de�ned as the ratio of the minimum
additional power increased by some node in the current arborescence to reach






these new nodes to the number of these new nodes� We refer to this heuristic
as the Broadcast Average Incremental Power� abbreviated by BAIP� In contrast
to the � � logm approximation ratio of Chvatal�s algorithm ���� where m is the
largest set size in the Set Cover Problem� we show that the approximation ratio
of BAIP is at least �n

lnn � o ���� where n is the number of receiving nodes�

Consider the following instance of minimum�energy broadcasting� All nodes
lie on the x�axis with the source at the origin� the i�th receiving node at positionp
i for � � i � n� �� and the n�th receiving node at position

p
n� � for some

su�ciently small real number � � �� For any � � k � n � �� the minimal

transmission power of the source to reach k receiving nodes is
�p

k
��


 k� and

thus the average incremental power cost at the origin to reach these k nodes is
k

k

 �� On the other hand� the minimal transmission power of the source to

reach all n receiving nodes is
�p

n� �
��


 n��� and the thus the average power
e�ciency is n��

n

 �� �

n
� So BAIP will let the source to transmit at power n��

to reach all nodes� However� the optimal routing is a directed path consisting
of all nodes from left to right� So the minimum power consumption is

n��X
i��

�p
i�pi� �

��
�
�p

n� ��pn� �
��
�

�

nX
i��

�p
i�pi� �

��


 � �

n��X
i��

��p
i� � �

p
i
��

� � �
n��X
i��

�

�i

� � �
ln �n� �� � �

�



ln �n� �� � �

�
�

Thus� the approximation ratio of BAIP is at least

n� �Pn��
i��

�p
i�pi� �

��
�
�p

n� ��pn� �
�� �

�



As � �� �� this ratio converges to

nPn

i��

�p
i�pi� �

��



n

� �
P

n��
i��

�

�
p
i���

p
i�

�

� n

� �
Pn��

i��
�
�i

� n

� � ln�n�����
�



�n

ln �n� �� � �



�n

lnn
� o ��� �

Interestingly� SPT generates the optimal solution in the second instance
while BAIP can provide near�optimal or optimal solution for the �rst instance�
On the other hand� MST and BIP have many similarities to SPT and BAIP but
have constant approximation ratios as proved later� Thus� one must carefully
design and select greedy heuristics�

� Lower Bounds on Approximation Ratios

In this section� we derive lower bounds on approximation ratios of MST and
BIP� We begin with MST�

Theorem � The approximation ratio of MST is at least 
 for any � � ��

Proof� Let � be a su�ciently small positive real number� Consider seven
nodes o�p�� � � � �p	 �see Figure ��� which satisfy

kop�k 
 ��

kopik 
 � � �� � � i � 
�

kpipi��k 
 �� � � i � ��

Then for any � � i � ��

�piopi�� �
�

�

�
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1+ε

Figure �� A bad instance for MST�

and

�p	op� �
�

�
�

Consider the two triangles op�p� and op�p	� Since

kop�k 
 kop	k

and

�p	op� � �p�op��

by Law of Cosine� we have

kp�p	k � kp�p�k 
 ��

We consider the broadcasting from node o to nodes p�� � � � �p	� Then the
path op� � � �p
p	 is the unique MST� Its total energy consumption is 
� On the
other hand� it is easy to show that the optimal routing is the star centered at
node o� whose total energy consumption is �� � ��

�
� Thus� the approximation

ratio of MST is at least 	
������ � which converges to 
 as � �� ��

Now we develop a lower bound on the approximation ratio of BIP�

Theorem � The approximation ratio of BIP is at least ��
� for any � 
 ��
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qm+1
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qπ/3−3θ

π/3−3θ

π/3−2θ

π/3−2θ

π/3−θ

Figure �� A instance for BIP�

Proof� Let � be a su�ciently small positive real number� Consider six
points p�� � � � �p	 on a cycle of radius � centered at node o �see Figure ��� with

�p�op� 
 �p
op	 

�

�
� ���

�p�op� 
 �p�op
 

�

�
� ���

�p�op� 

�

�
� ��

�p	op� 

�

�
� ����

Then

kp�p�k 
 kp
p	k �
kp�p�k 
 kp�p
k �
kp�p�k � � � kp	p�k �

Let q be the point in the perpendicular bisector of p�p	 such that p�q is
perpendicular to p�p�� Choose a su�ciently large integer m such that

��
�koqk

m

��

� kp�p�k� �

Let q�� � � � �qm�� be the m� � points on the ray oq with

koqik 

i

m
koqk

for � � i � m� �� Then qm 
 q�

��



We consider broadcasting from point o to points q�� � � � �qm���p�� � � � �p	�
The optimal solution is that the node o transmits at power � to reach all nodes�
Now examine the output of the BIP algorithm� As m is su�ciently large� in
the �rst m � � steps� the points q�� � � � �qm�� are sequentially added� and the
transmission power of the nodes o�q�� � � � �qm all has the transmission power�
koqk
m

��
� Since the angles

�p�qm��qm 
 �p	qm��qm �
�

�
�

in the next two steps� the points p� and p	 are added� and the transmission
power of point qm�� is kp�qm��k�� At this moment� the incremental power of
all points o�q�� � � � �qm to reach any node pi for � � i � � is at least

��
�koqk

m

��

� kp�p�k� � kp�p�k� 
 kp
p	k� �

and the incremental power of point qm�� to reach any node pi for � � i � � is
also greater than kp�p�k� 
 kp
p	k� as

�p�p�qm�� 
 �p
p	qm�� � �p�p�qm 

�

�
�

Thus� in the subsequent two steps� the points p� and p
 are added� and the
transmission power of points p� and p	 is kp�p�k� 
 kp
p	k�� Similarly� in the
last two steps� the points p� and p� are added� and the transmission power of
points p� and p
 is kp�p�k� 
 kp�p
k�� The total power is

�m� ��

�koqk
m

��

� kp�qm��k� � � kp�p�k� � � kp�p�k�



m� �

m�
koqk� � kp�qm��k� � � kp�p�k� � � kp�p�k� �

As � �� � and m �� �� the polygon p�p�p�p�p
p	 converges to a regular
hexagon� and the nodes q and qm�� converges to the center of the triangle
op�p	� Thus� the total power consumption converges to �

� � � 
 ��
� � Conse�

quently� the approximation ratio of BIP is at least ��
� � �����

� Upper Bounds on Approximation Ratios

We have given some lower bounds on the approximation ratios of MST and BIP
by studying some special instances� However� upper bounds on the approxima�
tion ratios of these heuristics need to be analyzed for all possible instances� Our
derivation of the upper bounds relies extensively on the geometric structures
of Euclidean MSTs� We �rst observe that as long as the cost of a link is an
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increasing function of the Euclidean length of the link� the set of MSTs of any
point set coincides with the set of Euclidean MSTs of the same point set� In
fact� this can be followed from Prim�s algorithm� In particular� for any spanning
tree T of a �nite point set P � parameter

P
e�T kek� achieves its minimum if and

only if T is an Euclidean MST of P � For any �nite point set P � we use mst �P �
to denote an arbitrary Euclidean MST of P � The radius of a point set P is
de�ned as

inf
p�P

sup
q�P

kpqk �

Thus� a point set of radius one can be covered by a disk of radius one� A key
result in this section is an upper bound on the parameter

P
e�mst�P � kek� for

any �nite point set P of radius one� Note that the supreme of the total edge
lengths of mst �P ��

P
e�mst�P � kek� over all point sets P of radius one is in�nity�

Amazingly� however� the parameter
P

e�mst�P � kek� is bounded from above by
a constant for any point set P of radius one� as shown later� We use c to denote
the supreme of

P
e�mst�P � kek� over all point sets P of radius one� The next

key theorem states that c is at most ���

Theorem � 
 � c � ���

The proof of this theorem involves complicated geometric arguments� and
therefore we postpone it until Section 
� Note that for any point set P of radius
one� the length of each edge in mst �P � is at most one� Therefore� Theorem �
implies that for any point set P of radius one and any real number � � ��X

e�mst�P �

kek� �
X

e�mst�P �

kek� � c � ���

In the next� we explore a relation between the minimum energy required
by a broadcasting and the energy required by the Euclidean MST of the corre�
sponding point set�

Lemma � For any point set P in the plane� the total anergy required by any
broadcasting among P is at least �

c

P
e�mst�P � kek��

Proof� Let T be an arborescence for broadcasting among P with the mini�
mum energy consumption� For any non�leaf node p in T � let Tp be an Euclidean
MST of the point set consisting p and all children of p in T � Suppose that the
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longest Euclidean distance between p and its children is r� Then� the transmis�
sion power of node p is r�� and all children of p lie in the disk centered at p
with radius r� From the de�nition of c� we have

X
e�Tp

�kek
r

��

� c�

which implies that

r� � �

c

X
e�Tp

kek� �

Let T � denote the spanning tree obtained by superposing of all Tp�s for non�
leaf nodes of T � Then� the total energy required by T is at least �

c

P
e�T� kek��

which is further no less than �
c

P
e�mst�P � kek�� This completes the proof�

Consider any point set P in a two�dimensional plane� Let T be an arbores�
cence oriented from some mst �P �� Then� the total energy required by T is
at most

P
e�Tp kek

�
� From Lemma �� this total energy is at most c times the

optimum cost� Thus� the approximation ratio of the link�based MST heuristic
is at most c� Together with Theorem �� this observation leads to the following
theorem�

Theorem � The approximation ratio of the link�based MST heuristic is at most
c� and therefore is at most ���

Finally� we derive an upper bound on the approximation ratio of the BIP
heuristic� Once again� the Euclidean MST will play an important role�

Lemma � For any broadcasting among a point set P in a two�dimensional
plane� the total energy required by the arborescence generated by the BIP algo�
rithm is at most

P
e�mst�P � kek��

Proof� Remember that G��� is the complete graph over the point set P in
which the weight of an edge e is kek�� Let T be the arborescence generated
by the algorithm BIP� We construct another weighted graph H over the same
point set P according to the execution of BIP for generating T � Suppose that�
during the execution of BIP� the nodes are added in the order p��p�� � � � �pn�
where p� is the source node� Let Ti be the arborescence just after the node pi
is added� In H � the weight of edge pipi�� is equal to the incremental energy
of the link from a node in Ti to pi�� chosen during the execution of SPF� and
the weight of any other edge� with at least one node not in Ti� is the same as
that in G���� Note that for each edge pipi��� its weight in H is not more than
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its weight in G���� Therefore� for any spanning tree� its weight in H is no more
than its weight in G���� On the other hand� the execution of Prim�s algorithm
on H will emulate the algorithm BIP on G��� in the sense that it will add the
required nodes in the same order� and will output the path p�p� � � �pn� The
weight of this path in H is exactly the total energy required by T � but is at most
the weight of any MST in G���� This implies that the total energy required by
T is at most

P
e�mst�P � kek�� This completes the proof�

From the above lemma and Lemma �� we have the following result for the
BIP algorithm similar to Theorem ��

Theorem � The approximation ratio of the BIP heuristic is at most c� and
therefore is at most ���

� Proof of Theorem �

This section is devoted to the proof of Theorem �� The lower bound is trivial as
it can follow from the following instance consisting of seven points� the center of
a regular hexagon and its six vertices� However� the deriving of the upper bound
is challenging� We �rst introduce some geometric structures and notations to be
used in this section� All angles are measured in radians and take values in the
range ��� ��� For any three points p��p� and p�� the angle between the two rays
p�p� and p�p� is denoted by �p�p�p� or �p�p�p�� The closed in�nite area
inside the angle �p�p�p�� also referred to as a sector� is denoted by �p�p�p��
The triangle determined by p��p� and p� is denoted by 	p�p�p�� The open
disk centered at p with radius r� denoted by B �p� r�� is the set of points such
that every point has distance less than r from p� The lune through points
p� and p�� denoted by L �p�p��� is the intersection of the two open disks of
radius kp�p�k centered at p� and p� respectively �see Figure ��a��� Thus� it
consists of points whose distances from p� and p� are less than kp�p�k� The
open diamond subtended by a line segment p�p�� denoted by D �p�p��� is the

rhombus with sides each of which has length
p
�
� kp�p�k �see Figure ��b��� Note

that the interior angles at p� and p� within D �p�p�� are equal to
�

� �

The Euclidean MSTs have many nice structure properties ���� Some basic
properties are listed blow�


 Any pair of edges do not cross each other�


 The angles between any two edges incident to a common vertex is at least
�

� �

��



p1
p2p1

p2

(a) (b)

Figure �� Illustration of �a� lune and �b� diamond�


 The length of each edge is at most the radius of the vertex set�


 The lune determined by each edge does not contain any other vertices�


 Let p�p� be any edge� Then� the two endpoints of any other edge are
either both outside B �p�� kp�p�k�� or both outside B �p�� kp�p�k��

In this section� we �rst prove another structure property of the Euclidean
MSTs� which is very essential to bound the constant c� The diamonds of any
two edges are disjoint� The proof of this property will make use of the following
lemma�

Lemma � Let p��p� and p� be any three points in the plane with �p�p�p� 

��
� and kp�p�k 
 kp�p�k�see Figure ��� Let p� be any point in �p�p�p� but
outside 	p�p�p� with �p�p�p� 
 �� Then� D �p�p�� � �p�p�p� if and only

if either � � ��� �� � and kp�p�k � sin �

�

sin������
kp�p�k or � � ��� � ��� ��

Proof� Note that D �p�p�� � �p�p�p� if � � ��
� � and D �p�p�� �

�p�p�p� if � � �
�

� �
��
�

�
� So we now assume � � �

�� ��
�
� We �x � and cal�

culate the maximum length of p�p� such that D �p�p�� � �p�p�p�� This hap�
pens when D �p�p�� touches the ray p�p�� say at x� We consider this extreme
scenario� In this case�

�p�p�x 
���p�xp�

�

�
� ��

Applying the Laws of Sine in 	p�p�x� we have
kp�xk
kp�p�k 


sin �

�

sin
�
�

� � �
� �

On the other hand� as 	p�p�p� and 	p�p�x are similar�

kp�p�k
kp�p�k 


kp�xk
kp�p�k 


sin �

�

sin
�
�

� � �
� �

��



p1
p2

p3

p4

α
α α

π/3−α x

p1
p2

p3

p4

π/3−α

α

α

α

x

(a)

(b)

Figure 
� Two extreme cases for D �p�p�� � �p�p�p��

Therefore� D �p�p�� � �p�p�p� as long as kp�p�k � sin �

�

sin� �����
kp�p�k�

Next� we apply the above lemma to show that the diamond determined by
any edge in an Euclidean MST is contained in some sector de�ned in the next
lemma�

Lemma 	 Let p��p� and p� be any three points in the plane with p� being
outside L �p�p��� Let p�� �p�� respectively� be the vertex of D �p�p�� �D �p�p��
respectively� which lies on the opposite side of the line p�p� �p�p� respectively�
from p� �p� respectively� �see Figure ��� Then� D �p�p�� � �p��p�p���

Proof� We assume by symmetry that p� is above the line p�p� and to the
right of the perpendicular bisector of p�p�� Then� kp�p�k � kp�p�k� Since p�
is outside L �p�p��� kp�p�k � kp�p�k and �p�p�p� � �

� � Therefore�

�p��p�p
�
� �

�

�
�
�



�
�






��



�

�p�p�p� � �

�
�

�p�p�p� �
�

�
�

�
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Figure �� The three cases for Lemma �

��



Let x and y be the other two vertices of D �p�p�� which lie between the up
side and the down side respectively of the line p�p�� It is su�cient to show that
both x and y are within �p��p�p

�
�� This is true when �p�p�p� � �

	 �see Figure
��a��� So we assume that �p�p�p� �

�

	 � In this case x is within 	p�p�p��� and
thus within �p��p�p

�
�� from Lemma � and kp�p�k � kp�p�k� If �p�p�p� � 
�

	 �
then y is within �p��p�p� � �p��p�p

�
� �see Figure ��b��� If �p�p�p� � 
�

	 �
then

�p�p�y 
 ����p�p�p� ��p�p�y
� ���� � �






��




which implies that the ray p�y does not intersect with the ray p�p
�
� �see Figure

��c��� So y is within �p��p�p
�
�� Therefore� in either case both x and y are

within �p��p�p
�
�� This completes the proof�

Now we are ready to prove the �disjoint diamonds� property of Euclidean
MSTs�

Lemma �
 In any Euclidean MST� the two diamonds determined by any two
edges are disjoint�

Proof� The lemma is true when two edges are incident to a common vertex
as the angle between them is at least �

� � So� we consider two edges p�p� and
q�q� with distinct endpoints� We consider two cases�

Case �� At least one of p�p� and q�q� does not cross the perpendicular
bisector of the other� Without loss of generality� assume that q� and q� lie in the
same side of the perpendicular bisector of p�p� as p� �see Figure ��a��� Let q

�
�

�q�� respectively� be the vertex ofD �p�q�� �D �p�q�� respectively� which lies on
the opposite side of the line p�q� �p�q� respectively� from q� �q� respectively��
Then� from Lemma �� D �q�q�� � �q��p�q��� On the other hand� since both q�
and q� are outside L �p�p��� D �p�p�� is outside �q

�
�p�q

�
�� Thus� D �p�p�� and

D �q�q�� are disjoint�
Case �� Both p�p� and q�q� cross the perpendicular bisector of the other�

Without loss of generality� assume that q� lies in the same side of the perpen�
dicular bisector of p�p� as p� �see Figure ��b��� Then� p� must lie in the same
side of the perpendicular bisector of q�q� as q�� for otherwise

kp�q�k � kp�q�k � kp�q�k � kp�q�k �

i�e�� both p� and p� lie in the same side of the perpendicular bisector of q�q�
as q�� which contradicts to the assumption� Since q� is outside L �p�p�� and
kp�q�k � kp�q�k� we have kp�q�k � kp�p�k� As kp�q�k � kp�q�k� q� is out�
side 	q�p�p�� Similarly� any of these four points p��p��q� and q� is outside
the triangle determined by the other three points� This implies that the convex

��
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Figure �� Two cases for Lemma ���

hull determined by these four points is a quadrilateral� Note that p�p� and
q�q� cannot be the two diagonals of the quadrilateral as they do not cross each
other� Neither can be p�q� and p�q� as they are separated by the perpendic�
ular bisector of p�p�� Thus� the two diagonals must be p�q� and p�q�� and
consequently the boundary of the quadrilateral is p�p�q�q�� From the previ�
ous argument its four sides are all less than its two diagonals� and hence its
four inner angles are all more than �

� � Without loss of generality� we assume
that kp�q�k � kp�q�k� Then kp�q�k � kp�p�k� for otherwise q� would be in�
side B �p�� kp�p�k� and q� would be inside B �p�� kp�p�k�� which is impossible�
Similarly� kp�q�k � kq�q�k� Therefore� both �q�p�q� and �p�q�p� are less
than �

� � Since both �q�p�p� and �p�q�q� are less than �

� � we have

�q�p�p���p�q�q� �
�
�

�
�
��




�
�

Let x be the point inside �q�p�p� such that 	p�q�x is equilateral� Then� both
p�p� and q�q� are outside 	p�q�x� In addition�

�xp�p���xq�q� �
�
��
�

�

�
and

kp�xk � kp�p�k � kq�xk � kq�q�k �

Let y be the center of 	p�q�x� Then� from Lemma ��

D �p�p�� � �p�yx�D �q�q�� � �q�yx�

This implies that D �p�p�� and D �q�q�� are disjoint�

��



Let P be any point set of radius one� According to Lemma ��� the total area
covered by the diamonds through the edges in mst �P � equals to

p
�




X
e�mst�P �

kek� �

Let p be any point in P � Then� every point in P has distance of at most one
from p� Since all edges of mst�p� have lengths of at most one� all diamonds are

contained in B
�
p� �p

�

�
� This implies that

p
�




X
e�mst�P �

kek� � �

�
�p
�

��



��

�
�

Therefore X
e�mst�P �

kek� � ��p
�
� ������

This estimation is quite loose and fails in getting the desired �� upper bound�
We now provide a tighter estimation which can lead to the �� upper bound�

We observe that the total area of the diamonds is no more than the area of
the disk B �p� �� plus the sticking�out areas of these diamonds beyond B �p� ���
Let D �p�p�� be any diamond which sticks out B �p� ��� and let q be its vertex
which is outside B �p� �� �see Figure ��� Let p�� �p�� respectively� be the inter�
section between p�q �p�q respectively� and the boundary of B �p� ��� Then� the
sticking�out area of D �p�p�� can be calculated by subtracting the area of the
sector subtended by pp�� and pp�� from the area of the quadrilateral pp��qp

�
��

The area of the quadrilateral pp��qp
�
� can be further calculated by summing up

the areas of 	pp��p�� and 	qp��p��� As �p��qp
�
� is a constant ��

� � the area of
	qp��p�� is maximized when kqp��k 
 kqp��k� Let �p��pp�� 
 �� then � � ��� �� �
and the sticking�out area of D �p�p�� is at most

S ��� 

�

�
sin��

p
�



��� cos��� �

�
�

The area function S ��� has the following nice property�

Lemma �� For any �� 	 � ��� �� ��
�� if �� 	 � �

� � S ��� � S �	� � S ��� 	�	

�� if �� 	 � �

� � S ��� � S �	� � S
�
�� 	 � �

�

�
� S

�
�

�

�
�

��
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Figure �� The calculation of the sticking�out area�

Proof� The lemma follows from the following two equalities� for any � and
	�

S ��� 	�� S ��� � S �	�
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We �rst prove the �rst equality�
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Now we prove the second equality�
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Suppose that there are k diamonds which stick out B �p� ��� For any � �
i � k� let �i be the inner angle of the arc between the two intersection points

��



of the boundary B �p� �� and the boundary of the i�th sticking�out diamond�
Then� �i �

�
�� ��

�
and

kX
i��

�i � ���

By repeatedly applying the two inequalities in Lemma ��� the total sticking�out
area of the diamonds is

kX
i��

S ��i� �
�Pk

i�� �i
�

�

	
S
��
�

�

� 
S
��
�

�

 �

p
�� ��

Thus� the total area of diamonds is at most

� � �
p
�� � 
 �

p
��

Therefore�

X
e�mst�P �

kek� � �
p
�

p
�
	


 ���

This completes the proof Theorem ��

� Summary and Future Works

In this paper� we provided the theoretical performance analysis for the heuristics
presented in ���� The approximation ratio of SPT is at least n

� � and thus less
favorable from the theoretical perspective� The other two heuristics� link�based
MST and BIP� have constant�bounded approximation ratios� Speci�cally� the
approximation ratio of the link�based MST heuristic is between 
 and c� which
is at most ��� the approximation ratio of the BIP heuristic is between ��

� and
c � ��� However� there are still several challenging issues for future research�

First of all� the computational complexity of the Minimum�Energy Broad�
casting remains unknown� As mentioned in Section �� the graph�version of this
problem is at least as hard as the Connected Dominate Set problem� However�
due to its geometric nature� this intractability of the graph version does not
imply the same intractability of the geometric version� Indeed� while the Con�
nected Dominating Set problem does not allow a constant�approximation ratio�
the geometric version does on the contrary� for example� by MST or BIP�

Secondly� the exact value of the constant c remains unsolved� A tighter
upper bound on c can lead to tighter upper bounds on the approximation ratios

��



of both the link�based MST heuristic and the BIP heuristic� From the derivation
of the �� upper bound� we observe that there is still room to improve the upper
bound� For example� it is very unlikely for the diamonds to �ll the unit disk
fully� At least this is true for small number of nodes� However� the treatment
of large number of nodes is quite challenging� and more geometric properties of
the Euclidean MSTs should be explored�

The third interesting problem is how to construct �harder� instances that
can lead to better lower bounds on the approximation ratios of both the MST
and BIP�

A major challenge� and a topic of continued research� is the development
of distributed algorithms of MST and BIP� These algorithms should take ad�
vantage of the geometric properties for fast implementation� Furthermore� it is
important to study the impact of limited bandwidth and transceiver resources�
as well as to develop mechanisms to cope with node mobility ����

References

��� V� Chv�atal� �A Greedy Heuristic for the Set�Covering Problem��Mathemat�
ics of Operations Research� Vol� �� No� �� pp� �������� �����

��� T� J� Cormen� C� E� Leiserson� and R� L� Rivest� Introduction to Algorithms�
MIT Press and MxGraw�Hill� �����

��� M� R� Garey� and D� S� Johnson� Computers and Intractability
 a Guide to
the Theory of NP�Completeness� W� H� Freeman and Company� �����

��� S� Guha� and S� Khuller� �Approximation Algorithms for Connected Domi�
nating Sets�� Algorithmica ����� �����������

��� F� P� Preparata and M� I� Shamos� Computational Geometry
 an Introduc�
tion� Springer�Verlag� �����

�
� T� S� Rappaport�Wireless Communications
 Principles and Practices� Pren�
tice Hall� ���
�

��� S� Singh� C� S� Raghavendra� and J� Stepanek� �Power�Aware Broadcast�
ing in Mobile Ad Hoc Networks�� Proceedings of IEEE PIMRC���� Osaka�
Japan� Sep� �����

��� J�E� Wieselthier� G�D� Nguyen� and A� Ephremides� �On the Construction
of energy�E�cient Broadcast and Multicast Trees in Wireless Networks��
IEEE Infocom��


�

��


