
Euclidean Distance Euclidean Distance
Maps and Maps and EikonalEikonal

EquationsEquations
YaakovYaakov TsaigTsaig

PapersPapers

H.K. Zhao, “A fast sweeping method for eikonal
equations”.
P.E. Danielsson, “Euclidean distance mapping”.
H. Pottmann, S. Leopoldseder, H.K. Zhao, “The d2-tree:
A hierarchical representation of the squared distance
function”.
Book: R. Kimmel, “Numerical Geometry of Images”,
Springer-Verlag.

Distance MapDistance Map

Let S be a set of source points (representing a curve,
surface, object), and D the domain of interest
A distance map is a function : , s.t.T D R+→

2() inf
Lq S

T p p q
∈

= −

p

T(p)

Computing Distance MapsComputing Distance Maps

Q1: So how do we compute distance maps?
A1: For each point of interest in the domain D, scan all
source points in S and find the closest one.
Drawback: Will take forever…
Q2: So how do we compute distance maps and get a
result in our lifetime?
A2: Sweeps with alternating directions.

DanielssonDanielsson’’ss AlgorithmAlgorithm

2-D case: For each point we store the (x,y) offset to the
closest point.
Initially, all offsets of points in S are (0,0) and offsets of
points not in S are
Scan the image 4 times in alternating directions
(up/down, left/right).
Each point checks the values of its four closest
neighbors, and updates its own value accordingly.

(), .∞ ∞

DanielssonDanielsson’’ss AlgorithmAlgorithm

Example: One source point

()0,0 (),∞ ∞ (),∞ ∞

(),∞ ∞ (),∞ ∞

(),∞ ∞ (),∞ ∞

(),∞ ∞

(),∞ ∞

()0, 1− ()0, 2−

()1, 1−()1,0 ()1, 2−

()2, 1−()2,0 ()2, 2−

(),∞ ∞()0, 3−

(),∞ ∞()1, 3−

(),∞ ∞()2, 3−

DanielssonDanielsson’’ss AlgorithmAlgorithm

How does it work?

DanielssonDanielsson’’ss AlgorithmAlgorithm

What can go awry?

C

P

B

Q

A

d(Q,A) = 5
d(Q,B) = 5

Danielsson finds:
T(P) = 6

But actually:

T(P) = 35 = 5.916

DanielssonDanielsson’’ss AlgorithmAlgorithm

This argument can be made more precise, to show that
the error in the approximation is bounded by 0.29h,
where h is the mesh size.
Improvement: use 8 connectivity instead of 4
connectivity.
The error bound then becomes 0.076h.
However, it involves twice as much work.

Extension to higher dimensionsExtension to higher dimensions

This method can be easily extended to other dimensions:
1-D: 2 sweeps (left, right)
2-D: 4 sweeps (left/right, up/down)
3-D: 8 sweeps
n-D: 2n sweeps.

Distance Maps and Distance Maps and EikonalEikonal EquationsEquations

T(x)
1 source point (x0).
T(x)=|x-x0|

0() 1, except at xxT x∂ =

x0

Distance Maps and Distance Maps and EikonalEikonal EquationsEquations

2 source points (x0 , x1).
T(x)=min{|x-x0|, |x-x1|}

0 1 0 1

() 1,
except at x , x , (x x) / 2

xT x∂ =
+

The dashed line also
satisfies
in all but 3 points.

() 1,xT x∂ =

T(x)

x0 x1

Distance Maps and Distance Maps and EikonalEikonal EquationsEquations

So we have that for 1D distance maps:

() 1,
() 0,
xT x x

T x x
∂ = ∈ Ω

= ∈ Γ

However, the converse is not necessarily true.
Since the Eikonal equation does not uniquely specify a weak
solution, we need to look for a specific solution – a viscosity
solution or entropy solution

DiscretizingDiscretizing the 1D differential operatorthe 1D differential operator

Backward differencing:

1() i i
x

T TT x
h

−−∂ =

T(x)

x0 x1

DiscretizingDiscretizing the 1D differential operatorthe 1D differential operator

Truncated Backward differencing:

1() i i
x

T TT x
h

+
−− ∂ =   

T(x)

x1x0

DiscretizingDiscretizing the 1D differential operatorthe 1D differential operator

Symmetrized differencing:

1 1() ,i i i i
x

T T T TT x
h h

+
− +− − ∂ =   

T(x)

x0 x1

DiscretizingDiscretizing the 1D differential operatorthe 1D differential operator

We can rewrite this scheme as

{ }1 1min ,
() i i i

x

T T T
T x

h

+
− +− 

∂ =  
 

This numerical approximation is known as an
upwind scheme, since it corresponds with the
direction of information flow.
Enforces causality.
Retrieves the viscosity solution.

Updating order (1D case)Updating order (1D case)

Q: In which order should we scan the grid?
A1: We can successively scan it from left to right. In the
worst case scenario we will need N scans to converge.
A2: Do a left-to-right sweep, followed by a right-to-left
sweep. Convergence after 2 scans.
Why? Because the distance value at any grid point can
be computed exactly from its left or right neighbor.

Updating order (1D case)Updating order (1D case)

Left-to-right sweep

x0 x1

Right-to-left sweep

x0 x1

nn--D D EikonalEikonal EquationsEquations

In a more general n-dimensional setting, the Eikonal
equation becomes

() (),

() 0,

n

n

T x F x x R

T x x R

∇ = ∈

= ∈ Γ ⊂

In 2D, the upwind difference scheme (a.k.a Godunov’s
scheme) has the form

{ }() { }()2 2
2 2

, 1, 1, , , 1 , 1 ,min , min ,i j i j i j i j i j i j i jT T T T T T h F
+ +

− + − +
   − + − =   

Numerical Solution in 2DNumerical Solution in 2D

Initialization: T(x) = 0 for points in or near the source
point set. Other points are assigned large positive values.
Updating: Gauss-Seidel iterations.
Apply Danielsson’s algorithm to the Gauss-Seidel
update scheme, i.e. use 4 sweeps with alternating
directions (left/right, up/down).
As we’ve seen before, for the case of 1 source point, 4
sweeps with alternating directions recover the exact
distance function. In n-D, 2n sweeps are required.
When we have more than 1 source point, more than 2n

iterations may be needed for convergence.

A More General AnalysisA More General Analysis

We consider the n-D Eikonal equation with F = 1, i.e.
for recovering distance functions.
Key Results:

For a single source point x0, the numerical solution Th(x)
converges in 2n sweeps and satisfies

() () () (log)hd x T x d x O h h≤ ≤ +

Let Sh(x) denote the solution of the discrete Eikonal equation.
For an arbitrary set of source points (not necessarily discrete),
the numerical solution Th(x) after 2n sweeps satisfies

() () () (log)h hS x T x d x O h h≤ ≤ +

A More General AnalysisA More General Analysis

Q: What happens when F is arbitrary?
A: The number of iterations needed is no longer
constant. It depends on the geometric structure of F.

Hierarchical Squared Distance FunctionHierarchical Squared Distance Function

We will now see how to use the fast sweeping
algorithm in a hierarchical framework, to estimate the
squared distance function of a surface.
We assume we are given a triangulated surface M.
The algorithm consists of the following 3 steps:
1. Construct an octree encompassing the surface M.
2. Use the fast sweeping algorithm to compute distances of

corner points of cubes in the octree to the surface M.
3. Generate a d2-tree, which is an octree representation of a

piecewise quadratic approximation of the squared distance
function of M.

Hierarchical Squared Distance FunctionHierarchical Squared Distance Function

We will now see how to use the fast sweeping
algorithm in a hierarchical framework, to estimate the
squared distance function of a surface.
We assume we are given a triangulated surface M.
The algorithm consists of the following 3 steps:
1. Construct an octree encompassing the surface M.

1. Constructing an Octree1. Constructing an Octree

Start with a cube that encloses the object M.
At level L (starting from L=0), subdivide twice, to get to
level L+2.
Continue in this fashion until we get to level Lmax, which
is a precision parameter of the algorithm.
Extending the subdivision: For each level L, certain cells
Cj

L are already subdivided to level L+2. For each such
Cj

L, subdivide all its “neighboring” cells to level L+2.

1.Constructing an Octree1.Constructing an Octree

Example: A planar slice through the octree

Hierarchical Squared Distance FunctionHierarchical Squared Distance Function

We will now see how to use the fast sweeping
algorithm in a hierarchical framework, to estimate the
squared distance function of a surface.
We assume we are given a triangulated surface M.
The algorithm consists of the following 3 steps:

Construct an octree encompassing the surface M.
2. Use the fast sweeping algorithm to compute distances of

corner points of cubes in the octree to the surface M.

2. Computing a distance function2. Computing a distance function

We apply the fast sweeping algorithm to compute
distance values of corners of cubes, in a multilevel
fashion, starting from the finest level and going up.
Initialization: Run through all triangles of M that
intersect a cube of level Lmax, and compute the distance
to the corner points exactly.
At each level (Lmax-2..0): Initialize with distances from
finer level, and apply the sweeping algorithm on cubes
of the current level.

2. Computing a distance function2. Computing a distance function

Q: How to do raster scans on a tree structure?
A: Sort the cubes according to the order of the raster
scan.
Suppose all cells of level L are sorted in a list AL. To
sort level L+2, start with the list AL, remove from it all
cells that are not subdivided to level L+2, and sort the
children of the remaining cells.

Hierarchical Squared Distance FunctionHierarchical Squared Distance Function

We will now see how to use the fast sweeping
algorithm in a hierarchical framework, to estimate the
squared distance function of a surface.
We assume we are given a triangulated surface M.
The algorithm consists of the following 3 steps:

Construct an octree encompassing the surface M.
Use the fast sweeping algorithm to compute distances of
corner points of cubes in the octree to the surface M.

3. Generate a d2-tree, which is an octree representation of a
piecewise quadratic approximation of the squared
distance function of M.

3. Computing the d3. Computing the d22--treetree

We shall now construct a new octree, d2-tree, that will
store for each cube a quadratic function of the form

()f c= T Tx x Ax + b x +

Start off with the largest cell of the distance-octree, and
compute a LS fit using all data points with known
distance in the cell.
If the residual is above a threshold, subdivide the cell,
and fit a quadratic to each cell separately.
Continue in this fashion until an adequate quadratic is
obtained for each cell.

3. Computing the d3. Computing the d22--treetree

To avoid excessive laboring in the coarser levels, rather
than fitting all points at once, start by fitting only level 2
points, then, if necessary, add level 4 points, and so on.
We end up with an d2-tree containing local quadratic
approximations of the squared distance function.

dd22--tree tree -- ExampleExample

dd22--tree tree -- ExampleExample

A local quadratic approximation with its level sets

dd22--tree tree -- ExampleExample

Combined level sets of quadratic approximations

dd22--tree tree -- ExampleExample

Piecewise-quadratic d2 function

	Euclidean Distance Maps and Eikonal Equations
	Papers
	Distance Map
	Computing Distance Maps
	Danielsson’s Algorithm
	Danielsson’s Algorithm
	Danielsson’s Algorithm
	Danielsson’s Algorithm
	Danielsson’s Algorithm
	Extension to higher dimensions
	Distance Maps and Eikonal Equations
	Distance Maps and Eikonal Equations
	Distance Maps and Eikonal Equations
	Discretizing the 1D differential operator
	Discretizing the 1D differential operator
	Discretizing the 1D differential operator
	Discretizing the 1D differential operator
	Updating order (1D case)
	Updating order (1D case)
	n-D Eikonal Equations
	Numerical Solution in 2D
	A More General Analysis
	A More General Analysis
	Hierarchical Squared Distance Function
	Hierarchical Squared Distance Function
	1. Constructing an Octree
	1.Constructing an Octree
	Hierarchical Squared Distance Function
	2. Computing a distance function
	2. Computing a distance function
	Hierarchical Squared Distance Function
	3. Computing the d2-tree
	3. Computing the d2-tree
	d2-tree - Example
	d2-tree - Example
	d2-tree - Example
	d2-tree - Example

