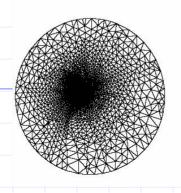
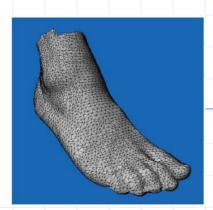
Meshless Parameterization and Surface Reconstruction

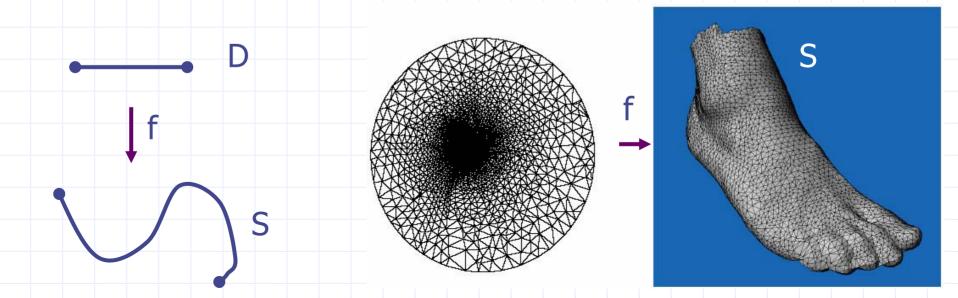
By Michael Floater and Martin Reimers Presented by An Nguyen





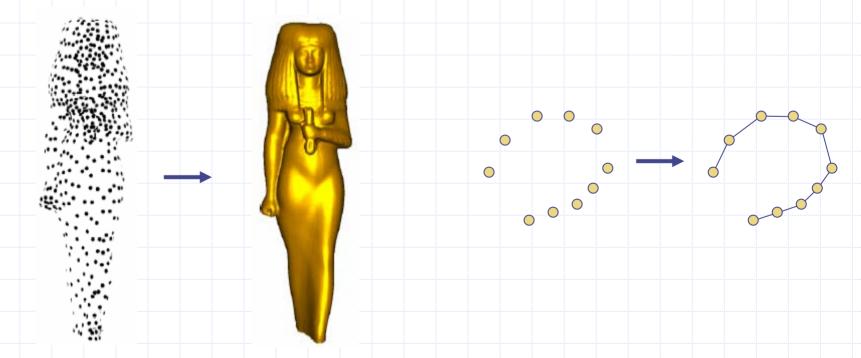
Parameterization

◆ Problem: Given a surface S in R³, find a one-to-one function f: D -> R³, D ⊂ R²
such that the image of D is S.



Surface Reconstruction

Problem: Given a set of unorganized points, approximate the underlying surface

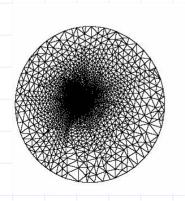


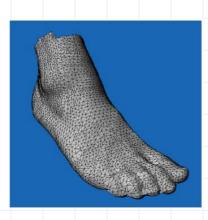
Related Works

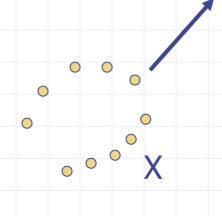
- Surface reconstruction
 - Delaunay based
 - Voronoi based
 - Implicit methods
- Parameterization for organized point set

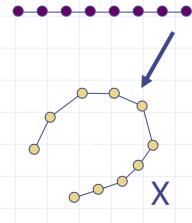
Basic Idea

- Given $X = (x_1, x_2, ..., x_N)$ in \mathbb{R}^3 , compute $U = (u_1, u_2, ..., u_N)$ in \mathbb{R}^2
- Triangulate U
- Obtain both a triangulation and a parameterization for X





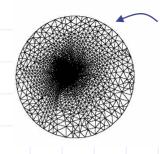


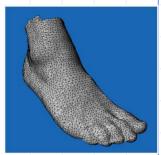


Computing U

- Assumptions
 - X are samples from a 2D patch
 - Points on the boundary of X are known
- Desirable property
 - Points closed by in U are closed by in X

Convex Constraints





◆ If x_j's are neighbors of x_i then we require u_i to be a strictly convex combination of u_i's

$$u_i = \sum_{j \in N_i} \lambda_{ij} u_j, \text{ where } \lambda_{ij} > \text{0 and } \sum_{j \in N_i} \lambda_{ij} = 1$$

- Boundary condition: map boundary of X to points on a unit circle
- Solve resulting linear system A u = b
 - Use Bi-CGSTAB iterative method...

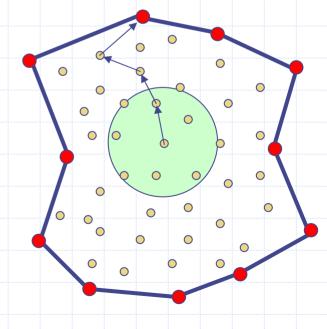
Issues

- ◆Is the linear system A u = b solvable?
- How to select neighbors for a point?
- What λ_{ii} to use?

Solvability of $\mathbf{A} \mathbf{u} = \mathbf{b}$

- Always solvable under a mild condition
 - Neighborhoods are large enough so that all points are boundary connected

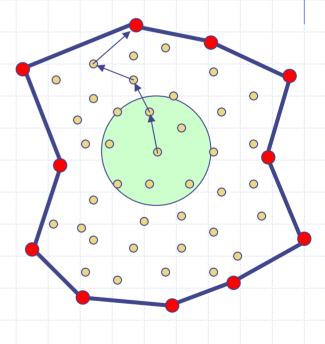
Neighborhoods should not be too large...



Why Solvable?

- System is decomposable, solving for x and y separately
- A is diagonally dominated, but not strictly dominated
- Maximum value of **u** is on the boundary
- Minimum value of **u** is on the boundary
- When A u = 0, u is 0 on the boundary

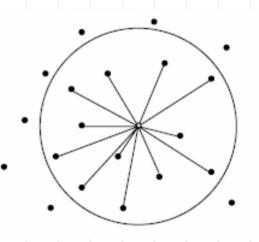
$$u_i = \sum_{j \in N_i} \lambda_{ij} u_j$$



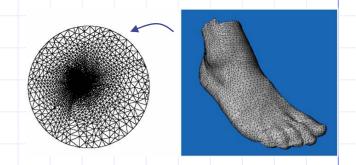
Neighborhoods and Weights

- Ball neighborhoods
 - Radius is fixed

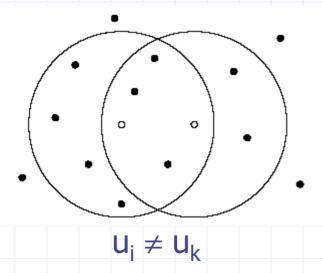
- Weights
 - Uniform weights
 - Reciprocal distance weights
 - Shape preserving weights

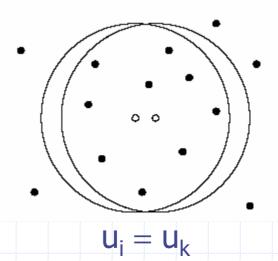


Uniform Weights



- lacktriangledown Uniform weights: $\lambda_{ij} = 1/d_i$ (minimizing $\sum\limits_{0<||x_i-x_j||< r}||u_i-u_j||^2$)
- Thm: if $N_i \cup \{i\} = N_k \cup \{k\}$ then $u_i = u_k$





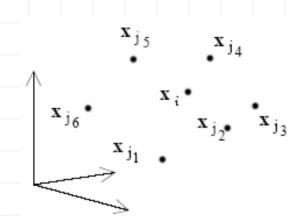
Reciprocal Distance Weights

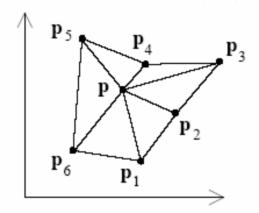
$$\lambda_{ij} = \frac{1}{||x_j - x_i||} / \sum_{k \in N_i} \frac{1}{||x_k - x_i||}$$

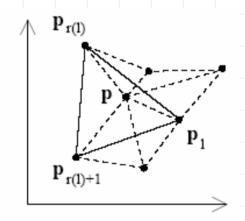
$$= \mathsf{Minimizing} \quad \sum_{0 < ||x_i - x_j|| < r} \frac{||u_i - u_j||^2}{||x_i - x_j||}$$

- Cord length parameterization for curves
- Distinct parameter points
- Well-behaved triangulation

Shape Preserving Weights







$$\mathbf{p} = \sum_{k=1}^{d_i} \mu_{k,l} \mathbf{p}_k, \qquad \sum_{k=1}^{d_i} \mu_{k,l} = 1, \qquad \mu_{k,l} \ge 0.$$

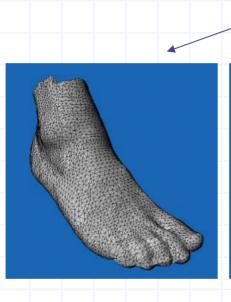
$$\lambda_{i,j_k} = \frac{1}{d_i} \sum_{l=1}^{d_i} \mu_{k,l}, \quad k = 1, \dots, d_i$$

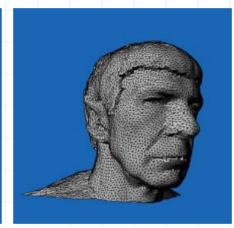
$$\mathbf{p} = \sum_{k=1}^{d_i} \lambda_{i,j_k} \mathbf{p}_k, \qquad \sum_{k=1}^{d_i} \lambda_{i,j_k} = 1$$

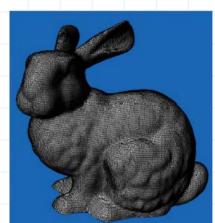
Identifying Boundary

- Use natural boundary (given as part of the data)
- Choose a boundary manually
- Compute boundary
 - Identify boundary points
 - Ordering boundary points: curve reconstruction

Experiments



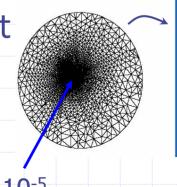




Data set	N	$x \dim$	y dim	$z \dim$	r
Foot	5092	98.7	245	203	9.0
Spock	9508	0.69	0.80	0.68	0.03
Bunny	30571	0.16	0.15	0.12	0.003

Finding Parameter Points

- Uniform weight is bad
 - Foot: 5092 points ->5091 distinct points
 - Bunny: 30571 -> 30568
 - Should not be used
- Reciprocal distance & shape preserving weights
 - All parameter points are distinct
 - Considerable distortion



Neighbor Size & CPU Usage

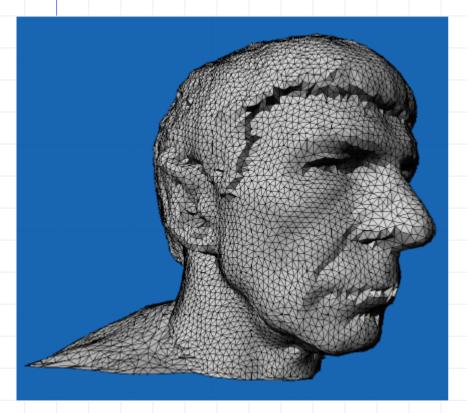
Reciprocal distance weights

Data set	$\min_i N_i $	$\max_i N_i $	Num. iterations	CPU time
Foot	6	27	137/150	2.08/2.30
Spock	3	29	180/170	6.81/6.36
Bunny	4	24	466/406	52.71/45.92

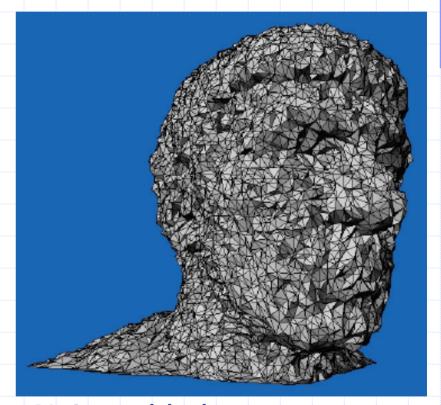
Shape preserving weights

Data set	$\min_i N_i $	$\max_i N_i $	Num. iterations	CPU time
Foot	3	9	230/240	0.84/0.87
Spock	3	9	303/286	4.52/4.45
Bunny	3	9	635/589	40.44/37.57

Effect of Noise

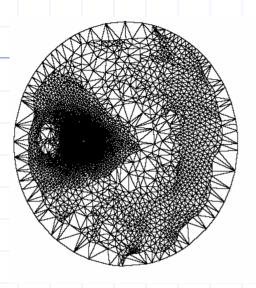


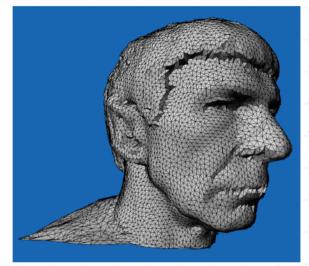
No noise



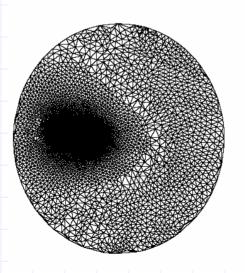
Noise added Reciprocal distance weight

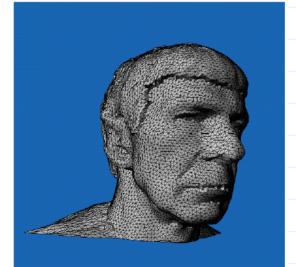
Mesh





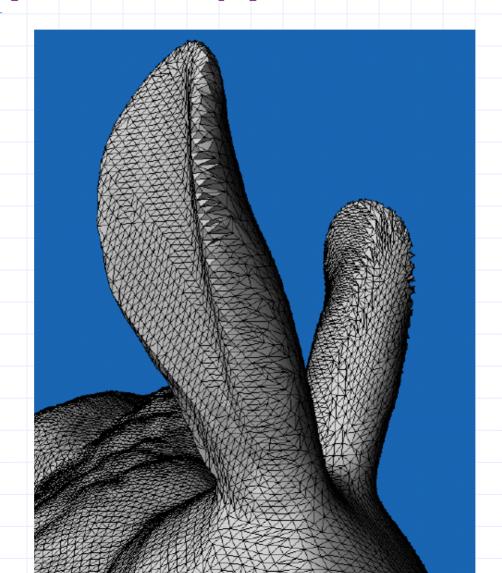
Reciprocal distance weights





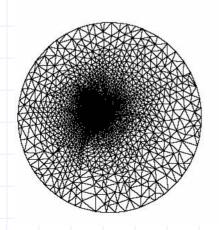
Shape preserving weights

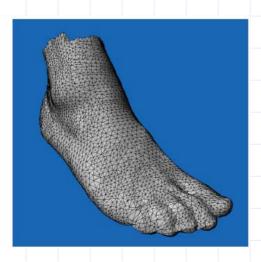
Mesh (Close Up)



Summary

- Simple, fast, and robust method
- Obtain both a parameterization and a surface reconstruction





Thank You!