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Abstract. The flow complex was introduced recently
as a data structure on a finite number of points in R,
The flow complex is a two dimensional simplicial com-
plex that turned out to be useful for modeling appli-
cations like surface reconstruction. In order to apply
the flow complex to tasks in bio-geometric modeling
an extension to weighted points is needed. Here we
report on an algorithm to compute the weighted flow
complex, its implementation and two applications in
bio-geometric modeling.
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1 Introduction

In [9, 10] we introduced the flow complex as a
data structure on finite point sets in R® and ap-
plied it successfully to the problem of surface re-
construction. The flow complex is a cell complex
where each cell can be triangulated. It is closely
related to the Delaunay triangulation of the same
point set. In fact, our efficient algorithm to com-
pute the flow complex is based on the Delaunay
triangulation. But neither complex is a subcom-
plex of the other.

Inspired by the work of Edelsbrunner et al. [6]
we want to apply the flow complex also for
tasks in bio-geometric modeling. In bio-geometry
molecules are often modeled as a union of balls
or positively weighted points. That is, the in-
put that we have to structure is a finite set of
weighted points in contrast to unweighted points
that we structure in the flow complex. Hence to
apply the flow complex to bio-geometric mod-
eling an extension of its definition to weighted
points is necessary. It turns out that the defi-
nition can be extended quite easily to capture
also the weighted case. But this is not true for
the algorithm to compute the flow complex. The
reason is that the structure of the 1- and 2-cells
of the weighted flow complex can be much more
complicated than their counterparts in the un-
weighted flow complex. This is due to the fact
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that not every weighted point corresponds to a
vertex in the weighted flow complex, but still can
have an influence on the structure. That makes
it more complicated to derive the weighted flow
complex from the weighted Delaunay diagram
than it is to derive the unweighted flow diagram
from the Delaunay triangulation.

The purpose of this paper is to show how the
complications caused by introducing weights can
be resolved and to demonstrate that the weighted
flow complex can be a useful data structure for
bio-geometric modeling.

The paper is organized as follows: In the second
section we introduce the weighted flow complex.
Starting point of our study is a distance function
associated with a finite set P of weighted points
in R®. This function assigns to every point in R3
its least power distance to any of the points in P.
It is intimately related to the power diagram of P.
The distance function has a unique direction of
steepest ascent at almost every point in R3. The
points where such a direction does not exist are
the critical points of the distance function, i.e. its
local extrema and saddle points. We study where
a point in R® flows if it always follows the direc-
tion of steepest ascent of the distance function.
It turns out that all points either flow into a crit-
ical point or to infinity. The set of all points that
flow into a certain critical point is called the sta-
ble manifold of this critical point. We call the col-
lection of all stable manifolds the weighted flow
complex induced by P.

In the third section we give an algorithmic
characterization of the 0-, 1- and 2-cells of the
weighted flow complex and implicitly character-
ize its 3-cells. The algorithm to compute the 2-
cells is especially important since it reveals the
nature of the flow complex in general, i.e. the re-
cursive structure of the algorithm can in princi-
ple be generalized to compute higher order cells
in weighted or unweighted flow complexes in
higher dimensions.

In the fourth section we present two appli-
cations of the weighted flow complex in bio-
geometric modeling. First, we use it to decompose
macromolecules into their constituents. Second,
we give an alternative definition of pockets [6],
i.e. essential cavities, in macromolecules based
on the weighted flow complex. Our definition is
not equivalent to the definition in [6]. We think it
is easier to grasp since it avoids some technicali-
ties and directly builds on the intuitive notion of
a pocket.

We conclude the paper with the fifth section
where we discuss our implementations of the
presented algorithms and the results we got in
the aforementioned applications.
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2 Weighted flow complex

A weighted point p in three dimensional Eu-
clidean space is a tuple (z,r) where z € R® de-
notes the point itself and r € R its weight. Every
weighted point gives rise to a distance function
7, : RB® — R, namely the power distance func-
tion. The power distance of a point z € R® from
a weighted point p is defined as

mp(z) = ||z — 2|* = r*.
Let P be a finite set of weighted points. From all
the power distance functions 7,,p € P, together,
we derive a distance function h : R* — R which
assigns to every point in R? its least power dis-
tance to any weighted point in P, i.e.

h(z) = min 7p(x).

We are interested in the gradient vector field of
h and its critical points, i.e. its local minima, lo-
cal maxima and saddle points. Extra care has to
be taken since h is not smooth everywhere. That
is, the ordinary theory of gradients and critical
points does not apply here. Instead we are going
to apply the critical point theory of distance func-
tions that was developed by Grove [11]. To do so
we associate with every point z € R?® the subset
A(z) C P which contains the nearest neighbors
of z in P, namely

A(z) = {pe P : hz) = mp(@)}.

Note that |A(z)| > 1. Let H(z) be the convex hull
of the points in A(z). We call the point z critical if
it is contained in H(z) otherwise we call it regular.
The index of a critical point z is the dimension of
H(z). It can be shown that a critical point z is

a local minimum , if dim H(z) = 0.
a saddle point , ifdim H(z) =1 or 2.
a local maximum , if dim H(z) = 3.

The distance function h and its critical points are
closely related to the power- and the weighted
Delaunay diagram of P. The power diagram of P
is a decomposition of R® into the power cells of
the points in P. The power cell of p € P is given
as

V, = {z eR® : Vg€ Pmy(z) < my(z)},

i.e. it contains all points of R?® that do not have a
larger power distance to p than to any other point
in P. That is, V,, contains exactly the points where
value of h is determined by p. The points that
have the same power distance from two weighted
points in P form a hyperplane. Thus V, is ei-
ther a convex polyhedron or empty. Closed facets
shared by two power cells are called power facets,

closed edges shared by three or more power cells
are called power edges and the points shared by
four or more power cells are called power vertices.
The term power object can denote either a power
cell, facet, edge or vertex. The power diagram of
P is the collection of all power objects. Note that
the distance function h is not smooth at z € R3
if and only if z is contained in a power object of
dimension less than three.

The dual of the power diagram is called
weighted Delaunay diagram. For convenience we
want to refer to weighted Delaunay diagrams just
as Delaunay diagrams in the following. The De-
launay diagram of P is a cell complex that de-
composes the convex hull of the points in P. The
convex hull of four or more points in P defines
a Delaunay cell if the intersection of the corre-
sponding power cells is not empty and there ex-
ists no superset of points with the same prop-
erty. Analogously, the convex hull of three or two
points in P defines a Delaunay face or Delaunay
edge, respectively, if the intersection of their cor-
responding power cells is not empty. Up to de-
generate situations every point in P is a Delau-
nay vertex. The term Delaunay object can denote
either a Delaunay cell, face, edge or vertex.

The definition of Delaunay diagrams provides
us with a duality between power- and Delau-
nay objects. That is, for every d-dimensional
power object, 0 < d < 3, there is a dual (3 —
d)-dimensional Delaunay object and vice versa.
For more information see Aurenhammer [1]. Us-
ing this duality we can characterize the critical
points of the distance function h. It is easy to see
that a local minimum of 4 is a point in P that is
contained in its own power cell. We should note
here that not necessarily ever point in P is con-
tained in its own power cell. If z is either a sad-
dle point or a local maximum then [A(z)| > 1,
i.e. z is contained in a power object of dimension
less than three, and H(z) is a Delaunay object.
In fact, we have the following theorem.

Theorem 1. The critical points of h are the in-
tersection points of power objects and their dual
Delaunay objects. O

So far the critical point theory of distance func-
tions allowed us to characterize the critical points
of h. Now we want to find an analog of the gradi-
ent vector field for the distance function h. Start-
ing point is the observation that at any point the
gradient vector of a smooth function points in the
direction of steepest ascent of the function. As a
replacement for the gradient vector field we want
to assign to every regular point of 4 the unit vec-
tor that points in the direction of steepest ascent
of h. To the critical points we assign the zero vec-
tor.



The direction of steepest ascent of A at every
point z € R?® can be characterized in terms of the
driver d(z) of z.

Driver. For any point z € R® let d(z) be the
point in H(z) closest to z. We call d(z) the driver
of z.

The driver of a point z will be also very impor -
tant for our algorithms where we are going to
make use of the following more explicit charac-
terization that allows to determine drivers effi-
ciently.

Lemma 1. For a point z € R® let V be the lowest
dimensional power object that contains z and let
D be the dual Delaunay object of V. The driver of
z is the point in D closest to x. Furthermore, all
points in the interior of a power object have the
same driver. O

But most importantly knowing the driver of a
point z allows to compute the direction of steep-
est ascent of h at z.

Lemma 2. For any regular point x € R® let d(z) be
the driver of x. The steepest ascent of the distance
Jfunction h at z is in the direction of x — d(z). O

The unit vector field v : R® — R® assigns to
every point in z € R® the direction of the steepest
ascent of h at z, i.e.

x —d(x)
VL) = 77—~
@)= e —dw
This vector field leads us to the main topic of our

study, the flow associated with the vector field v.
The flow associated with v is a function

if z # d(z) and 0 otherwise.

$:[0,00) x R® = R®

such that its right derivative at every point z € R3
satisfies the following equation

Lo 0t,7) = 6o, 7)

tlto t—to

= v((to, 7))

We often refer to the first argument of the flow as
time.

An important notion associated with a flow is
that of a fixpoint. A point z € R? is called a fix-
point of ¢ if ¢, (t) = z for all ¢ > 0. It is not difficult
to see that the fixpoints of ¢ are exactly the crit-
ical points of the distance function h. Because of
this observation we want to refer to a fixpoint of
¢ as a minimum, saddle or maximum if the cor-
responding critical point of the height function is
a minimum, saddle or maximum, respectively.
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With the notion of a fixpoint at hand we can
also give an explicit description of the flow ¢. For
all fixpoints z of ¢ we have of course

o(t,x) =z, t€]0,00).

Otherwise let d(z) be the driver of z and R be the
ray originating at 2 and shooting in the direction
v(z). Let z be the first point on R whose driver
is different from d(z). Note that such a z need
not exist in R? if x is contained in an unbounded
power object. In this case let z be the point at
infinity in the direction of R. We set:

ot z) =z +t-v(z), t €[0,]]z -2
For t > ||z — z|| the flow is given as follows:

ot x) = ¢ (t = |lz — zl| + [|z — 2|, z)
=¢@t—llz—zll, ¢(lz — =l z))

If we fix the second argument of the flow ¢ to
be some point z € R® then we get the orbit or flow
line of z, i.e. a function

¢z 1 [0,00) = B 4 (2, 7).

The orbit describes the motion of z under the flow
¢. One can show that the orbits of regular points
are piecewise linear curves.

The flow line of a regular point either connects
it with some fixpoint of ¢ or it leaves any compact
subset of R? in finite time. For every fixpoint = of
¢ we collect all points in R?® that flow into z and
call the resulting set S(z) the stable manifold of
z, i.e.

S(z) = {yeR? : Jim ¢y (t) = z}.

Up to degeneracies the stable manifolds of the
fixpoints of ¢ build a three dimensional cell com-
plex. We call this cell complex the weighted flow
complex.

3 The cells of the weighted flow
complex

In this section we have a closer look on the cells
of the weighted flow complex. These cells are the
stable manifolds of fixpoints of the flow derived
from the unit vector field induced by a set of
weighted points. It turns out that the index of a
fixpoint, i.e. the index of the corresponding crit-
ical point of the distance function, gives the di-
mension of its stable manifold.
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O-cells

From Theorem 1 we know that the local min-
ima of the flow are weighted points that are con-
tained in their dual power cell. In contrast to un-
weighted case not every weighted point is con-
tained in its dual power cell. It can even happen
that the dual power cell of a weighted point is
empty. But it is algorithmically easy to check if a
weighted point is contained in its dual power cell
provided one has already computed the power-
and the Delaunay diagram.

As one expects from a local minimum z no
point besides z itself flows into it. That is, the sta-
ble manifold of z contains just z itself. The stable
manifolds of the local minima are the O-cells of
the weighted flow complex. Thus the O-cells of
the weighted flow complex are a subset of the set
of weighted points.

1-cells

Up to degeneracies the stable manifolds of the
index 1 saddle points are the 1-cells of the flow
complex. In fact, we can prove the following
lemma.

Lemma 3. Let x be an index 1 saddle of ¢. If the
stable manifold S(z) of = does not contain a point
on a power edge then the closure of S(z) is a sim-
ple piecewise linear curve whose endpoints are lo-
cal minima of ¢. O

Note that the situations where S(z) does con-
tain a point on a power edge are really degenerate
in the sense that such a situation is not stable
under small perturbations of the weighted points
that determine ¢.

Probably the easiest way to describe the stable
manifold of an index 1 saddle point is to give an
algorithm to compute it. For the description of
the algorithm we assume that the power- and
the Delaunay diagram of P have already been
computed such that we can query them.

ONECELL( Index-1-saddle z )

V,E:=0

vw := Delaunay edge that contains =z.
F := {zv,zw}

while F # () do

choose yd € F; F :=F — {yd}.

y' := first intersection point of the segment
from y to d with a power facet f that
intersects yd in only one point;
or d if such a point does not exist.

V=Vuly'l; E:=EU{yy'}

ify' #d do

dd' := Delaunay edge dual to f.
F:=Fu{yd}

O Uk WN -

O © N

11 end if
12 end while

The algorithm ONECELL stores the vertices of
the piecewise linear curve which is the stable
manifold of the index 1 saddle point z in a set
V. The edges of this curve are stored in a set E.
In line 1 both sets sets are initialized with the
empty set. From Theorem 1 we know that the in-
dex 1 saddle point z is the intersection point of a
Delaunay edge vw with its dual power facet. We
compute this Delaunay edge in line 2 and initial-
ize in line 3 a set F' with the two line segments
zv and zw that connect z with the endpoints of
the Delaunay edge. We will always maintain the
invariant that the second endpoint of a line seg-
ment stored in F' is a Delaunay vertex. Lines 4
and 12 enclose the main loop of the algorithm.
While the set F' is not empty we choose in line 5
a line segment yd € F' and remove it from F. We
know from Lemma 1 that the driver along a line
segment can only change at the boundary of a
power object. In line 6 we determine the point y’
where the driver along the line segment yd might
change. In line 7 we include this point in our ver-
tex set V and the edge yy' in the edge set E. If ¢’
equals d then we have reached a local minimum
of the flow. That is, the stable manifold of z ends
here. Otherwise we have to determine the driver
of the point y’. This driver is the endpoint d' of
the Delaunay edge dd' dual to the power facet f.
In line 10 we include the line segment y'd’ into F
for further processing.

Note that the algorithm ONECELL does not
treat the degenerate case. We have shown in [8]
for flow diagrams in two dimensions how to deal
explicitly with degenerate situations. In our im-
plementation we use explicit perturbations.

The description of the algorithm ONECELL
shows that the stable manifold of an index 1 sad-
dle point in general is a polygonal arc with many
vertices. That is in contrast to the unweighted
case where the stable manifolds of index 1 sad-
dles are exactly the Gabriel edges, i.e. straight
line segments. In fact, one can show that the sta-
ble manifold of an index 1 saddle point can have
up to O(|P]) vertices.

2-cells

For the 2-cells of the flow complex we have a
lemma very similar to Lemma 3. This lemma
states that up to degeneracies the stable mani-
folds of the index 2 saddle points are the 2-cells
of the flow complex.

Lemma 4. Let x be an index 2 saddle of ¢. If the
stable manifold S(x) of x does not contain a power
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Fig. 1. On the left a set of positively weighted points in
R? shown as balls. On the right: The two local minima
and the saddle point of the point set from the left.

vertex then the closure of S(z) is a piecewise lin-
ear surface with boundary. The boundary of this
surface is made up from 1-cells. O

As for the 1-cells the degenerate situation that
S(z) does contain a power vertex is not stable un-
der small perturbations of the point set P.

Again we want to turn to an algorithm to
describe the 2-cells explicitly. We assume that
the power- and the Delaunay diagram of P have
already been computed.

TwWOCELL( Index-2-saddle z )
1 F:=0
2 INFLOWEDGE(x)
3 return F

The algorithm TwOCELL initializes in line 1
a set F' that is going to store all the triangles
that will make up the stable manifold S(z) of the
index 2 saddle z. The set F' is a global variable
that can also be accessed by the subroutines
INFLOWEDGE and INFLOWFACET. In line 2 the
algorithm just calls a subroutine INFLOWEDGE
which we are going to describe next.

INFLOWEDGE( Point-on-a-power-edge v )
1 f:= Delaunay facet dual to the power edge
that contains v.

2 for each Delaunay edge dd’' incident to f
whose endpoints lie on different
sides of its dual power facet g do

3 s := intersection of the triangle vdd' with

the power facet g.
4 w := endpoint of s different from v.
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5 INFLOWFACET(v, w,d)

6 INFLOWFACET(v, w,d")

7 if w is not a saddle of index 1 do
8 INFLOWEDGE(w)

9 end if

10 end for

The subroutine INFLOWEDGE recursively calls
(and is called by) another subroutine INFLOW-
FACET which reads in pseudocode as follows.

INFLOWFACET( Point v, Point v', Driver d )

1 c¢:= power cell dual to d.

2 p:= intersection of ¢ with triangle vv'd

3 F:=FU{p}

4 if d is not a local minimum do

5 for each power facet f incident to ¢ that
is intersected by the triangle
vv'd in a line segment
ww' # vv' do

6 dd' := Delaunay edge dual to f.
7 INFLOWFACET((w,w’,d"))
8 end for
9 for each power edge e incident to ¢ that
is intersected by the triangle
vv'd in a point w # v,v' do
10 if w is not a saddle of index 1 do
11 INFLOWEDGE(w)
12 end if
13 end for
14 end if

We are now going to describe the subroutines
INFLOWEDGE and INFLOWFACET in detail.

The subroutine INFLOWEDGE computes the set
of points that flow into a point v which has to be
contained in a power edge. See Figure 2 for an
illustration.

Fig. 2. Geometric objects that occur in the definition of
the subroutine INFLOWEDGE
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All the drivers of the points that flow into v are
contained in the Delaunay facet f dual to the
power edge that contains v. In line 1 we compute
this Delaunay facet. Only a Delaunay edge dd’
incident to f whose endpoints d and d' lie on
different sides of its dual power facet g can yield
a two dimensional flow into ». That is, the edge
dd' contains a driver that drives the points on a
certain line segment s into v, but all the points
that flow into this line segment s eventually also
flow into v. The line segment s is the intersection
of the triangle vdd’ with the power facet g. We
compute the line segment s in line 3 inside the
loop enclosed by the lines 2 and 10 which iter-
ates over all such Delaunay edges dd'. Let w be
the second endpoint of s besides v. That is, w is
the point on s farthest away from v. We compute
w in line 4. The flow into the line segment s is
either driven by d or d' or it flows into s via w.
The first case is handled by the recursive calls
of the subroutine INFLOWFACET in lines 5 and
6. The second case is handled by the recursive
call of INFLOWEDGE in line 8 provided w is
not an index 1 saddle point. In the latter case
we have already reached the boundary of the
stable manifold S(z) of the index 2 saddle point z.

The subroutine INFLOWEDGE computes the set
of points that are driven by a Delaunay vertex s
into a line segment vv'. The line segment vy’ has
to be contained in a power facet. See Figure 3 for
an illustration.

Fig. 3. Geometric objects that occur in the definition of
the subroutine INFLOWFACET

Let ¢ be the power cell dual to d. All the points
in the intersection of ¢ with the triangle vv'd flow
into the segment vv'. In line 1 we determine the
power cell ¢ and in line 2 its intersection p with
the triangle vv'd. We add p or a triangulation of
it to F in line 3. If d is a local minimum of the
flow then p is exactly the triangle vv'd and no
other points flow into vv'. Otherwise more points

flow into vv'. These points can only flow into vv’
through the intersection of the boundary of ¢ with
the triangle vv'd. This intersection can be decom-
posed into a collection of line segments on power
facets and points on power edges. Since we as-
sume non-degeneracy the triangle vv'd cannot in-
tersect the boundary of ¢ in a power vertex. As
for the computation of the 1-cells in our imple-
mentation we deal with degeneracies by explicitly
perturbing the point set P. The line segments are
the intersections of the triangle vv'd with power
facets f in the boundary of the power cell c. We
take care of these line segments ww’' in the loop
enclosed by the lines 5 and 8 by calling INFLOW-
FACET recursively with input (w,w’,d') in line 7.
To do so we have determined d' in line 6 as the
second endpoint of the Delaunay edge dd' of a
power facet f incident to the power cell ¢. In the
loop enclosed by the lines 9 and 11 we take care
of the points w in the intersection of the trian-
gle vv'd with power edges in the boundary of the
power cell c. If w is not an index 1 saddle point
we call the INFLOWEDGE recursively with w as
its argument. Otherwise, i.e. w is an index 1 sad-
dle point, we have already reached the boundary
of the stable manifold S(z) of the index 2 saddle
point z.

Fig. 4. On the left: A 2-cell of the weighted flow com-
plex. On the right: The 2-skeleton of a weighted flow
complex

3-cells

We are not going to compute the 3-cells of
the flow complex explicitly but only indirectly
through the simplicial complex made up from all
O-, 1- and 2-cells. Lets call this complex the 2-
skeleton of the flow complex. With similar tech-
niques as in the unweighted case one can prove
the following theorem.

Theorem 2. In case that there are no degenera-
cies the stable manifolds of the local maxima of a



flow ¢ are exactly the bounded regions of the 2-
skeleton of the _flow complex. O

That is, the 3-cells of the flow complex are ex-
actly the stable manifolds of the local maxima of
the flow ¢.

4 Applications in bio-geometric
modeling

In this section we are going to demonstrate how
the weighted flow complex can be applied in mod-
eling certain properties of macromolecules. To
do so we need at first a geometric model of the
molecule at hand. A natural model is a union of
balls in R® where each ball in the union repre-
sents an atom of the molecule. Such models are
called space filling models [5, 12]. A ball is char-
acterized by a pair (z,r) € R x[0, 00), where z € R?
denotes the center of the ball and r denotes its
radius. That is, a ball can be seen as a weighted
point with positive weight. In space filling mod-
els the balls are centered at the locations of the
corresponding atoms. Usually one gets these lo-
cations from X-ray diffraction of the crystallized
protein. The two most popular space filling mod-
els differ in the radii they assign to the balls.

(1) In the van der Waals model the radius of a
ball is the van der Waals radius of the corre-
sponding atom.

(2) In the solvent accessible model the radius of
a ball is the van der Waals radius of the cor-
responding atom plus the radius of some sol-
vent molecule also modeled as a ball. That is,
the balls in the solvent accessible model are
always larger than the corresponding balls
in the van der Waals model. The solvent
is frequently taken to be a water molecule,
modeled as a ball with radius radius 1.4 A
(Angstrom).

We want to discuss two applications. The first
application aims for decomposing a molecule.
Macromolecules are often a collection of pro-
teins that are only loosely coupled. We want to
use the 1-skeleton of the weighted flow complex
to decompose a macromolecule in these con-
stituents. In the second application we are go-
ing to rephrase the concept of pockets in macro-
molecules as developed by Edelsbrunner et al. [6]
in terms of the 2-skeleton of the weighted flow
complex.

In the following we assume that we are given
a space filling model of macromolecule as in-
put as a set P of positively weighted points. Our
approach can handle both types of space fill-
ing models as input, but the solvent accessible
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Fig.5. Space filling models of some Neurotoxin pro-
tein. On the the left: Van der Waals model. On the
right: Solvent accessible model.

seems to be more reasonable from a chemical
perspective. The points in P model the atoms of
the macromolecule and their weights the radii of
these atoms. We say that a point 2 is contained
in a space filling model if z is contained in the
union of balls that correspond to the points in P.
We derive both the distance function h and the
flow ¢ from the point set P.

Decomposing macromolecules

When we try to decompose a macromolecule in
its constituents we essentially try to predict the
bonds between the atoms of the molecule. There
should not exist bonds between the different con-
stituents of the macromolecule. Bader [2] has de-
veloped a theory based on the gradient vector
field of the charge density to predict bonds. He
writes in his book,

The topology of p, the charge density, as
displayed in the global properties of its
gradient vector field, yields a faithful map-
ping of the chemical concepts of atoms,
bonds, and structure.

The global properties mentioned in this citation
are for example the critical points of the charge
density. Bonds in this theory are represented as
index 2 saddle points. If we assume that the dis-
tance function h approximates (—p), i.e. the nega-
tive of the charge density, to some extent then we
should be able to derive an approximation of the
bond structure from the index 1 saddle points of
h.

The collection of all 1-cells of the weighted flow
complex, i.e. the collection of the stable mani-
folds of the index 1 saddle points, forms the 1-
skeleton of the flow complex. One can show that
the 1-skeleton is connected. That is, we cannot
decompose a macromolecule by directly using
the 1-skeleton of the flow complex induced by P.
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Instead we are going to use a filtration of the 1-
skeleton.

The distance function h of course also takes
values at the index 1 saddle points. We assign
these values to the corresponding 1-cells of the
weighted flow complex. Let S be the subset of
the 1-skeleton that contains all 1-cells whose as-
signed value is smaller than or equal to a. Since
we have

sx c 8P ifa < B,

these sets gives us a filtration of the 1-skeleton.

We found that setting a to -8 A (Angstrom)
decomposes many macromolecules in its con-
stituents if the input was a solvent accessible
model with solvent radius 1.4 A. See Figure 6
for an example. If the input was a van der Waals
model a value of -1.2 A works well.

Fig.6. Decomposition of a Rhinovirus into con-
stituents. One constituent is highlighted.

Pockets in macromolecules

As we mentioned earlier pockets were intro-
duced in [6] to model essential cavities in macro-
molecules. Their definition is based on a space
filling model of the molecule. Again let P be the
set of positively weighted points that model the
atoms in the space filling model. We define a void
as a compact connected region in the comple-
ment of the space filling model inside the con-
vex hull of P, i.e. compact regions in the convex
hull of P not occupied by the balls that model
the atoms. If we let the weights of the points in P
grow new voids are created and existing ones get
destroyed. Finally all voids get destroyed. In [6]

the following growth model for the weight r of a
point (z,7) was chosen:

r(t) = Vr2+t forallt >0

The weights are now a function of time. See Fig-
ure 7 for two snapshots of such a growth process
for a set of weighted points in the plane. Note that
the growth process does not change the power-
and the Delaunay diagram.
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Fig. 7. On the left: A space filling model of a molecule
made up from six atoms in two dimensions. The atoms
of this molecule do not define a void. On the right: If
we grow the disks a void emerges which gets destroyed
if we grow the disks further. The point at z is a maxi-
mum, i.e. at z another void which was created earlier
has already been destroyed.

While the weights grow a void shrinks until
it finally consists of only a single point before
it vanishes. For reasons that will become obvi-
ous later we call these points positive maxima.
We group positive maxima together if they can
be connected by a path in the complement of the
space filling model inside the convex hull of P,
i.e. in the intersection of the convex hull of P
with the complement of the space occupied by
the balls that model the atoms. Essentially, these
groups of positive maxima define a pocket. Edels-
brunner et al. assign a shape to a pocket. Our
approach to assign a shape to a pocket is based
on the weighted flow complex induced by P. It is
closely related to the definition of voids and posi-
tive maxima as we have presented them here, but
puts these definitions in the context of a more
general theory.

We partition the set of critical points of the flow
induced by the balls in P into two sets.

We partition the set of critical points of the flow
induced by the balls in P into two sets. The first
set contains all critical points that are contained
in the space filling model of the molecule. The
critical points in the second set are all critical
points not contained in the first set, i.e. they re-



Fig.8. On the left: The critical points of the flow in-
duced by the points from Figure 7. The power diagram
of the points is shown with dashed lines and the De-
launay diagram with solid lines. The local maxima are
denoted as @, the saddles as ® and the local minima
as ©. Note that two of the maxima are at positions
where voids get destroyed if we grow the disks. On the
right: The 1-skeleton of the corresponding weighted
flow complex.

side outside the space filling model. From the def-
inition of the distance function 4 it follows that h
takes non-positive values on the first set of criti-
cal points and positive values on the second set.
That is why we call the critical points from the
first set negative and the points from the second
set positive. The positive maxima that we used
when we introduced pockets are exactly positive
maxima as defined here. For a formal definition
of pockets we introduce the restricted flow com-
plex as the subcomplex of the flow complex that
contains all cells that correspond to positive crit-
ical points. See Figure 9 for an example.

Fig. 9. On the left: An example of a restricted flow com-
plex. This complex contains the stable manifolds of two
saddle points ® and two local maxima . It defines one
pocket. At both maxima voids get destroyed if we grow
the disks. On the right: The boundary (light blue) of
the pocket on the left contains the stable manifolds of
three saddles ©. The mouth (gray) of the same pocket
is the stable manifold of one saddle.
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From the restricted flow complex we directly
derive our definition of a pocket.

Pocket. A pocket K is a maximal connected
component of the restricted flow complex, i.e.
the component is connected and there is no
larger connected component in the restricted
flow complex that contains it. Thus a pocket is a
collection of cells corresponding to some subset
of positive critical points.

To visualize pockets we make use of the cell
structure of the weighted flow complex. We call
a negative critical point a boundary critical point
of a pocket K if its corresponding cell in the
weighted flow complex is contained in the bound-
ary of a cell that corresponds to a positive critical
point in K. Note that the cells that correspond to
boundary critical points all have to be contained
in the 2-skeleton of the weighted flow complex.
Instead of visualizing a pocket directly we will vi-
sualize its boundary, i.e. the complex made up
from the cells corresponding to its boundary crit-
ical points. See Figure 9 for an example.

One can distinguish three types of pockets ac-
cording to their number of openings to the out-
side of the protein. The outside is defined as the
stable manifold of a virtual maximum at infinity,
i.e. the closure of the set of all points that flow
to infinity under the flow ¢ induced by P. We call
a positive critical point an opening critical point if
its stable manifold is contained in the boundary
of the stable manifold of the maximum at infinity.
We call a maximal connected component in the
subcomplex of the restricted flow complex that
is build by the cells corresponding to the open-
ing critical points a mouth. We use the number of
mouths of a pocket to classify pockets. A pocket
is called,

(1) a void, if it is not incident to any mouth.
A void is an unaccessible cavity, i.e. solvent
molecules from outside the protein cannot
enter a void. Voids sometimes have a stabi-
lizing functionality for a protein.

(2) a normal pocket, if it is incident to exactly one
mouth.

(8) a tunnel, if it is incident to more than one
mouth. Proteins who function as an ion pump
typically contain a large tunnel.

5 Implementation and results

We implemented the algorithms ONECELL and
TwoOCELL using C++ and the Computational Ge-
ometry Algorithms Library CGAL [4] which pro-
vides fast and robust weighted Delaunay trian-
gulations in three dimensions through its regular
triangulation package.



10 Joachim Giesen Matthias John

We tested our implementations on protein
datasets that we retrieved from the Protein Data
bank [3]. All tests were performed on a 480
Mhz Sun Ultra Sparc II. Screenshots of some of
the computed results can be found in Figures 6
and 10. We used Geomview [7] for the rendering
of the models. All data were computed from sol-
vent accessible models of the molecules.

In Table 1 we summarize additional data of the
shown molecules. It is interesting to note that in
our experiments the runtime per atom is almost
constant, i.e. here it seems to be independent of
the total number of atoms in the model.

| Protein  [pdb key| Atoms | Time |ms/Atoms|
NEUROTOXIN | 1nxb 543 0.8 1.47
GRAMICIDIN lalz 850 1.7 2.00
OXYGEN 1mbd 1666 2.8 1.68

1XTHROMBIN | 1ppb 2819 4.9 1.74
RHINOVIRUS | 4rhv 6542 | 11.6 1.77
2XTHROMBIN | laho 6901 12.0 1.74
RECEPTOR | a7gg 8580 | 15.2 1.77
ALPHA-TOXIN| 7ahl | 22778 | 41.5 1.82
NITROGENASE| 1n2c | 24432 | 43.5 1.78

Table 1. Basic data for several molecules. With the pdb
key molecule data can be retrieved from the Protein
Data bank [3]. The timings are given in seconds and
the processing rate is given in milliseconds per atom.
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(@ A decomposition
of Alpha-toxin. Differ-
ent protein chains are
colored differently.

(d) A tunnel in Alpha-
toxin. No mouths are
shown.

(g Two Thrombin pro-
teins bind at their active
sites which gives rise
to a tunnel. The three
mouths of the tunnel are
emphasized.

(b) A sideview of (a). Only
one protein chain is em-
phasized.

(e) A sideview of the tun-
nel shown in (d).

(h) A normal pocket in
Neurotoxin. The mouth
is emphasized.

() A zoom into the
decomposition of Nitro-
genase. On the top,
two nicely separated ATP
molecules.

() The tunnel shown in
(d) and supporting nor-
mal pockets. No mouths
are shown.

(i) A space filling model
of Neurotoxin. Atoms
at the normal pocket
shown in (h) are high-
lighted.

Fig. 10. Decompositions and pockets of some macromolecules
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