Registration without ICP

Helmut Pottmann, Stefan Leopoldseder, Michael Hofer
Institute of Geometry, Vienna University of Technology
Wiedner Hauptstrafie 8-10/113, A-1040 Wien
Email: pottmann@geometrie.tuwien.ac.at, stefan@geometrie.tuwien.ac.at,
hofer@geometrie.tuwien.ac.at

Version: 31-Jan-2002

We present a new approach to the geometric alignment of a point cloud to a surface
and to related registration problems. Based on a careful geometric study of the ICP
algorithm, we provide an alternative concept which relies on instantaneous kinematics
and on the geometry of the squared distance function to a surface.

Key Words: registration, instantaneous kinematics, squared distance function

1. INTRODUCTION

We investigate the following registration problem. Suppose that we have a
CAD model from which a workpiece has been produced. This workpiece has been
scanned with some 3D measurement device (laser range scanning, light sectioning,
...) resulting in a 3D data point cloud from the surface of this workpiece. Thereby,
the CAD model shall describe the ‘ideal’ shape of the object and will be available in
a coordinate system that is different to that of the 3D data point set. For the goal of
shape inspection it is of interest to find the optimal Euclidean motion (translation
and rotation) that aligns, or registers, the point cloud to the CAD model. This
makes it possible to check the given workpiece for manufacturing errors and to
visualize and classify the deviations.

A well-known standard algorithm to solve such a registration problem is the
iterative closest point (ICP) algorithm of Besl and McKay [1], which we will briefly
summarize in Sec. 1.1. For an overview of the recent literature on this topic we
refer to [5, 6, 12]. ICP is an iterative algorithm which in each step applies a motion
to the current position of the point cloud. The motion is such that the points move
in a least squares sense as close as possible to their closest points on the model
shape. In Sec. 2, we will study those cases where ICP works in one single step and
see that these are very rare. In Sec. 3, we investigate the squared distance function
d? to a surface and see that ICP actually works with local quadratic approximants
to d? which are very good for points far away from the surface, but not good at all
for points close to the surface. In Sec. 4, we review basic facts from instantaneous
kinematics. Our alternative approach to the registration problem, which is based
on instantaneous kinematics and local quadratic approximants to d2, is presented in
Sec. 5. The new method shows a faster convergence behavior and is also applicable
for other types of registration and positioning problems. Finally, in Sec. 6 we outline
the many directions for future research which are opened by the present concept.

1.1. The ICP Algorithm

The iterative closest point (ICP) algorithm has been introduced by Chen and
Medioni [4] and Besl and McKay [1]. An excellent summary with new results on
the acceleration of the ICP algorithm has been given by Rusinkiewicz and Levoy
[12], who also suggest that iterative corresponding point is a better expansion for
the abbreviation ICP than the original iterative closest point.

The point set (‘data’ shape) is rigidly moved (registered, positioned) to be in
best alignment with the CAD model (‘model’ shape). This is done iteratively:
In the first step of each iteration, for every data point the closest point on the
surface (‘normal footpoint’) of the CAD model is computed. This is the most
time consuming part of the algorithm and has to be implemented efficiently. As
a result of this first step one obtains a point sequence ¥ = (y1,y2,...) of closest
model shape points to the data point sequence X = (x1,Xa,...). Each point x;
corresponds to the point y; with the same index.

In the second step of each iteration the rigid motion m is computed such that
the moved data points m(x;) are closest to their corresponding points y;, where
the objective function to be minimized is

N
F:Z||m(xi) —Yz'||2- (1)

This least squares problem can be solved explicitly, see e.g. [1, 8]. The translational
part of m brings the center of mass of X to the center of mass of Y. The rotational
part of m can be obtained as the unit eigenvector that corresponds to the maximum
eigenvalue of a symmetric 4 x 4 matrix. The solution eigenvector is nothing but
the unit quaternion description of the rotational part of m.

After this second step the positions of the data points are updated via Xjew =
m(Xo1a). Now step 1 and step 2 are repeated, always using the updated data points,
until the change in the mean-square error falls below a preset threshold. Since the
value of the objective function decreases both in step 1 and 2, the ICP algorithm
always converges monotonically to a local minimum.

2. WHERE CAN ICP WORK IN ONE ITERATION?

For a better understanding of the ICP approach it seems to be important to ask
the question whether it is possible that the algorithm returns the correct solution
in a single step. So we ask whether there exists a surface & and a dense point
cloud {x;, i =1,..., N}, such that the transformation of this cloud to the cloud of
closest points {y;, i =1,..., N} on ® is a rigid body motion. We assume a smooth
surface and so the closest points are normal footpoints on .

Let the surface be given in parametric form x(u,v). We apply a displacement to
it, which can always be seen as a helical motion. In an adapted coordinate system
a helical motion has the form

2 =xcosp—ysing, y =xsing +ycoso, 2 =2+ ho. (2)

The case of a pure translation and pure rotation are included with ¢ = 0 and h = 0,
respectively. The displacement (2) maps the surface (z(u,v),y(u,v),z(u,v)) to a
surface (z'(u,v),y'(u,v),2'(u,v)), which we use instead of the dense point cloud.
We now have to ask whether it is possible that all displacement vectors x' — x

are orthogonal to ®. Thus, x’ — x has to be orthogonal to the tangent vector
Xy = 0%/0u,

(xl —X) Xy = (€08 ¢ — 1) (274 + yyu) + sin ¢(zy, — T4y) + hdz, =0, (3)
and it has to be orthogonal to the tangent vector x,, = 0x/0v,
(XI —Xx) - Xy = (cos ¢ — 1) (@@ + yyy) + sin d(zyy — Toy) + hdzy = 0. (4)

These equations have to be satisfied for all v and v and thus we may differen-
tiate them. Differentiating (3) with respect to v and (4) with respect to u, and
subtracting those equations yields the necessary condition

(ToYu — Tuyy)sing = 0. (5)

Depending on which factor in this product vanishes, we distinguish two cases.

Case A. If sing = 0, the rotational angle is 0 or w. In the first subcase,
¢ = 0, all displacement vectors are parallel. At all its points the surface ® must
be orthogonal to this direction and hence it is a plane orthogonal to it. We have
encountered the simplest special case where ICP works in a single step: Surface
® is a plane and the point cloud lies in a parallel position to it. In the second
subcase, ¢ = m, the displacement consists of a reflection at the z-axis and, if h # 0,
a translation parallel to it. Then, all displacement chords, connecting points x with
x', intersect the z-axis. These lines have to be orthogonal to the surface ®. It is
well known that those surfaces whose normals meet a fixed line G are rotational
surfaces with axis G, see [11]. Since the normals of a rotational surface are normals
of the meridian curves in the planes through the axis G, the problem is now reduced
to a planar one. We are looking for a planar curve p, such that a reflection of its
points p(t) in G and successive translation parallel to G yields a point p’(¢) which
lies on the curve normal at p(t). This means that the so-called subnormal distances
on (G are constant for the curve p, namely equal to half of the translational distance
h (Fig. 1).

FIG. 1 Rotational surface with parabola as meridian curve.

Let us first assume h # 0. It is well-known that the curve then must be a
parabola with axis G. Hence, the surface ® is a paraboloid of revolution. However,

if we have a point cloud in this very special coaxial position with respect to ®, ICP
still would not yield the result in a single iteration. It would not match the points
p’(t) to p(t), but to the closer normal footpoints p*(¢) on the same side of the axis
G where p'(t) is lying (see Fig. 1). ICP in one iteration would not be sufficient for
a small patch of ® either, since in any neighborhood of p(¢) there are surface points
that are closer to p’(¢) than p(¢) is.

In the case h = 0, the normals of the profile curve p are orthogonal to G, and
therefore p is a line parallel to A and thus ® is a right circular cylinder with axis
A. The displaced version @' is obtained by reflection at A and thus, as a whole,
agrees with ®. Here, the point cloud would already lie on the cylinder, and this is
not a relevant case for our investigation.

Case B. Now we assume that x,y, — £y, = 0. This equation expresses the
fact that the third coordinate of the normal vector x, X x, is vanishing. Hence,
all normals of the surface ® are parallel to the zy-plane. Therefore ® is a general
cylinder surface with rulings parallel to the z-axis. The displacement vectors x' —x
are orthogonal to ®, i.e., parallel to the zy-plane, which yields h = 0 in (2). The
displacement is a pure rotation about the z-axis.

We have to figure out the cross sections of the cylinder ®, say the one in the
plane z = 0. The planar problem which still needs to be solved is the following: Is
there a curve ¢ such that for a rotation about the origin o the displacement vectors
are orthogonal to ¢?

For a rotation, see Fig. 2(a), the displacement vectors ¢’(t) —c(t) form a constant
angle « to the radial lines through the center o of rotation. Since the displacement

FIG. 2 Logarithmic spiral ¢ for v = 25° (a), and v = 70° (b).

vectors also have to be orthogonal to ¢, the curve ¢ has to intersect the radial pencil
of lines under fixed angle v = m/2 — a. If this angle is 7/2, we have a circle. It is
also well known that otherwise we get a logarithmic spiral ¢ with polar equation

r(u) = aeP®, p=coty. (6)

In case of a circle as base curve, the surface ® is a right circular cylinder, which we
have already realized as not relevant for our investigation. Thus, the only nontrivial
situation in case B is that of a cylinder with a logarithmic spiral as basis and a

displaced point cloud in a very special position: If the cylinder ® has a spiral basis
with parameter p, the point cloud must be rotated about the ‘spiral eye ruling’ of
® by an angle 2y with p = cot~. Note, that for v > 29.98837 .. .° the curve point
closest to c'(t) is no longer c¢(t) but a second normal footpoint c¢*(t), see Fig. 2(b).
We summarize our results as follows.

THEOREM 1. The only surfaces ® for which a displaced copy ®' exists such that
the mapping of all points x' € ®' to the closest points x € ® is a rigid body motion,
are planes and cylinders with a logarithmic spiral as basis.

But even in these two cases the point cloud needs to be in a very special position
such that ICP works in one iteration step. Thus, we will avoid matching to the
closest points. In fact we will show that it is not necessary at all to work with
corresponding points.

3. LOCAL QUADRATIC APPROXIMANTS OF THE SQUARED DISTANCE
FUNCTION TO CURVES AND SURFACES

The algorithm we are proposing heavily relies on local quadratic approximants
to the squared distance function of the surface ® to which the point cloud should be
registered. For a derivation and proofs of the following results we refer the reader to
[10]. For a better understanding, we first present local quadratic approximants to
planar curves and then generalize the obtained results to surfaces and space curves.

3.1. Local Quadratic Approximants of the Squared Distance Function
to a Planar Curve

In Euclidean 3-space R, we consider a planar C? curve c(t) with parameteri-
zation (c1(t),c2(t),0). The Frenet frame at a curve point ¢(t) consists of the unit
tangent vector e; = ¢/||€|| and the normal vector e2(t). The two vectors form a
right-handed Cartesian system in the plane. With e3 = e; x e2 = (0,0,1) this
system is extended to a Cartesian system ¥ in R®. Coordinates with respect to X
are denoted by (z1,z2,z3). The system ¥ depends on ¢ and shall have the curve
point c(t) as origin. At least locally, the shortest distance of a point p = (0,d,0)
on the zs-axis (curve normal) is its zo-coordinate d. For each ¢, locally the graph
points (0,d, d?) of the squared distance function form a parabola p in the normal
plane of c(t) (see Fig. 3). This parabola can be considered fixed in X. Varying ¢,
the positions of the parabola in the original system generate a moulding surface ¥
(cf. [10]) with parameterization

x(t,d) = c(t) + des(t) + d*es. (7

The generated surface ¥ is in general not the graph surface I' of the squared distance
function to the given planar curve c(t), but ' is contained in ¥. If a vertical
line through (z,y,0) intersects ¥ in several points, the one with the smallest z-
coordinate lies on the graph surface I'.

When we now study local quadratic (Taylor) approximants of T, we do not
consider the global effects of . We give formulae for local approximants which work
on the local distance function. This means that in determining d for neighboring
points of p we are only locally varying the footpoint of the normal to the curve
c(t). In other words, at points of the medial axis we work with just one sheet of
the surface U.

FIG. 3 Planar curve c(t) with Frenet frame ey, e;. The graph of the squared
distance function d? to this curve is part of the moulding surface ¥ generated by
the parabola p.

Consider a point p in 7 whose coordinates in the Frenet frame at the normal
footpoint c(tg) are (0,d). The curvature center k(¢g) at c(to) has coordinates (0, p).
Here, p is the inverse curvature 1/ and thus has the same sign as the curvature,
which depends on the orientation of the curve.

PROPOSITION 1. In the Frenet frame, the second order Taylor approzimant Fy
of the squared distance function d? at (0,d) is given by

Fy(w1,22) = 3 + 3. (8)

d
d—p
For a derivation of this result and a discussion of the different types of the graph
surface 'y of Fy we refer the reader to [10].

3.2. Local Quadratic Approximants of the Squared Distance Function
to a Surface

Consider an oriented surface s(u,v) with a unit normal vector field n(u,v) =
e3(u,v). At each point s(u,v), we have a local right-handed Cartesian system whose
first two vectors e, es are determined by the principal curvature directions. The
latter are not uniquely determined at an umbilical point. There, we can take any
two orthogonal tangent vectors e, es. We will refer to the thereby defined frame as
principal frame X(u,v). Let k; be the (signed) principal curvature to the principal
curvature direction e;, i = 1,2, and let p; = 1/k;. Then, the two principal curvature
centers at the considered surface point s(u,v) are expressed in ¥ as k; = (0,0, p;).
The quadratic approximant Fj to the squared distance function d? at p = (0,0,d)
is the following.

PROPOSITION 2. The second order Taylor approximant of the squared distance
function to a surface at a point p is expressed in the principal frame at the normal

footpoint via
d d
F A = 2 242 9
(71,72, 23) d—p1$1+ d_p2$2+$3 9)

Let us look at two important special cases.

e For d = 0 we obtain

Fo(.’L'l,:IIQ,."L'g) = a:'% (10)

This means that the second order approximant to d? at a surface point p
is the same for the surface ® and for its tangent plane at p. Thus, if we
are close to the surface, the squared distance function to the tangent plane
at the closest point to the surface is a very good approximant. At least at
first sight it is surprising that the tangent plane, which is just a first order
approximant, yields a second order approximant when we are considering the
squared distance function d?, to surface and tangent plane, respectively.

e For d = oo we obtain
Foo(21,22,23) = o + 23 + 3. (11)
This is the squared distance to the footpoint on the surface.

We see that distances to normal footpoints, which are used in ICP, are just good
if we are in a greater distance to the surface ®. In the vicinity of the surface,
it is much better to use other local quadratic approximants. The simplest one is
the squared distance to the tangent plane at the normal footpoint. Registration
typically starts with a rough guess of the correct position obtained for example via
principal component analysis, matching special surface features or taking into ac-
count some preknowledge on surface and point cloud. Hence, for optimal alignment
we typically need several iteration steps in the vicinity of the surface. This is the
reason why we are not minimizing distances to the normal footpoints.

3.3. Local Quadratic Approximants of the Squared Distance Function
to a Space Curve

In case that boundary curves of surfaces are involved, it is also useful to know
about local quadratic approximants of the squared distance function d? to a space
curve. Given a point p in R®, the shortest distance to a C? space curve c(t)
occurs along a normal of the curve or at a boundary point of it. The latter case is
trivial and thus we exclude it. At the normal footpoint ¢(ty) we form a Cartesian
system with e; as tangent vector and es in direction of the vector p — ¢(tp). This
canonical frame can be viewed as limit case of the principal frame for surfaces,
when interpreting the curve as a pipe surface with vanishing radius. By this limit
process, we can also show the following result.

PROPOSITION 3. The second order Taylor approximant of the squared distance
function to a space curve c(t) at a point p is expressed in the canonical frame ¥ at
the normal footpoint via

Fy(z1,22,23) = a:% + :1:% + m% (12)

d—p
Here, (0,0, p1) are the coordinates (in X) of the intersection point of the curvature
azis of c(t) at the footpoint c(to) with the perpendicular line pc(ty) from p to c(t).

4. INSTANTANEOUS KINEMATICS

For the algorithm we propose, some knowledge about kinematics is essential.
Thus, in this section we briefly outline the basic facts we are using later on. Consider
a differentiable one-parameter rigid body motion in Euclidean 3-space. Introducing
Cartesian coordinate systems in the moving system ¥ and in the fixed system Y,
the time dependent position xq(t) of a point x € ¥ in the fixed system is given by

xo(t) = a(t) + M(t)x. (13)

Here, the time dependent orthogonal matrix M (t) represents the spherical compo-
nent of the motion, and a(t) describes the trajectory of the origin of the moving
system. All arising functions shall be C'. By differentiation we get the velocity
vectors. It is well-known that the velocity vector field is linear at any time instant.
More precisely, at any time instant there exist vectors c,¢ such that the velocity
vector v(x) of any point x of the moving body can be computed as

v(x) =¢+c xx. (14)

Note that in this formula all arising vectors are represented in the same system;
this may be the moving or the fixed system. The meaning of c,¢ is as follows: €
represents the velocity vector of the origin, and c is the so-called Darboux vector
(vector of angular velocity).

It is well-known that only very special one-parameter motions have a constant,
i.e., time-independent velocity vector field. These motions are

e A translation with constant velocity (if ¢ = 0)
e A uniform rotation about an axis (if ¢-€ = 0)
e A uniform helical motion (if ¢ - € # 0)

Thus, up to the first differentiation order, any motion agrees locally with one of
these motions. The most general case is that of a uniform helical motion, which
is the superposition of a rotation with constant angular velocity about an axis G
and a translation with constant velocity parallel to G. If the moving body rotates
about an angle a, the translation distance is p-a. The constant factor p is referred
to as pitch of the helical motion. For more details on helical motions and the close
relations to line geometry we refer to [11]. The Pliicker coordinates (g, g) of the
axis G, the pitch p and the angular velocity w are computed from c, ¢ as

C _ Cc —pc c-C
8= 8= T pP=—7 w:”C” (15)
llel] llc]]

o2
Recall that the Pliicker coordinates of a line G consist of a direction vector g and
the moment vector g = p x g, where p represents an arbitrary point on G.

5. REGISTRATION OF A POINT CLOUD TO A CAD MODEL USING
INSTANTANEOUS KINEMATICS AND QUADRATIC APPROXIMANTS
OF THE SQUARED DISTANCE FUNCTION

In the ICP algorithm the data points x; are moved towards their closest points
y; on the model surface ®. Instead of moving x; towards y; we aim at bringing the

points just closer to the surface ®. For this, we employ local quadratic approximants
of the squared distance function to ®. As we have seen in Sec. 3.2, the squared
distance functions to the tangent planes of ® approximate the squared distance
function to ® very well in the vicinity of the surface. The aim is the same as for
ICP. We would like to apply a motion to the point cloud such that the sum f
of squared distances to the model surface becomes minimal. Let us first give an
overview of the proposed algorithm and then study the individual steps in more
detail. The new algorithm iteratively applies the following steps:

1. To each point of the current position of the point cloud, compute the squared
distance function F; of the tangent plane at the point y; € ®, which is closest
to x;. This step is used to quadratically approximate the function f to be
minimized.

2. Compute a velocity vector field, which attaches to each point a velocity vector
v(x;) such that the quadratic function) F;(x; + v(x;)) assumes a minimal
value. This step estimates a motion towards the model surface, but does not
yet represent a Euclidean motion. From the point of view of optimization, we
use a quadratic approximation of f and a linearization of the constraint (i.e.,
displacement by a rigid body motion), but we do not yet fulfil the constraint.

3. From the velocity field we compute a displacement which displaces the points
x; in nearly the same way as the velocity vectors (used for the minimization
in the previous step) would do. In terms of optimization, this is the step
where we project onto the constraint manifold.

The details to the individual steps are as follows.

Step 1. For each data point x; € X determine the nearest point y; of the
surface of the CAD model and determine the tangent plane there. Let n; denote
a unit normal vector of this tangent plane in y;. If y; is no boundary point of the
surface, x; lies on the surface normal in y;, i.e., x; = y; + d;n; with d; denoting the
oriented Fuclidean distance of x; to y;.

In case that y; is a boundary point, one will define n; = (x; — y;)/l|x: — yill,
i.e., n; is orthogonal to the boundary curve in y;, pointing in the direction of x;.
Again we have x; = y; + d;n;.

Note that depending on the application one may reject a data point x; in the
minimization process, if its closest surface point y; lies on the boundary. This is
necessary, for instance, when partial scans of the same object are registered.

Step 2. A linearization of the motion is equivalent to the use of instantaneous
kinematics. The use of instantaneous kinematics for registration appears in other
papers as well (see e.g. [3, 5]), maybe for the first time in [2].

The velocity vector field of an instantaneous helical motion is given by v(x) =
€ + ¢ x x. To each point x; we attach a velocity vector v(x;) = € + ¢ x x;. The
distance of x; + v(x;) to the tangent plane of the parametric surface in the point
y; is given by

di+nz~-(é+cxxi). (16)
Now, minimization of the objective function (which is quadratic in ¢, €)
F(C) = Fle,e) = 3 (di +mi- ¢+ x x0))?, (17)

K3

yields the pair (c,€) that determines the helical motion whose velocity vector field
we are using. The minimization can be solved using a system of linear equations.
For that we rewrite (16) as

di+ni-é+(xixni)-c = di+(Xani,ni) (;) = di-l-AiC, (18)

where 4; and C := (c,&)” are one-by-six and six-by-one matrices respectively.
We use this notation to rewrite the objective function (17) as

F(C) = Y (di+AC)

= Y d2+2) dAC+> CTATAC
= D+2B-C+CTAC (19)

where A is a symmetric, in general positive definite six—by—six matrix, B is a column
vector with six entries, and D is just some scalar.
It is well-known that the unique minimum of the quadratic function F(C) solves
the linear system
AC+ B =0. (20)

Remark 1. Instantaneous kinematics as described in Sec. 4 has been used in the
context of reverse engineering of "kinematic surfaces’, i.e., planes, general cylinders,
surfaces of revolution, and helical surfaces (cf. [9, 11]). These surfaces are charac-
terized by the fact that there exists a vector field v(x) = ¢ + € x x such that for
each surface point p the vector v(p) is tangential to the surface in p.

In the context of registration, these kinematic surfaces play a special role as well.
After the registration of a point cloud to such a surface, the point cloud can still be
moved tangentially to the surface without increasing the objective function F(C)
in Equ. (19). Thus, in the special case of kinematic surfaces the linear system
(20) gets ill-conditioned. Whereas the standard ICP algorithm heavily punishes
tangential movement (which slows the convergence behavior), minimizing F(C) in
Equ. (19) does not restrict tangential movement at all.

It is straightforward to combine the functional F'(C) with a functional

FI(C):=) (xi—yi+C+cx &),

i

which describes the sum of squared distances of the points x; + v(x;) to the normal
footpoints y;. Minimizing the quadratic functional F'(C) = F(C) + wF'(C), where
w is a small but positive weight, again leads to the solution of a linear system.

Step 3. Moving each point x; by v(x;), i-e., x; = x; + v(x;), (as we have
assumed for the minimization) would not yield a Euclidean rigid body motion, but
an affine one. Therefore we use the underlying helical motion determined by (¢,)
from which we can calculate axis G and pitch p with equation (15).

We apply a rotation about this axis G through an angle of a = arctan ||c|| and
a translation parallel to G by the distance p - a (see Fig. 4). This motion brings
each point x; to a position x} close to x; + v(x;) which has been used for the
minimization in (17).

10

Using the underlying helical motion is furthermore justified by the fact that for
x; we do not know the exact corresponding point on the surface anyway, we are
moving the point closer to the tangent plane, and we iterate the whole procedure
to find the optimal match.

x; + v(x;)

-l

FIG. 4 New position x} of a point x;.

As a termination criterion for the iteration we use the change in the sum of
squared distances of x; to the surface. We terminate the algorithm if this value
falls below a certain threshold.

ExAMPLE 1. The main application we have in mind is the quality inspection
of industrial products. Here, the goal is to find the best alignment between the
(exact) CAD model of a given workpiece, and a dense point cloud which has been
obtained from the workpiece with a 3D scanning device.

In our example (see Fig. 5) we have generated the point data synthetically and
added Gaussian noise. For reasons of visualization, a transparent surface is fitted to
the point cloud in Fig. 5(a), but this surface is not used in the iterative alignment
procedure. In each iteration step, a helical motion x; — x} (cf. Fig 4) is applied

(a) (b)

FIG. 5 Registration of a point cloud to a surface. Initial position (a) and final
position after 4 iterations (b).

to the data points, and after only four iterations the point cloud reaches its final
position (see Fig. 5(b)).

Compared to the ICP algorithm, our algorithm converges much faster. This
is obvious, since we minimize the distances to the tangent planes of the surface.
Therefore, tangential movement is not restricted, which is especially important in
the final steps of the registration process. Several authors have pointed out this

11

w

N
o
T

—©- Minimization of point-to—plane distances b
—0O- Minimization of point-to—point distances (ICP)

N
T

MS alignment error
=
- w
T T

0.5 B
- o

0 & 5 i s ettt

0 1 2 3 4 5 6 7 8 9 10

Iterations

FIG. 6 Comparison of the convergence rate for minimizing point-to-plane distances
vs. point-to-point distances (ICP).

fact already (see, e.g., [4, 12]). In Fig. 6 the mean squared error of the data points
to the CAD surface after each iteration is given, both for our algorithm and for the
standard ICP algorithm, applied to the example in Fig. 5.

Remark 2. We have described the algorithm in its simplest form. There are
many ways to improve it, and actually many ideas for improvement of ICP and
related registration algorithms (cf., e.g., [12, 13]) work as well. For example, we
will not work in each step with all data points, but just with a random sample.
Of course, more sophisticated sampling methods, e.g. by choosing data points with
a good distribution of estimated normals (cf. [12]), can be applied as well. Fur-
thermore one may reject a chosen data point, e.g., if its distance to the normal
footpoint exceeds some threshold. Moreover, it is straightforward to extend the ob-
jective function (17) to a weighted scheme. There are 3D measurement devices that
supply for each data point a tolerance for the occurring measurement errors. These
can be included in the objective function to downweight outliers. This is especially
important for a precise final alignment, but has less impact on the convergence
speed of the iterative registration algorithm.

The algorithm outlined above is a special case of a more general strategy, where
we use other quadratic approximants of the function f to be minimized. A natural
extension is the use of the second order Taylor approximant, say Fj, to the squared
distance function at the current data point position x;. In view of subsection 3.2, it
is more complicated to compute these F;’s, but the remaining part of the algorithm
is the same. In step 2, we still have to minimize a quadratic function F', and in
step 3 we perform the same position correction.

Working with general Taylor approximants F; is more subtle, however. To make
sure that F' is positive definite, we will use nonnegative quadratic approximants to
d?. One way to compute those has been presented in [10].

6. CONCLUSION AND FUTURE RESEARCH

A geometric analysis of the ICP algorithm reveals the following fact: Using
closest points on the model surface as corresponding points will rarely give fast
convergence. This is so since one step will almost never suffice, and the approxima-
tion of the squared distance function to the model shape with the help of squared
distance functions to surface points does not work well in the vicinity of the sur-
face. As an alternative, we provided a new framework for registration using better
quadratic approximants of the squared distance function and instantaneous kine-

12

matics. Further work has to be done in order to satisfy the practical needs. Here
is a list of some extensions.

Instead of registration with a ridig body motion, we might allow a uniform
scaling, i.e., a similarity. This is a minor change in the presented algorithm,
since the velocity field is still linear and just has one more real parameter o,

v(x) =ox+cC+cxXx (21)

In extension of [10], we have to investigate other quadratic approximants of
the squared distance function to a surface. In particular, we need an efficient
way of computing local quadratic approximants if the model shape is just
given as a point cloud.

Fast registration for industrial inspection requires the development of a spatial
data structure, computed in a preprocessing step from the given model shape,
such that the necessary quadratic approximants can be quickly computed or
retrieved from that structure.

It seems to be interesting to look at a hierarchical representation of the
quadratic approximants of d?, and use it efficiently in the various iteration
steps of the registration procedure.

The use of instantaneous kinematics allows us to extend the idea to the si-
multaneous registration of more than two geometric objects (partial scans).

ACKNOWLEDGMENTS

H. Pottmann is grateful for support by the Institute of Mathematics and Its Applica-

tions at the University of Minnesota; main ideas of the present work could be developed
during a stay at IMA in spring 2001.

REFERENCES

[1] Besl, P. J., McKay, N. D. (1992), A method for registration of 3D shapes,

[2]

[3]

[4]

[5]

[6]

IEEE Trans. Pattern Anal. and Machine Intell. 14, 239-256.

Bourdet, P., Clément, A. (1976), Controlling a complex surface with a 3 axis
measuring machine, Annals of the CIRP 25, 359-361.

Bourdet, P., Clement, A. (1988), A study of optimal-criteria identification
based on the small-displacement screw model, Annals of the CIRP 37, 503—
506.

Chen, Y., Medioni, G. (1992), Object modelling by registration of multiple
range images, Image and Vision Computing 10, 145-155.

Eggert, D. W. Fitzgibbon, A. W. Fisher, R. B. (1998), Simultaneous regis-
tration of multiple range views for use in reverse engineering of CAD models,
Computer Vision and Image Understanding 69, 253-272.

Eggert, D. W., Larusso, A., Fisher, R. B. (1997), Estimating 3-D rigid body
transformations: a comparison of four major algorithms, Machine Vision and
Applications 9, 272-290.

13

[7] Faugeras, O. D. Hebert, M. (1986), The representation, recognition, and lo-
cating of 3-D objects. Int. J. Robotic Res. 5, 27-52.

[8] Horn, B. K. P. (1987), Closed form solution of absolute orientation using unit
quaternions, Journal of the Optical Society A 4, 629-642.

[9] Pottmann, H., Randrup, T. (1998), Rotational and helical surface reconstruc-
tion for reverse engineering. Computing 60, 307-322.

[10] Pottmann, H., Hofer, M. (2002), Geometry of the squared distance function to
curves and surfaces. Technical Report Nr. 90, Institute of Geometry, Vienna
University of Technology.

[11] Pottmann, H., Wallner, J. (2001), Computational Line Geometry, Springer-
Verlag Berlin Heidelberg New York.

[12] Rusinkiewicz, S., Levoy, M. (2001), Efficient variants of the ICP algorithm. in
Proc. 3rd Int. Conf. on 3D Digital Imaging and Modeling, Quebec.

[13] Simon, D.A. (1996), Fast and Accurate Shape-Based Registration, Ph.D. The-
sis, Carnegie Mellon University.

14

