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Surfacereconstructionbasedon a dynamical system

N.N.

Abstract

We presentan efficient algorithm that computesa manifold triangular meshfrom a setof unomganizedsample
pointsin RS. Thealgorithm builds on the observatiormadeby several reseachers that the Gabriel graph of the
samplepointsprovidesa goodsurfacedescription However, this surfacedescriptionis only one-dimensionale
associateheedgesof the Gabriel graphwith index 1 critical pointsof a dynamicalsysteninducedby the sample
points. Exploiting also the information containedin the critical points of index 2 providesa two-dimensional
surfacedescriptionwhich canbe easilyturnedinto a manifold.

1. Intr oduction

Surfacereconstructioris a powverful modelingparadigm.To
createa modelof somesolid in R® one canjust sampleits
surfaceandapply a surfacereconstructioralgorithmto the
sampleHencethetaskin thesurfacereconstructiomproblem
isto transformafinite samplento asurfacemodel. Thereare
several obstaclesa surfacereconstructioralgorithm might
face. The samplecould very large, noisy or to sparsetoo
captureall thefeaturesof thesolid.

The different approachedo the surfacesreconstruction
problemcanbedividedbroadlyinto two classesAlgorithms
in thefirst classprovide implicit suriacemodelswhile theal-
gorithmsin thesecondlassprovide explicit surfacemodels.

An implicit surfacemodelis a function f : R® — R such
thatthe zerosetof f, i.e. f ~1(0), is a surfacethatinterpo-
latesor approximateshe sample The signeddistancefunc-
tion wasintroducedto this respectby Hoppeet al. 11. This
functionor smoothedsariantsof it areusedfrequentlyin the
implicit approacho surfacereconstructiorf 1415, For ren-
deringpurposesnimplicit surfaceis likely to betranformed
into atriangularmesh.

Most of the explicit approache$o surfacereocnstruction
computea triangularmeshdirectly 1.2 3.4 10, Herewe want
to have a closerlook on two of thesealgorithms.

Thealgorithmof MenclandMuller 1213 consistf three
stepsin thefirst stepthe Euclidearminimumspanningree
of the samplepointsis computedThenthis treeis extended
to the so called surfacedescriptiongraph.Finally the con-
toursof the surfacedescriptiongrapharefilled with trian-
gles.

The Euclideanminimum spanningtree of the sample
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pointsis a subgraphof the Gabriel graphon the sameset
of points. Two samplepoints p and g are connectecby a
Gabrieledgeif theopenball with diameterj|p— g|| thathas
p andq in its boundarydoesnot containary samplepoint.
The samplepointstogethemwith the Gabrieledgesbuild the
Gabrielgraph.

The algorithm of Atteneand Spagnuold alsobuilds on
the obsenation that the Gabriel graph and the Euclidean
minimum spanningtree provide a fairly good surface de-
scription. It removes Delaunaytetrahedrafrom the three-
dimensionalDelaunaytriangulationif they are removable.
The property to be removable is definedvia the Gabriel
graphof the samplepoints.

The approachwe aregoingto presenin this paperis ex-
plicit. But it alsomakes useof a distancefunction. As the
signeddistancefunction this function is definedusing the
Voronoi diagramof the samplepoints. But in contrastto
the signeddistancefunction we cannotuse only the zero
setof the function. Insteadwe are going to studyall of its
critical points, i.e. local minima, local maximaand saddle
points.We provide aone-to-oneorrespondendeetweerthe
Gabrieledgesandsomecritical pointsof the distancefunc-
tion. It turnsoutthatthe Gabrieledgescorrespondo thein-
dex 1 saddlepointsof this function.We furthershav thatthe
saddlesof index 2 correspondo surfaceswith boundaries.
Theseboundariexonsistsof Gabrieledges.The collection
of all thesesurfacegogethemwith the Gabrieledgess a sim-
plicial complex. This comple provides a two-dimensional
surfacedescriptionthoughnot a manifoldin general Build-
ing on resultsof Edelsbrunneion critical points we shav
how to transformthe comple into a manifold.

The main contrikutions of this paperare new insightsin
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a natural distancefunction associatedvith a set of sam-
ple points. Theseinsightsleadto an efficient androbustal-
gorithm for surface reconstructionWe have implemented
the algorithmand evaluatedits applicability The algorithm
turnedout to be very robust. It is able to cope even with
noisy and/orundersamplediatawhereother explicit algo-
rithms leave unpleasanholes.Our insightsshouldbe valu-
ablealsofor othertasksin samplebasednodelinglike sam-
ple decimationor featureextraction.

The paperis organizedasfollows. In the secondsection
we introducea distancefunction andits critical points.The
distancefunctionis definedvia a setof samplepoints.The
dependengc on the samplepoints makesit suitablefor our
usein surfacereconstructionln the samesectionwe intro-
ducethe notions of Voronoi diagramand Delaunaytrian-
gulationof a setof samplepoints. The third sectionintro-
ducesa dynamicalsystemassociatedvith the heightfunc-
tion andthe samplepoints. This dynamicalsystemis used
in the fourth sectionto definethe flow complex. The flow
comple is a simplicial complex on the samplepointsthat
almostprovidesa reconstructiorof a solid if the pointsare
sampledrom thesurfaceof this solid. In thefifth sectionwe
transformthe flow complex into the reducedflow complex
by usingthe conceptsof pairing and cancellation.The re-
ducedflow complex providesuswith the reconstructiorwe
arelooking for. In the sixth sectionwe reporton animple-
mentationof our reconstructioralgorithmandpresensome
experimentakesults.

2. Distancefunction and critical points

Let P be a set of unomganizedpoints sampledfrom the
surfaceof a solid embeddedn R®. The distancefunction
h:R® — R assigngo every pointin RS its leastdistanceto
ary of thesamplepoints,i.e.

h(x) = min||x— pl|-
(x) = min|jx—pll

In contrasto thesigneddistancefunctionwhichwasstudied
by 11 in the contet of surfacereconstructiorwe cannotuse
only the zerosetof h to determinethe reconstructionThe
zerosetof his thesetP of samplepoints.Thisis alsotheset
of local minimaof h, i.e. the pointsin P arecritical points
of h. We are interestedin all critical points of h. Besides
the minimathesearethe maximaandsaddlepoints.We will
shaw later that the maximaand saddlepoints can also be
computedeasily

The distancefunction h is closelyrelatedto the Voronoi
diagramof the setP of samplepoints.The Voronoidiagram
of P is a cell decompositiorof R® in corvex polytopes Ev-
ery\Voronoicell correspondso exactly onesamplepointand
containsall pointsof R® thatdo not have a smallerdistance
to ary othersamplepoint,i.e.theVoronoicell corresponding
to p € Pis givenasfollows

Vp = {xeR®:VgeP |x—p| <|x—d|}.

ThusVp containsexactly the pointswherethe valueof h is
determinedy p. Closedfacetssharedby two Voronoicells
are called Voronoi facets closededgessharedby threeor
more Voronoi cells are called Voronoi edgesand the points
sharedby four or moreVoronoicellsarecalledVoronoiver
tices The term Voronoi objectcandenoteeithera Voronoi
cell, facet,edgeor vertex. The Voronoi diagramis the col-
lection of all Voronoi objects. See Figure 1 for a two-
dimensionakxampleof a Voronoidiagram.

We are going to determinethe critical points of the dis-
tancefunction h from the Voronoidiagramof P andits dual
diagram.The latter diagramis called Delaunay diagram
The Delaunaydiagramof P is a cell comple that decom-
poseghe convex hull of the pointsin P. The corvex hull of
four or morepointsin P definesa Delaunaycell if theinter-
sectionof the corresponding/oronoicellsis notemptyand
thereexistsno supersedf pointsin P with thesameproperty
Analogously the corvex hull of threeor two pointsdefines
a Delaunayface or Delaunayedg, respectiely, if the in-
tersectiorof their corresponding/oronoicellsis notempty
Every pointin P is a Delaunayvertex. The term Delaunay
objectcandenoteeithera Delaunaycell, face,edgeor ver
tex.

Figure 1: Left: A setof samplepointsin the planeand its
\oronoidiagram. Right: TheDelaunaydiagram of the same
setof points.

Note that from the definition of Delaunayobjectswe
have a duality betweenVoronoi-and Delaunayobjects.See
Figure 1 for an example.Thatis, for every d-dimensional
Voronoi object, 0 < d < 3, there is a dual (3 — d)-
dimensionaDelaunayobjectandvice versa.Usingthis du-
ality we cancharacterizehe critical pointsof h. In factthe
following theoremcanbe proven, seealsoFigure2:

Theorem 1 The critical points of h are the intersection
pointsof Voronoiobjectsandtheir dual Delaunayobjects.

We assigrto every critical pointof h anindex. Thisindex
is the dimensionof the Delaunayobjectusedin the charac-
terizationof critical pointsby Theoreml. We have already
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seenthat the minima of h arethe pointsin P. Sinceevery

pointin P is a Delaunayvertex thesepointsaretheintersec-
tion pointsof VoronoicellsandtheirdualDelaunayvertices.
Thusthe minima arethe critical pointsof index 0. It turns
outthatthemaximaarethecritical pointsof index 3. There-

mainingcritical pointsaresaddlepointsof index eitherl or

2. Saddlepointsof index 1 areintersectiorpointsof Voronoi

facetsandDelaunayedgesThe latter edgesare exactly the

GabrieledgesSeeFigure2 for anexample.

Figure 2: Left: The minima e, saddles® and maxima®
of the heightfunctionassociatedvith the samplefrom Fig-
ure 1. Right: TheGabrielgraphof thesamesetof points.The
Gabriel edgesare highlighted.

3. A dynamical system

A smoothfunction f : R® — R givesriseto asmoothvector
field onR3, namelythe gradientvectorfieldthatmapsevery
point x of RS to the gradientof f atx. The gradientvector
field in turn givesriseto anordinarydifferentialequation

%(p(t,x) = grad f(@(t,x)).

Thetheoryof ordinarydifferentialequationsstatesthatthis
equationcanbeintegrated.The solutionof the equationis a
mapping
P:Rx R® ]Rs,

which hastwo remarkableproperties first ¢(0,x) = x and
secondp(t, ¢(s, X)) = @t + s,X). Thefirst parameteof ¢ can
be interpretedastime andthe mappingitself tells how the
points of R3 move in time. The two conditionsstatethat,
first the pointshave not moved at time zeroandsecondary
pointx movesin timet + sto thepointwherethepoint¢(s, x)
movesin times. Thefunction@is calledadynamicalsystem
orflowonR3. A pointxwith @(x,t) = xfor all t € R is called
a fixpoint of the dynamicalsystem.The fixpoints of ¢ are
exactly the critical pointsof f. Fixing the secondparameter
of @ providesfor every x € R® amappinggx : R — R3,t —
@(t,x), whichis calledthe orbit of x. The orbit describeshe
motionof thepointxin time. Thismotionalwaysfollowsthe
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directionof steepesascentf the function f, i.e. the orbits
areintegral curvesto the gradientvectorfield of f.

Thedistancdunctionh definedvia a setof samplepoints
is notasmoothfunction.lIt is only smoothin theinteriorsof
theVoronoicellsof thesamplepoints. Thuswe cannotapply
thetheoryof ordinarydifferentialequationgo geta dynam-
ical systemfrom h. But asin the caseof smoothfunctions
thereis a uniquedirection of steepesascentof h at every
non-critical point of h. Assigningto the critical pointsto h
the zerovector andto every other point of R® the unique
unit vectorof steepesascentgivesriseto a vectorfield on
R3. Notethatthis vectorfield is notsmooth We aregoingto
constructa mapping

©:[0,00) x R® - R3,

suchthatatevery point (t, x) € [0, 00) x R® theright deriva-
tive
_ !
i @LX) =0t x)
tet’ t—t/
existsandis equalto theuniqueunit vectorof steepesascent
atx.

For theconstructiorof thedynamicalsystemyp, whichwe
alsocall aninducedflow, the following definitionturnsout
to be helpful.

Driver. Givenx € R3. Let V be the lowest dimensional
Voronoi object in the Voronoi diagramof a finite set of
sample points P that containsx and let o be the dual
Delaunayobject of V. The driver of x is the point on o
closesto x.

The flow @ inducedby a finite setof samplepointsP is
givenasfollows: For all critical pointsx of thedistancdunc-
tion associatedvith P we set:

o(t,x) =x, forallt € [0,00)

Otherwisdety bethedriver of x andR betheray originating
atx andshootingin thedirectionx—y. Let zbethefirst point
onRwhosedriveris differentfromy. Notethatsuchazneed
notexistin R®. In this caselet z bethe point at infinity. We
set:

X—y
96X =X+ te [0 2= )

Fort > ||z—X|| theflow is givenasfollows:

ot,x) = ot —Illz—x[+lz—xll, x)
= o(t—Illz—xl, e(llz—x, x))

It is not completely obvious, but @ can be shavn to be
well definedon the whole of [0,00) x R3. Furthermore,
thefollowing two propertiesof dynamicalsystemshold for

inducedflows, first @(0,x) = x and secondg(t, ¢(s,x)) =

@t + s,X). Furthermoreasin the smoothcasethe fixpoints
of @ areexactly the critical pointsof h. Thuswe canspeak
of theminima, maximaandsaddlef ¢.
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Figure 3: Left: Someorbits of theflowinducedbythesample
pointsfrom Figure 1. Right: Thetwo regionsthat flowin the
maximaof the height function inducedby the sameset of
points.

4. Flow complex

Theflow inducedby afinite setof samplepointsP describes
how the pointsof R® move in time. For ary pointx € R® the
orbit ¢x describeshis motion.Similarto thesmoothcasehe
orbitsareintegral curvesto thevectorfield of steepesascent
of the distancefunction h. Orbits endin the fixpoints of @,
i.e. in the critical points of h. Given a critical point x of h
we areinterestedn thesetof all pointswhoseorbit endsin
X, i.e. the setof all pointsthatflow into x. This setis called
the stablemanifoldof x. The stablemanifold of a minimum
is easyto determineit is just the minimumitself. In thefol-
lowing we will alsocharacterizéhe stablemanifoldsof the
critical pointswith positive index. Laterwe will usethe sta-
ble manifoldsof a subsebf theindex 2 saddlego designa
surfacereconstructioralgorithm.As aminortechnicaldetail
we shouldmentionthatwe aregoingto dealwith smoothed
versionsof the stablemanifolds.For all practicalpurposes
this meangakingthetopologicalclosure.

Index O critical points. We alreadymentionedthat the
stablemanifoldof alocalminimumconsistonly of themin-
imumitself, i.e. it is asinglepoint.

Index 1 critical points. Anindex 1 saddles theintersec-
tion pointof aDelaunayedgeandits dualVoronoifacet.The
stablemanifold of sucha saddleis the Delaunayedgethat
containsthe saddle.Remembetthat such Delaunayedges
areGabrieledgesandvice versa.Thustheunionof all stable
manifoldsof index 1 saddless the Gabrielgraphof the set
P of all samplepoints.

Index 2 critical points. The stablemanifoldsof index 2
saddlesare piecavise linear surfaces.An index 2 saddles
is theintersectionpoint of a DelaunayfacetF andits dual
Voronoi edgeE. We shav how to constructthe surfaceex-
plicitly. We startby constructinga polygonP whoseinterior
pointsall flow into s. This polygon containss andis con-
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taineditself in F. Under mild assumptiongherearethree
Voronoifacetdncidentto every Voronoiedge We aregoing

to constructa polyline for eachof the threeVoronoifacets
incidentto E. Thesethree polylinestogethermale up the

boundaryof thepolygonP. Thedriversof the Voronoifacets
incidentto E arepointsontheirdualDelaunayedgesThese
Delaunayedgesareall in the boundaryof F. Notethatit is

possiblethatsuchadriver is a saddleof index 1. First, con-
sidera driver d which is not a saddleof index 1. Theline

segmentthat connectsd with s is containedn F andinter

sectgheboundaryof thecorrespondind/oronoifacetin two

points,namelyin sandin asecondgoints’ . Wegetapolyline

from the two segmentsthat connects’ to the two Delaunay
verticesincidentto the Delaunayedgethat containsd. Sec-
ond,if thedriver of the Voronoifacetis a saddleof index 1

we take its dual Delaunayedgeasthe polyline. Thatis, we

getthreepolylinesall containedn F, onefor eachVoronoi
facetincidentto E. Let P bethe polygonwhoseboundaryis

givenby thesepolylines.P is containedn F andall its inte-
rior pointsflow into s. It canbe triangulatedoy connecting
swith the pointss’ andthe Delaunayverticesincidentto F.

Figure4 shaws two examplesof two suchpolygonsP.

Figure 4: Two examplesof polygonsthat are containedin
a Delaunaytriangle that is intersectedby its dual Voronoi
edee in s. Theinterior pointsof thesepolygonsflow into s.
Thepolygonin thefigure ontheright hasoneindex 1 critical
pointonits boundary

Let s’ beapointasconstructedibove for a Voronoifacet
thatis not driven by a saddleof index 1. By constructiors
is containedn a Voronoi edgeE’. Furthermorepy our as-
sumptionit hasto beaninterior pointof E’. We canassume
againthatE’ is incidentto threeVoronoifacets.For oneof
theseVoronoifacetswe have alreadycomputeda polyline.
For the remainingtwo we do it exactly the sameway we
did it above for P. Thuswe have againthreepolylines,one
for eachVoronoi facetincidentto E’. Two of thesepoly-
linesalwaysintersecin acommonDelaunayertex. Thatis,
thethreepolylinestogetherform a polyline which is home-
omorphicto to thecircle St The latter polyline neednot be
containedn a hyperplanebut it canbetriangulatedby con-
nectingthepoints’ with newly computecpointss’ andto the
Delaunayverticesincidentto the Delaunayfacetdualto E'.
Thisgivesusanew triangulatedsurfacepatchwhoseinterior
pointsall flow into s.

We continuewith the abore constructionuntil thereare
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no more points s left for which we have not alreadycon-
structeda surfacepatch.The surfaceof pointsthatflow into

the index 2 saddles is madeup from all the patches By

constructiorthe boundaryof this surfaceconsistof Gabriel
edges,.e. Delaunayedgesthat containan index 1 saddle.
Figure 5 shavs an exampleof the stablemanifold of some
index 2 saddle The stablemanifoldin this exampleis made
up from five surfacepatches.

Figure 5: In this examplethe stablemanifold of s is made
up fromfive surfacepatdes.Notethat the surfacepattes
neednotbe planar

Flow complex.Givenafinite setof pointsin R®. Thesta-
ble flow complex of the point setis given by the simplicial
comple build by the Gabrielgraphandthetriangulatedsur
faceswhosepointsflow into index 2 saddles.

Index 3 critical points. Thecritical pointsof index 3 are
the local maximaof the distancefunction h. We canprove
the following theoremwhich completelycharacterizeshe
stablemanifoldsof thelocal maxima.

Theorem 2 The stablemanifoldsof thelocal maximaof the
distancefunction h associateavith a finite setP of sample
pointsin R? arethe boundedregionsof theflow complex.

Note that analogousstatementsalso hold for critical
pointsof smallerindex, i.e. the boundaryof a stablemani-
fold of anindex d critical point,1 < d < 3, is madeup from
stablemanifoldsof index d — 1 critical points.Thatis, there
existsanicerecursve structure Sofarwe usedthis structure
only to characteriz¢hestablemanifoldsof thelocalmaxima
by stablemanifoldsof index 2 critical points.Laterwe will
usethis structureto transformthe flow comple into amani-
fold.

Anotherobsenrationis thatthestablemanifoldof anindex
d saddleis alwaysd-dimensional.

Theflow comple is at the heartof our reconstructioral-
gorithm. It containsthe essentiainformation of the stable
manifoldsof all critical points.We shav next how to com-
putethetrianglesof theflow complex associateaith afinite
setP of samplepoints. The following algorithmis derived
directly from our characterizatiowf the stablemanifoldsof
index 2 saddles.
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FLowCoMPLEX(P)
1 F=0
2 computethe Voronoi-andDelaunaydiagramof P.
3 computethesetSof index 2 saddles.
4 for eachse Sdo

5 f := Delaunayfacetthatcontainss.
6 Q=0
7 for eachDelaunayedgee incidentto f do
8  Qpush(se))
9 end for
10 while Q#0
11 (v,e) ;== Q.pop
12 u,w := endpointof e.
13 if econtainsasaddleof index 1 do
14 F:=FU{uw}
15 elsedo
16 f := Voronoifacetdualto e.
17 d := driver of theinterior pointsof f.
18 V' :=first pointontherayfromd tov
thatis containedn f.
19 F:=Fu{wuww}
20 f' := Delaunayfacetdualto the Voronoi
edgethatcontains'.
21 for eachedgee’ incidentto f’ besides do
22 Q.push(V,€))
23 endfor
24 endif
25 endwhile
26 endfor
27 returnF

The algorithm FLowCoMPLEX takes a finite set P of
pointsin R® asinput andworks asfollows: In line 1 a set
F thatis usedto storethe trianglesof the flow comple is
initialized with theemptyset.In line 2 the VoronoiandDe-
launaydiagramsof P arecomputed.Theseareusedin line
3 to computetheindex 2 saddleof the flow inducedby P.
Lines4 and26 enclosehemainloop of thealgorithm.In this
loop all smoothedstablemanifoldsof all index 2 saddlesare
computedWhenwe characterizedhesemanifoldswe have
seerthatthey arepiecaviselinearsurfacesBy definitionthe
trianglesof theflow complex arejustthecollectionof all tri-
anglesin suchmanifolds.Theloop goesthroughall saddles
of index 2. In line 5 the Delaunayfacetthatcontainghe sad-
dle sis computedIn line 6 aqueueQ is initialized with the
emptyset.Thisqueuds goingto storetuplesof of pointsand
DelaunayedgesLines 10 and25 encloseheloop in which
the smoothedstablemanifold of s is computed While Q is
notemptywe popits first element(v, e) in line 11.1f the De-
launayedgee with endpointsu andw containsa saddleof
index 1 we insertin line 14 the triangle with cornerpoints
u,v andw into F. Otherwisewe executelines 16 to 18. In
line 17 we computethe driver d of theinterior pointsof the
Voronoifacetf dualto e. It canbeshavn thatall thesepoints
have the the samedriver. In line 18 we determinethe first
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pointV ontheline sgmentfrom d to v thatis containedn

f. In line 19 the trianglesvWu andw/w areinsertedinto F.

In lines20to 23 the Delaunayfacetdualto the Voronoiedge
that containsV' is computedandfor every edge€ incident
to f’ besides thetuples(V, €) arepushedo Q. Finally F

is returnedn line 27.

5. Pairing and cancellation

Edelsbrunne? introducedheconcepbf pairingandcancel-
lation of critical pointsfor surfacesimplificationin aslightly

different context. Here we adopthis ideasto tranformthe
flow comple associatedvith a sampleP into a manifold.
Thereforewe male useof the recusve structureof the sta-
ble manifoldsof the critical points.Thatis, we wantto use
thefactthatthe boundaryof a stablemanifold of anindex d

critical point, 1 < d < 3, is madeup from stablemanifolds
of index d — 1 critical points.

We exploit the recursve structureof stablemanifoldsby
building pairs of index 2 saddlepoints and local maxima.
An index 2 saddlepointa andalocal maximumbuild a pair
(a, b) if thestablemanifoldof ais containedn theboundary
of the stablemanifold of b. Note thata saddleof index 2 is
always paired with two maximaone of which might be a
maximumatinfinity.

Next we aregoingto describehow to cancelpairsof in-
dex 2 saddlesaindlocalmaxima.Let (a, b) besuchapairand
let ¢ bethe secondnaximumpairedwith a. Cancellatiorof
(a,b) doesnot just meanits removal. The ideabehindthe
cancellationof (a,b) is to memge the stablemanifoldsof b
andc. Thesemanifoldssharethe stablemanifold of a asa
commonboundary In the cancellationprocesswe remove
the commonboundaryof thesestablemanifoldsand con-
sidertheresultingcell asthe new stablemanifold of c. The
index 2 saddledifferentfrom a thatwerepairedwith b but
not with ¢ now have to be pairedwith ¢ sincetheir stable
manifoldsarenow containedn thenew boundaryof thesta-
ble manifold of c. Insteadof pair we will usethetermvalid
pair in the following. A pair of anindex 2 saddlea anda
local maximumb is valid if the stablemanifold of sis con-
tainedin the boundaryof the stablemanifold of b. We keep
the notion of valid pairs also after cancellationfor meiged
stablemanifolds of local maxima.Cancellationof a valid
pair (a, b) means:

1. For every index 2 saddles suchthat(s,b) is a valid pair
declare(s, b) invalid. If also(s,c) is valid declareit in-
valid. Otherwisedeclare(s, ¢) valid.

2. Remae thestablemanifold of thesaddlea from theflow
comple inducedby the samplepoints.

Figure 6 shavs an one-dimensionagxamplefor pairing
andcancellationThebasicideasremainvalid in onedimen-
sion, but sincethereareno saddlepointsin onedimension
local minimaandlocal maximaarepairedin this example.

Figure6: Left: Anone-dimensionatéxamplefor a pairing of
critical pointsaccouing to the heightfunctionh. In this ex-
amplelocal minimaandlocal maximaare paired. Thelocal
minimag are at positionsa andd andthelocal maximad
are at positionsb andc. Thevalid pairs in this configuation
are (a,b), (a,c) and(d, b). Right: Thecritical pointsfromaf-
ter the cancellationof the local minimumat positiona with
thelocal maximumat positiona. Thepairs (a, b), (a, c) and
(d,b) are declaed invalid and the pair (d,a) is declaed
valid instead.

Of courseit makesno senseo cancelvalid pairsin arbi-
trary ordernor doesit make senseo cancelevery valid pair.
Sincewe wantto usethecancellatiorprocesgo tranformthe
flow complex of somesampleP into a manifold we cancel
avalid pair (a,b) only if thereexists a Gabrieledgein the
boundaryof the stablemanifoldof a whichis incidentto the
stablemanifoldsof at leastthreemaxima.Thatis, we stop
cancellingvalid pairsif thereis novalid pair left thatfulfills
this condition.

The orderin which we cancelvalid pairsis given by dif-
ferenceof the distancefunction evaluatedat the two points
in the pair. Let (a,b) a valid pair and h the distancefunc-
tion inducedby P. If h(a) andh(b) do notdiffer muchthen
the local maximumb is relatively closeto the boundaryof
its stablemanifold. The deepera local maximumlies in its
stablemanifold the betterthis stablemanifold captureghe
shapeaepresentely thesample Thuswe alwayscancelthe
valid pair (a,b) on which the heightfunction h differs the
leastprovidedthis pair fulfills the topologicalconstraintde-
scribedabore, i.e. h(b) — h(a) is minimal amongall valid
pairsthatfulfill thetopologyconstraint.

Reducedflow complex.Givenaflow comple. Wetrans-
form this flow comple by cancellingvalid pairsaslong as
thisis possible Thecomplex we getafterall thesecancella-
tionsis calledthereducedlow complex.

Thereducedlow comple is almostthereconstructionve
arelookingfor. In factwe madethefollowing obseration.

Obsewation 1 Thereducedlow comple of awell sampled
solidis the suriaceof somesolid.
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However, it canhappenthat the surfacemeetsitself in a
point or curve. Figure 7 shavs a sucha locally non-regyular
situation.It canberesohed by cuttingthe surfacealongthe
curwe, i.e. doublingthe curve andmoving the two resulting
capsa little apart. Resolvingthesenon-reularitiesfinally
providesuswith atopologicallycorrectsurfacewhichis our
reconstruction.

Figure7: Left: Asurfacethatmeetstselfin a curve(line sey-
ment)is shown.Right: Thesamesurfaceafter cuttingalong
thecurve

The procedurene have describedabove directly leadsto
analgorithmto computethereducedlow complex. Herewe
give apseudocodérmulationof this algorithm.

REDUCEDFLOWCOMPLEX (P)

computetheflow complex F of P.

2 computethesetSof index 2 saddles.

3 computethesetV of valid pairsof F.

4 while existspairin V thatfulfills thetopology
constraindo

[EN

5 (a,b) := pairin V thatfulfills thetopology
constrainandminimizesthe
distancevaluedifference.

6 remove thestablemanifoldof a from F.

7  c:=localmaximumsuchthat(a,c) € V andc # b.

8 for eachse Sdo

9 if (s,b) eV do

10 V=V -{(sb)}
11 if (s,c) €V do

12 V=V —{(sc)}
13 else

14 V:=VU{(sc)}
15 endif

16 endif

17 endfor

18 endwhile

19 returnF

The algorithm REDUCEDFLOWCOMPLEX takes a finite
setP of pointsin R® asinputandworksasfollows: In line 1
we computethe stableflow comple F of P, e.g.by calling
thealgorithmFLowCoMmPLEX. In lines2 and3 we compute
the setS of index 2 saddlesandthe setV of valid pairs,re-
spectvely. The main loop of the algorithmis enclosedby
lines4 and18. In thisloop we cancela valid pair aslong as
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thereexists a pair in F that fulfills the topology constraint
thatwe introducedabove. In line 5 we determinethe valid

pair (a, b) thatwe will cancel.In line 6 we remove the sta-
ble manifoldof a from F. The secondocal maximumc that
formsavalid pairtogethemwith a is determinedn line 7. In

theloop enclosedy lines 8 and 17 the setS of valid pairs
is updatedIf anindex 2 saddles andthelocal maximumb

form avalid pair thethis pairis removedfrom V in line 10.

If the pair (s,c) is alsovalid it will beremoved fromV in

line 12. Otherwise(s, ¢) is insertednto V in line 14. Finally

we returnthemodifiedflow comple F in line 19.

The reconstructiorthat we want to proposehereessen-
tially computeghereducedlow complex andresohestopo-
logical non-reyularitieswhich we foundto beveryrare.

RECONSTRUCTION(P)
1 computethereducedlow comple F of P.
2 resole all topologicalnon-regularitiesin F.
3 returnF.

The algorithm RECONSTRUCTION takesa finite setP of
samplepointsasinput. It computeghe reducedflow com-
plex F in line 1 andafterwardsresohesall topologicalnon-
regularitiesof F in line 2.

Figure8 demonstratethewholereconstructiorprocess.

Figure 8: Top - left: The dataset3HOLES. Top - right: The
Gabriel graph of the samedataset.Bottom - left: The flow
comple of the datasef(the boundariesetweerstableman-
ifolds of differentmaximaare colored differently). Bottom -
right: Thereducedlow comple.
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6. Implementation and results

We implementedthe algorithm RECONSTRUCTION using
C++. Our implementationis basedon the Computational
GeometryAlgorithms Library CGAL 7 which includesfast
androbustDelaunaytriangulationsn threedimensions.

We testedour algorithm on several examples.All tests
were performedon a 480 Mhz SunUltra Sparcll. Screen-
shotsof somereconstructednodelscan be found in Fig-
ures8 and 10. We usedGeomvig ° for the renderingof
themodels.In Table1 we summarizeadditionaldataof the
shavn models.

Model Points Triangles Non-reg’s Time
3HOLES 12008 24024 0 2.32
KNoOT 30000 60000 0 13.03
TEETH 87415 174826 1 19.3
OiLpuMP 92789 185574 0 19.99
DRAGON 299410 598820 2 82.74
Hip 397386 794772 0 113.74
BubDHA 433396 866832 9 118.35

Table 1: Basic data for several datasetsthat we recon-
structed.In the columnnamed“Non-reg’s" we report the
numberof non-regularities encountegd in the reducedlow
comple. The running times are given in seconds.The
datasetdHipand TEETH are courtesyof Cyberwae Inc. The
datasetBubDHA and DRAGON were taken fromthe Stan-
ford graphicsrepository

Oneof ourfindingswasthatnon-reularitiesarenot very
frequent.We explicitly checled the modelsfor topologi-
cal correctnesdefore and after resolvingnon-regularities.
An indicationfor the topologicalcorrectnes®f the recon-
structedmodelsis thatthey all satisfyEuler’s formula

#triangles = 2-# vertices+ 4- (genus— 1).

SatisfyingEuler’s formulais only a necessargonditionfor
topologicalcorrectnessSowe alsochecledif every pointin
amodelhasa neighborhoochomeomorphido an opendisc
whichwasalwaysthecase.

The outputof our algorithmis visually pleasing Further
moreit seemgo bequiterobustagainsnoiseandundersam-
pling. For noisydatasetshevisualquality of thereconstruc-
tion suffers of course but the algorithmcould still produce
a fairly good and topologically correctreconstructionSee
Figure9 for anexample.

7. Conclusion

We presentedan efficient and robust algorithm for surface
reconstructiorfrom unolganizedsamplepointsin threedi-
mensions.The algorithmis basedon a dynamicalsystem
inducedby the samplepoints.We think thattheideaswhich

Figure 9: ThedatasetDRAGON containssomenoiseat one
thelegs. Thisnoisedoesnotdisturbour reconstructioralgo-
rithm to the extentthat it fails to producea reconstruction,
but thevisual quality sufers of course

lead us to the formulationof this dynamicalsystemcanbe
useful also for other applicationsin samplebasedmodel-
ing. Especiallywe wantto explore how onecanmale useof
thesedeasfor sampledecimationandfeatureextraction.

Thetestswe performedwith ourimplementatiorof there-
constructioralgorithmshavedthatit is quite robustagainst
undersamplingndnoise.
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Figure 10: Sceenshot®f the flow complex andthereducedlow comple of several models.
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