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Surfacereconstructionbasedon a dynamical system

N.N.

Abstract
We presentan efficient algorithm that computesa manifold triangular meshfrom a setof unorganizedsample
pointsin

� 3. Thealgorithmbuilds on theobservationmadeby several researchers that theGabriel graphof the
samplepointsprovidesa goodsurfacedescription.However, thissurfacedescriptionis onlyone-dimensional.We
associatetheedgesof theGabriel graphwith index 1 critical pointsof a dynamicalsysteminducedby thesample
points.Exploiting also the information containedin the critical points of index 2 providesa two-dimensional
surfacedescriptionwhich canbeeasilyturnedinto a manifold.

1. Intr oduction

Surfacereconstructionis a powerful modelingparadigm.To
createa modelof somesolid in

� 3 onecanjust sampleits
surfaceandapply a surfacereconstructionalgorithmto the
sample.Hencethetaskin thesurfacereconstructionproblem
is to transformafinitesampleinto asurfacemodel.Thereare
several obstaclesa surfacereconstructionalgorithm might
face.The samplecould very large, noisy or to sparsetoo
captureall thefeaturesof thesolid.

The different approachesto the surfacesreconstruction
problemcanbedividedbroadlyinto two classes.Algorithms
in thefirst classprovideimplicit surfacemodelswhile theal-
gorithmsin thesecondclassprovideexplicit surfacemodels.

An implicit surfacemodelis a function f :
� 3 � �

such
that thezerosetof f , i.e. f � 1 � 0� , is a surfacethat interpo-
latesor approximatesthesample.Thesigneddistancefunc-
tion wasintroducedto this respectby Hoppeet al. 11. This
functionor smoothedvariantsof it areusedfrequentlyin the
implicit approachto surfacereconstruction6� 14� 15. For ren-
deringpurposesanimplicit surfaceis likely to betranformed
into a triangularmesh.

Most of theexplicit approachesto surfacereocnstruction
computea triangularmeshdirectly 1� 2� 3 � 4� 10. Herewe want
to have a closerlook on two of thesealgorithms.

Thealgorithmof Mencl andMüller 12� 13 consistsof three
steps.In thefirst steptheEuclideanminimumspanningtree
of thesamplepointsis computed.Thenthis treeis extended
to the so calledsurfacedescriptiongraph.Finally the con-
toursof the surfacedescriptiongrapharefilled with trian-
gles.

The Euclideanminimum spanningtree of the sample

points is a subgraphof the Gabriel graphon the sameset
of points.Two samplepoints p and q are connectedby a
Gabrieledgeif theopenball with diameter� p � q � thathas
p andq in its boundarydoesnot containany samplepoint.
Thesamplepointstogetherwith theGabrieledgesbuild the
Gabrielgraph.

The algorithmof AtteneandSpagnuolo5 alsobuilds on
the observation that the Gabriel graph and the Euclidean
minimum spanningtree provide a fairly good surfacede-
scription. It removes Delaunaytetrahedrafrom the three-
dimensionalDelaunaytriangulationif they are removable.
The property to be removable is definedvia the Gabriel
graphof thesamplepoints.

Theapproachwe aregoingto presentin this paperis ex-
plicit. But it alsomakesuseof a distancefunction. As the
signeddistancefunction this function is definedusing the
Voronoi diagramof the samplepoints. But in contrastto
the signeddistancefunction we cannotuseonly the zero
setof the function. Insteadwe aregoing to studyall of its
critical points, i.e. local minima, local maximaandsaddle
points.Weprovideaone-to-onecorrespondencebetweenthe
Gabrieledgesandsomecritical pointsof thedistancefunc-
tion. It turnsout thattheGabrieledgescorrespondto thein-
dex 1 saddlepointsof thisfunction.Wefurthershow thatthe
saddlesof index 2 correspondto surfaceswith boundaries.
Theseboundariesconsistsof Gabrieledges.The collection
of all thesesurfacestogetherwith theGabrieledgesis asim-
plicial complex. This complex providesa two-dimensional
surfacedescriptionthoughnot a manifoldin general.Build-
ing on resultsof Edelsbrunneron critical points we show
how to transformthecomplex into a manifold.

The main contributionsof this paperarenew insightsin
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2 N.N./ Surfacereconstruction

a natural distancefunction associatedwith a set of sam-
ple points.Theseinsightsleadto anefficient androbustal-
gorithm for surface reconstruction.We have implemented
thealgorithmandevaluatedits applicability. Thealgorithm
turnedout to be very robust. It is able to copeeven with
noisy and/orundersampleddatawhereotherexplicit algo-
rithms leave unpleasantholes.Our insightsshouldbe valu-
ablealsofor othertasksin samplebasedmodelinglikesam-
pledecimationor featureextraction.

The paperis organizedasfollows. In the secondsection
we introducea distancefunctionandits critical points.The
distancefunction is definedvia a setof samplepoints.The
dependency on the samplepointsmakes it suitablefor our
usein surfacereconstruction.In thesamesectionwe intro-
ducethe notionsof Voronoi diagramand Delaunaytrian-
gulationof a setof samplepoints.The third sectionintro-
ducesa dynamicalsystemassociatedwith the height func-
tion andthe samplepoints.This dynamicalsystemis used
in the fourth sectionto definethe flow complex. The flow
complex is a simplicial complex on the samplepoints that
almostprovidesa reconstructionof a solid if thepointsare
sampledfrom thesurfaceof thissolid.In thefifth sectionwe
transformthe flow complex into the reducedflow complex
by using the conceptsof pairing andcancellation.The re-
ducedflow complex providesuswith thereconstructionwe
arelooking for. In the sixth sectionwe reporton an imple-
mentationof our reconstructionalgorithmandpresentsome
experimentalresults.

2. Distancefunction and critical points

Let P be a set of unorganizedpoints sampledfrom the
surfaceof a solid embeddedin

� 3. The distancefunction
h :
� 3 � �

assignsto every point in
� 3 its leastdistanceto

any of thesamplepoints,i.e.

h � x�	� min
p 
 P

� x � p ���
In contrastto thesigneddistancefunctionwhichwasstudied
by 11 in thecontext of surfacereconstructionwe cannotuse
only the zerosetof h to determinethe reconstruction.The
zerosetof h is thesetP of samplepoints.This is alsotheset
of local minima of h, i.e. the points in P arecritical points
of h. We are interestedin all critical points of h. Besides
theminimathesearethemaximaandsaddlepoints.Wewill
show later that the maximaand saddlepoints can also be
computedeasily.

The distancefunction h is closelyrelatedto the Voronoi
diagramof thesetP of samplepoints.TheVoronoidiagram
of P is a cell decompositionof

� 3 in convex polytopes.Ev-
eryVoronoicell correspondsto exactlyonesamplepointand
containsall pointsof

� 3 thatdo not have a smallerdistance
to any othersamplepoint,i.e.theVoronoicell corresponding
to p 
 P is givenasfollows

Vp ��� x 
 � 3 : � q 
 P � x � p ����� x � q �����

ThusVp containsexactly thepointswherethevalueof h is
determinedby p. Closedfacetssharedby two Voronoicells
are called Voronoi facets, closededgessharedby threeor
moreVoronoi cells arecalledVoronoi edgesandthepoints
sharedby four or moreVoronoicellsarecalledVoronoiver-
tices. The term Voronoi objectcandenoteeithera Voronoi
cell, facet,edgeor vertex. The Voronoi diagramis the col-
lection of all Voronoi objects. See Figure 1 for a two-
dimensionalexampleof a Voronoidiagram.

We aregoing to determinethe critical pointsof the dis-
tancefunctionh from theVoronoidiagramof P andits dual
diagram.The latter diagramis called Delaunaydiagram.
The Delaunaydiagramof P is a cell complex that decom-
posestheconvex hull of thepointsin P. Theconvex hull of
four or morepointsin P definesa Delaunaycell if theinter-
sectionof thecorrespondingVoronoicells is not emptyand
thereexistsnosupersetof pointsin Pwith thesameproperty.
Analogously, theconvex hull of threeor two pointsdefines
a Delaunayfaceor Delaunayedge, respectively, if the in-
tersectionof their correspondingVoronoicellsis not empty.
Every point in P is a Delaunayvertex. The term Delaunay
objectcandenoteeithera Delaunaycell, face,edgeor ver-
tex.

Figure 1: Left: A setof samplepoints in the planeand its
Voronoidiagram.Right: TheDelaunaydiagramof thesame
setof points.

Note that from the definition of Delaunayobjects we
have a duality betweenVoronoi-andDelaunayobjects.See
Figure1 for an example.That is, for every d-dimensional
Voronoi object, 0 � d � 3, there is a dual � 3 � d � -
dimensionalDelaunayobjectandvice versa.Using this du-
ality we cancharacterizethecritical pointsof h. In fact the
following theoremcanbeproven,seealsoFigure2:

Theorem 1 The critical points of h are the intersection
pointsof VoronoiobjectsandtheirdualDelaunayobjects.

Weassignto everycritical pointof h anindex. This index
is thedimensionof theDelaunayobjectusedin thecharac-
terizationof critical pointsby Theorem1. We have already
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N.N./ Surfacereconstruction 3

seenthat the minima of h are the points in P. Sinceevery
point in P is a Delaunayvertex thesepointsaretheintersec-
tion pointsof VoronoicellsandtheirdualDelaunayvertices.
Thusthe minima arethe critical pointsof index 0. It turns
out thatthemaximaarethecritical pointsof index 3. There-
mainingcritical pointsaresaddlepointsof index either1 or
2.Saddlepointsof index 1 areintersectionpointsof Voronoi
facetsandDelaunayedges.The latteredgesareexactly the
Gabrieledges.SeeFigure2 for anexample.

Figure 2: Left: The minima � , saddles� and maxima �
of theheightfunctionassociatedwith thesamplefromFig-
ure1. Right: TheGabrielgraphof thesamesetof points.The
Gabriel edgesare highlighted.

3. A dynamical system

A smoothfunction f :
� 3 � � givesriseto asmoothvector-

field on
� 3, namelythegradientvectorfieldthatmapsevery

point x of
� 3 to the gradientof f at x. Thegradientvector

field in turngivesriseto anordinarydifferentialequation

d
dt

φ � t � x��� grad f � φ � t � x�����
Thetheoryof ordinarydifferentialequationsstatesthat this
equationcanbeintegrated.Thesolutionof theequationis a
mapping

φ :
��� � 3 � � 3 �

which hastwo remarkableproperties,first φ � 0 � x�!� x and
secondφ � t � φ � s� x���"� φ � t # s� x� . Thefirst parameterof φ can
be interpretedas time andthe mappingitself tells how the
points of

� 3 move in time. The two conditionsstatethat,
first thepointshave not movedat time zeroandsecondany
pointx movesin timet # s to thepointwherethepointφ � s� x�
movesin times. Thefunctionφ is calledadynamicalsystem
or flowon

� 3. A pointx with φ � x � t �"� x for all t 
 � is called
a fixpoint of the dynamicalsystem.The fixpoints of φ are
exactly thecritical pointsof f . Fixing thesecondparameter
of φ providesfor every x 
 � 3 a mappingφx :

� � � 3 � t $�
φ � t � x� , which is calledtheorbit of x. Theorbit describesthe
motionof thepointx in time.Thismotionalwaysfollowsthe

directionof steepestascentof the function f , i.e. theorbits
areintegral curvesto thegradientvectorfield of f .

Thedistancefunctionh definedvia a setof samplepoints
is nota smoothfunction.It is only smoothin theinteriorsof
theVoronoicellsof thesamplepoints.Thuswecannotapply
thetheoryof ordinarydifferentialequationsto geta dynam-
ical systemfrom h. But as in the caseof smoothfunctions
thereis a uniquedirectionof steepestascentof h at every
non-criticalpoint of h. Assigningto the critical pointsto h
the zero vector and to every other point of

� 3 the unique
unit vectorof steepestascentgivesrise to a vectorfield on� 3. Notethatthisvectorfield is notsmooth.Wearegoingto
constructa mapping

φ : % 0 �'&(� � � 3 � � 3 �
suchthatateverypoint � t � x�)
*% 0 �'&(� �+� 3 theright deriva-
tive

lim
t , t -

φ � t � x�.� φ � t /0� x�
t � t /

existsandis equalto theuniqueunit vectorof steepestascent
atx.

For theconstructionof thedynamicalsystemφ, whichwe
alsocall an inducedflow, the following definition turnsout
to behelpful.

Dri ver. Given x 
 � 3. Let V be the lowestdimensional
Voronoi object in the Voronoi diagramof a finite set of
samplepoints P that contains x and let σ be the dual
Delaunayobject of V. The driver of x is the point on σ
closestto x.

The flow φ inducedby a finite setof samplepointsP is
givenasfollows:For all critical pointsx of thedistancefunc-
tion associatedwith P we set:

φ � t � x�1� x � for all t 
*% 0 �'&(�
Otherwiselet y bethedriverof x andRbetherayoriginating
atx andshootingin thedirectionx � y. Let zbethefirst point
onRwhosedriver is differentfrom y. Notethatsuchazneed
not exist in

� 3. In this caselet z bethepoint at infinity. We
set:

φ � t � x�2� x # t
x � y
� x � y � � t 
3% 0 ��� z � x �54

For t 6(� z � x � theflow is givenasfollows:

φ � t � x�3� φ � t ��� z � x �7#8� z � x �9� x�
� φ � t ��� z � x �9� φ � � z � x ��� x���

It is not completelyobvious, but φ can be shown to be
well definedon the whole of % 0 �'&(� �:� 3. Furthermore,
thefollowing two propertiesof dynamicalsystemshold for
inducedflows, first φ � 0 � x��� x and secondφ � t � φ � s� x���;�
φ � t # s� x� . Furthermore,asin thesmoothcasethefixpoints
of φ areexactly thecritical pointsof h. Thuswe canspeak
of theminima,maximaandsaddlesof φ.
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4 N.N./ Surfacereconstruction

Figure3: Left: Someorbitsof theflowinducedbythesample
pointsfromFigure 1. Right: Thetwo regionsthat flow in the
maximaof the height function inducedby the sameset of
points.

4. Flow complex

Theflow inducedby afinite setof samplepointsP describes
how thepointsof < 3 move in time.For any pointx =>< 3 the
orbit φx describesthismotion.Similar to thesmoothcasethe
orbitsareintegralcurvesto thevectorfield of steepestascent
of the distancefunction h. Orbits endin the fixpoints of φ,
i.e. in the critical pointsof h. Given a critical point x of h
we areinterestedin thesetof all pointswhoseorbit endsin
x, i.e. thesetof all pointsthatflow into x. This setis called
thestablemanifoldof x. Thestablemanifoldof a minimum
is easyto determineit is just theminimumitself. In thefol-
lowing we will alsocharacterizethestablemanifoldsof the
critical pointswith positive index. Laterwe will usethesta-
ble manifoldsof a subsetof the index 2 saddlesto designa
surfacereconstructionalgorithm.As aminor technicaldetail
we shouldmentionthatwe aregoingto dealwith smoothed
versionsof the stablemanifolds.For all practicalpurposes
this meanstakingthetopologicalclosure.

Index 0 critical points. We alreadymentionedthat the
stablemanifoldof alocalminimumconsistsonly of themin-
imum itself, i.e. it is asinglepoint.

Index 1 critical points. An index 1 saddleis theintersec-
tion pointof aDelaunayedgeandits dualVoronoifacet.The
stablemanifold of sucha saddleis the Delaunayedgethat
containsthe saddle.Rememberthat suchDelaunayedges
areGabrieledgesandviceversa.Thustheunionof all stable
manifoldsof index 1 saddlesis theGabrielgraphof theset
P of all samplepoints.

Index 2 critical points. Thestablemanifoldsof index 2
saddlesarepiecewise linear surfaces.An index 2 saddles
is the intersectionpoint of a DelaunayfacetF andits dual
VoronoiedgeE. We show how to constructthesurfaceex-
plicitly. Westartby constructinga polygonP whoseinterior
pointsall flow into s. This polygoncontainss and is con-

taineditself in F . Under mild assumptionsthereare three
Voronoifacetsincidentto everyVoronoiedge.Wearegoing
to constructa polyline for eachof the threeVoronoi facets
incident to E. Thesethreepolylines togethermake up the
boundaryof thepolygonP. Thedriversof theVoronoifacets
incidentto E arepointsontheirdualDelaunayedges.These
Delaunayedgesareall in theboundaryof F . Notethat it is
possiblethatsucha driver is a saddleof index 1. First, con-
sidera driver d which is not a saddleof index 1. The line
segmentthat connectsd with s is containedin F andinter-
sectstheboundaryof thecorrespondingVoronoifacetin two
points,namelyin sandin asecondpoints? . Wegetapolyline
from the two segmentsthat connects? to the two Delaunay
verticesincidentto theDelaunayedgethatcontainsd. Sec-
ond,if thedriver of theVoronoi facetis a saddleof index 1
we take its dualDelaunayedgeasthepolyline. That is, we
get threepolylinesall containedin F, onefor eachVoronoi
facetincidentto E. Let P bethepolygonwhoseboundaryis
givenby thesepolylines.P is containedin F andall its inte-
rior pointsflow into s. It canbe triangulatedby connecting
s with thepointss? andtheDelaunayverticesincidentto F .
Figure4 shows two examplesof two suchpolygonsP.

s s’

d d
s

Figure 4: Two examplesof polygonsthat are containedin
a Delaunaytriangle that is intersectedby its dual Voronoi
edge in s. Theinterior pointsof thesepolygonsflow into s.
Thepolygonin thefigureontheright hasoneindex 1 critical
pointon its boundary.

Let s? bea point asconstructedabove for a Voronoifacet
that is not drivenby a saddleof index 1. By constructions?
is containedin a Voronoi edgeE ? . Furthermore,by our as-
sumptionit hasto beaninterior pointof E ? . Wecanassume
againthatE ? is incidentto threeVoronoi facets.For oneof
theseVoronoi facetswe have alreadycomputeda polyline.
For the remainingtwo we do it exactly the sameway we
did it above for P. Thuswe have againthreepolylines,one
for eachVoronoi facet incident to E ? . Two of thesepoly-
linesalwaysintersectin acommonDelaunayvertex. Thatis,
thethreepolylinestogetherform a polyline which is home-
omorphicto to thecircle @ 1. Thelatterpolyline neednot be
containedin a hyperplanebut it canbetriangulatedby con-
nectingthepoints? with newly computedpointss? andto the
Delaunayverticesincidentto theDelaunayfacetdualto E ? .
Thisgivesusanew triangulatedsurfacepatchwhoseinterior
pointsall flow into s.

We continuewith the above constructionuntil thereare
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N.N./ Surfacereconstruction 5

no morepointss/ left for which we have not alreadycon-
structeda surfacepatch.Thesurfaceof pointsthatflow into
the index 2 saddles is madeup from all the patches.By
constructiontheboundaryof thissurfaceconsistsof Gabriel
edges,i.e. Delaunayedgesthat containan index 1 saddle.
Figure5 shows an exampleof thestablemanifold of some
index 2 saddle.Thestablemanifoldin this exampleis made
up from five surfacepatches.

s

Figure 5: In this examplethe stablemanifoldof s is made
up fromfive surfacepatches.Notethat the surfacepatches
neednotbeplanar.

Flow complex.Givenafinite setof pointsin
� 3. Thesta-

ble flow complex of thepoint setis given by the simplicial
complex build by theGabrielgraphandthetriangulatedsur-
faceswhosepointsflow into index 2 saddles.

Index 3 critical points. Thecritical pointsof index 3 are
the local maximaof the distancefunction h. We canprove
the following theoremwhich completelycharacterizesthe
stablemanifoldsof thelocalmaxima.

Theorem2 Thestablemanifoldsof thelocalmaximaof the
distancefunctionh associatedwith a finite setP of sample
pointsin

� 3 aretheboundedregionsof theflow complex.

Note that analogousstatementsalso hold for critical
pointsof smallerindex, i.e. the boundaryof a stablemani-
fold of anindex d critical point,1 � d � 3, is madeup from
stablemanifoldsof index d � 1 critical points.Thatis, there
existsanicerecursivestructure.Sofarweusedthisstructure
only to characterizethestablemanifoldsof thelocalmaxima
by stablemanifoldsof index 2 critical points.Laterwe will
usethisstructureto transformtheflow complex into amani-
fold.

Anotherobservationis thatthestablemanifoldof anindex
d saddleis alwaysd-dimensional.

Theflow complex is at theheartof our reconstructional-
gorithm. It containsthe essentialinformationof the stable
manifoldsof all critical points.We show next how to com-
putethetrianglesof theflow complex associatedwith afinite
setP of samplepoints.The following algorithmis derived
directly from our characterizationof thestablemanifoldsof
index 2 saddles.

FLOWCOMPLEX(P)
1 F : �BA
2 computetheVoronoi-andDelaunaydiagramof P.
3 computethesetSof index 2 saddles.
4 for eachs 
 Sdo
5 f : � Delaunayfacetthatcontainss.
6 Q : �BA
7 for eachDelaunayedgee incidentto f do
8 Q.push(� s� e� )
9 end for

10 while Q C�BA
11 � v� e� : � Q.pop
12 u � w : � endpointsof e.
13 if econtainsa saddleof index 1 do
14 F : � F DE� uvw�
15 elsedo
16 f : � Voronoifacetdualto e.
17 d : � driver of theinteriorpointsof f .
18 v/ : � first pointon theray from d to v

thatis containedin f .
19 F : � F DE� vv/ u � vv/ w �
20 f / : � Delaunayfacetdualto theVoronoi

edgethatcontainsv/ .
21 for eachedgee/ incidentto f / besidese do
22 Q.push(� v/F� e/0� )
23 end for
24 end if
25 endwhile
26 end for
27 return F

The algorithm FLOWCOMPLEX takes a finite set P of
points in

� 3 asinput andworks asfollows: In line 1 a set
F that is usedto storethe trianglesof the flow complex is
initialized with theemptyset.In line 2 theVoronoiandDe-
launaydiagramsof P arecomputed.Theseareusedin line
3 to computethe index 2 saddlesof theflow inducedby P.
Lines4 and26enclosethemainloopof thealgorithm.In this
loopall smoothedstablemanifoldsof all index 2 saddlesare
computed.Whenwe characterizedthesemanifoldswe have
seenthatthey arepiecewiselinearsurfaces.By definitionthe
trianglesof theflow complex arejust thecollectionof all tri-
anglesin suchmanifolds.Theloop goesthroughall saddles
of index 2. In line 5 theDelaunayfacetthatcontainsthesad-
dle s is computed.In line 6 a queueQ is initialized with the
emptyset.Thisqueueis goingtostoretuplesof of pointsand
Delaunayedges.Lines10 and25 enclosetheloop in which
thesmoothedstablemanifoldof s is computed.While Q is
notemptywepopits first element� v� e� in line 11.If theDe-
launayedgee with endpointsu andw containsa saddleof
index 1 we insert in line 14 the trianglewith cornerpoints
u � v andw into F . Otherwisewe executelines 16 to 18. In
line 17 we computethedriver d of theinterior pointsof the
Voronoifacetf dualto e. It canbeshown thatall thesepoints
have the the samedriver. In line 18 we determinethe first

submittedto EUROGRAPHICS2002.



6 N.N./ Surfacereconstruction

point v/ on theline segmentfrom d to v that is containedin
f . In line 19 thetrianglesvv/ u andvv/ w areinsertedinto F .
In lines20to 23theDelaunayfacetdualto theVoronoiedge
that containsv/ is computedandfor every edgee/ incident
to f / besidese thetuples � v/ � e/ � arepushedto Q. Finally F
is returnedin line 27.

5. Pairing and cancellation

Edelsbrunner8 introducedtheconceptof pairingandcancel-
lationof critical pointsfor surfacesimplificationin aslightly
different context. Here we adopthis ideasto tranform the
flow complex associatedwith a sampleP into a manifold.
Thereforewe make useof the recusive structureof thesta-
ble manifoldsof thecritical points.That is, we want to use
thefactthattheboundaryof a stablemanifoldof anindex d
critical point, 1 � d � 3, is madeup from stablemanifolds
of index d � 1 critical points.

We exploit therecursive structureof stablemanifoldsby
building pairs of index 2 saddlepoints and local maxima.
An index 2 saddlepoint a anda localmaximumbuild a pair� a � b� if thestablemanifoldof a is containedin theboundary
of thestablemanifoldof b. Note thata saddleof index 2 is
always pairedwith two maximaone of which might be a
maximumat infinity.

Next we aregoing to describehow to cancelpairsof in-
dex 2 saddlesandlocalmaxima.Let � a � b� besuchapairand
let c bethesecondmaximumpairedwith a. Cancellationof� a � b� doesnot just meanits removal. The ideabehindthe
cancellationof � a � b� is to merge the stablemanifoldsof b
andc. Thesemanifoldssharethe stablemanifold of a asa
commonboundary. In the cancellationprocesswe remove
the commonboundaryof thesestablemanifoldsand con-
sidertheresultingcell asthenew stablemanifoldof c. The
index 2 saddlesdifferentfrom a thatwerepairedwith b but
not with c now have to be pairedwith c sincetheir stable
manifoldsarenow containedin thenew boundaryof thesta-
ble manifoldof c. Insteadof pair we will usethetermvalid
pair in the following. A pair of an index 2 saddlea anda
local maximumb is valid if thestablemanifoldof s is con-
tainedin theboundaryof thestablemanifoldof b. We keep
the notion of valid pairsalsoafter cancellationfor merged
stablemanifoldsof local maxima.Cancellationof a valid
pair � a � b� means:

1. For every index 2 saddles suchthat � s� b� is a valid pair
declare � s� b� invalid. If also � s� c� is valid declareit in-
valid. Otherwisedeclare� s� c� valid.

2. Remove thestablemanifoldof thesaddlea from theflow
complex inducedby thesamplepoints.

Figure6 shows an one-dimensionalexamplefor pairing
andcancellation.Thebasicideasremainvalid in onedimen-
sion,but sincethereareno saddlepoints in onedimension
localminimaandlocalmaximaarepairedin this example.

c a b d dc

Figure6: Left: Anone-dimensionalexamplefor a pairing of
critical pointsaccording to theheightfunctionh. In this ex-
amplelocal minimaandlocal maximaare paired.Thelocal
minima G are at positionsa andd andthelocal maximaH
areat positionsb andc. Thevalid pairs in thisconfiguration
are I a J bK5J5I a J cK and I d J bK . Right: Thecritical pointsfromaf-
ter thecancellationof the local minimumat positiona with
thelocal maximumat positiona. Thepairs I a J bK5J5I a J cK and
I d J bK are declared invalid and the pair I d J aK is declared
valid instead.

Of courseit makesno senseto cancelvalid pairsin arbi-
traryordernordoesit make senseto canceleveryvalid pair.
Sincewewantto usethecancellationprocessto tranformthe
flow complex of somesampleP into a manifold we cancel
a valid pair I a J bK only if thereexists a Gabrieledgein the
boundaryof thestablemanifoldof a which is incidentto the
stablemanifoldsof at leastthreemaxima.That is, we stop
cancellingvalid pairsif thereis novalid pair left thatfulfills
thiscondition.

Theorderin which we cancelvalid pairsis givenby dif-
ferenceof thedistancefunctionevaluatedat the two points
in the pair. Let I a J bK a valid pair andh the distancefunc-
tion inducedby P. If h I aK andh I bK do not differ muchthen
the local maximumb is relatively closeto the boundaryof
its stablemanifold.Thedeepera local maximumlies in its
stablemanifold the betterthis stablemanifold capturesthe
shaperepresentedby thesample.Thuswealwayscancelthe
valid pair I a J bK on which the height function h differs the
leastprovidedthis pair fulfills thetopologicalconstraintde-
scribedabove, i.e. h I bK2L h I aK is minimal amongall valid
pairsthatfulfill thetopologyconstraint.

Reducedflow complex.Givenaflow complex. Wetrans-
form this flow complex by cancellingvalid pairsaslong as
this is possible.Thecomplex we getafterall thesecancella-
tionsis calledthereducedflowcomplex.

Thereducedflow complex is almostthereconstructionwe
arelooking for. In factwemadethefollowing observation.

Observation 1 Thereducedflow complex of awell sampled
solid is thesurfaceof somesolid.
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N.N./ Surfacereconstruction 7

However, it canhappenthat the surfacemeetsitself in a
point or curve. Figure7 shows a sucha locally non-regular
situation.It canberesolvedby cuttingthesurfacealongthe
curve, i.e. doublingthecurve andmoving the two resulting
capsa little apart.Resolvingthesenon-regularitiesfinally
providesuswith a topologicallycorrectsurfacewhich is our
reconstruction.

Figure7: Left: Asurfacethatmeetsitself in a curve(line seg-
ment)is shown.Right: Thesamesurfaceafter cuttingalong
thecurve.

Theprocedurewe have describedabove directly leadsto
analgorithmto computethereducedflow complex. Herewe
give a pseudocodeformulationof this algorithm.

REDUCEDFLOWCOMPLEX(P)
1 computetheflow complex F of P.
2 computethesetSof index 2 saddles.
3 computethesetV of valid pairsof F .
4 while existspair in V thatfulfills thetopology

constraintdo
5 � a � b� : � pair in V thatfulfills thetopology

constraintandminimizesthe
distancevaluedifference.

6 remove thestablemanifoldof a from F .
7 c : � localmaximumsuchthat � a � c�M
 V andc C� b.
8 for eachs 
 Sdo
9 if � s� b�M
 V do

10 V : � V �*� � s� b�N�
11 if � s� c�)
 V do
12 V : � V �*� � s� c�N�
13 else
14 V : � V DE� � s� c�N�
15 end if
16 end if
17 end for
18 endwhile
19 return F

The algorithm REDUCEDFLOWCOMPLEX takes a finite
setP of pointsin

� 3 asinputandworksasfollows: In line 1
we computethestableflow complex F of P, e.g.by calling
thealgorithmFLOWCOMPLEX. In lines2 and3 wecompute
thesetSof index 2 saddlesandthesetV of valid pairs,re-
spectively. The main loop of the algorithm is enclosedby
lines4 and18. In this loop we cancela valid pair aslong as

thereexists a pair in F that fulfills the topologyconstraint
that we introducedabove. In line 5 we determinethe valid
pair � a � b� thatwe will cancel.In line 6 we remove thesta-
blemanifoldof a from F . Thesecondlocalmaximumc that
formsa valid pair togetherwith a is determinedin line 7. In
the loop enclosedby lines8 and17 the setS of valid pairs
is updated.If an index 2 saddles andthe local maximumb
form a valid pair thethis pair is removedfrom V in line 10.
If the pair � s� c� is alsovalid it will be removed from V in
line 12.Otherwise� s� c� is insertedinto V in line 14.Finally
wereturnthemodifiedflow complex F in line 19.

The reconstructionthat we want to proposehereessen-
tially computesthereducedflow complex andresolvestopo-
logicalnon-regularitieswhich wefoundto bevery rare.

RECONSTRUCTION(P)
1 computethereducedflow complex F of P.
2 resolve all topologicalnon-regularitiesin F .
3 return F .

ThealgorithmRECONSTRUCTION takesa finite setP of
samplepointsasinput. It computesthe reducedflow com-
plex F in line 1 andafterwardsresolvesall topologicalnon-
regularitiesof F in line 2.

Figure8 demonstratesthewholereconstructionprocess.

Figure 8: Top - left: Thedataset3HOLES. Top - right: The
Gabriel graph of the samedataset.Bottom - left: Theflow
complex of thedataset(theboundariesbetweenstableman-
ifolds of differentmaximaare colored differently).Bottom -
right: Thereducedflowcomplex.
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6. Implementation and results

We implementedthe algorithm RECONSTRUCTION using
C++. Our implementationis basedon the Computational
GeometryAlgorithms Library CGAL 7 which includesfast
androbustDelaunaytriangulationsin threedimensions.

We testedour algorithm on several examples.All tests
wereperformedon a 480 Mhz SunUltra SparcII. Screen-
shotsof somereconstructedmodelscan be found in Fig-
ures8 and 10. We usedGeomview 9 for the renderingof
themodels.In Table1 we summarizeadditionaldataof the
shown models.

Model Points Triangles Non-reg’s Time

3HOLES 12008 24024 0 2.32
KNOT 30000 60000 0 13.03
TEETH 87415 174826 1 19.3
OILPUMP 92789 185574 0 19.99
DRAGON 299410 598820 2 82.74
HIP 397386 794772 0 113.74
BUDDHA 433396 866832 9 118.35

Table 1: Basic data for several datasetsthat we recon-
structed.In the columnnamed"Non-reg’s" we report the
numberof non-regularitiesencountered in thereducedflow
complex. The running times are given in seconds.The
datasetsHIP andTEETH arecourtesyof CyberwareInc.The
datasetsBUDDHA and DRAGON were takenfromtheStan-
ford graphicsrepository.

Oneof ourfindingswasthatnon-regularitiesarenot very
frequent.We explicitly checked the models for topologi-
cal correctnessbeforeandafter resolvingnon-regularities.
An indication for the topologicalcorrectnessof the recon-
structedmodelsis thatthey all satisfyEuler’s formula

# triangles � 2 O # vertices # 4 O � genus � 1���
SatisfyingEuler’s formula is only a necessaryconditionfor
topologicalcorrectness.Sowealsocheckedif everypoint in
a modelhasa neighborhoodhomeomorphicto anopendisc
whichwasalwaysthecase.

Theoutputof our algorithmis visually pleasing.Further-
moreit seemsto bequiterobustagainstnoiseandundersam-
pling.For noisydatasetsthevisualqualityof thereconstruc-
tion suffers of course,but the algorithmcouldstill produce
a fairly goodand topologicallycorrectreconstruction.See
Figure9 for anexample.

7. Conclusion

We presentedan efficient and robust algorithmfor surface
reconstructionfrom unorganizedsamplepoints in threedi-
mensions.The algorithm is basedon a dynamicalsystem
inducedby thesamplepoints.Wethink thattheideaswhich

Figure9: ThedatasetDRAGON containssomenoiseat one
thelegs.Thisnoisedoesnotdisturbour reconstructionalgo-
rithm to theextentthat it fails to producea reconstruction,
but thevisualquality suffersof course.

leadus to the formulationof this dynamicalsystemcanbe
useful also for other applicationsin samplebasedmodel-
ing. Especiallywewantto explorehow onecanmakeuseof
theseideasfor sampledecimationandfeatureextraction.

Thetestsweperformedwith ourimplementationof there-
constructionalgorithmshowedthat it is quiterobustagainst
undersamplingandnoise.
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Figure10: Screenshotsof theflowcomplex andthereducedflow complex of several models.
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