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Abstract� This paper proposes a method called meshless parameterization� for param�
eterizing and triangulating �single patch� unorganized point sets� The points are mapped
into a planar parameter domain by solving a sparse linear system� By making a stan�
dard triangulation of the parameter points� we obtain a corresponding triangulation of the
original data set�
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�� Introduction

One of the most critical tasks in reverse engineering is the organization of a given scattered
data set� or point cloud� into some kind of topological structure� such as a triangulation�
see ��� � for an overview of reverse engineering� Several methods for triangulating unor�
ganized points have been developed in recent years� For example� the methods of �� � and
��� � are based on the idea of successively removing tetrahedra from a Delaunay tetra�
hedrization of the points� while the methods of ��� � and �� � are based on properties of
the Voronoi diagram� In �� � and �� � on the other hand� implicit methods are used to
generate triangulations which approximate the data set�

This paper presents a simple new method for triangulating unorganized points which
are assumed to be sampled from a single surface patch� The basic idea is to map the points
into some convex parameter domain in the plane� We call this meshless parameterization
since the mapping is independent of any given topological structure� Then� by triangulating
the parameter points� we immediately obtain a corresponding triangulation of the original
data set�

Many authors have proposed methods for parameterizing organized points� mapping
them either into planar parameter domains �	
 �
 �
 �
 �
 ��
 �	
 �� � or simpli�ed mesh
domains ��� �� However� common to all these methods is the assumption that the points
are structured in some kind of mesh� We propose parameterizing unorganized points by
solving a global linear system which generalizes the method of �� �� The equations arise
from demanding that each interior parameter point be some convex combination of some
neighbouring ones� However� unlike in �� � where the data points are already triangulated�
we use a heuristic to determine neighbourhoods�

As the �gures in this paper show� our method yields good results in the numerical
examples we have tested� even when there is considerable distortion or the data is noisy�
Though the method is necessarily heuristic� heuristic input to the algorithm is minimal�

�� The Basic Method

Suppose we are given a sequence of distinct points X 	 
x�� � � � � xN � in lR�� which are
assumed to be sampled from a patch of some unknown surface in lR�� By a surface patch
we understand� as usual� a surface homeomorphic to a disc in lR�� We wish to create
a triangulation T of the point set� Our basic approach is to determine a corresponding
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sequence of points U 	 
u�� � � � � uN � in lR� and triangulate these with a triangulation S�
Then we take T to be the corresponding triangulation of X� in other words� we take T to
be the set of triangles �xi� xj � xk� for which �ui� uj � uk� is a triangle in S� We can view the
set of points in T as the image of the piecewise linear mapping � 
 D� lR�� where D � lR�

is the union of the triangles in S� � is linear over each triangle in S� and �
ui� 	 xi for
all i 	 �� � � � �N � We can take S to be a standard triangulation such as a Delaunay or
data�dependent one� the data here being the point set X�

The crucial task is to determine the set of parameter points U � and intuitively we
would like U to mimic the geometry of the set X� in the sense that two parameter points
ui and uj ought to be close whenever the two data points xi and xj are close� We propose
a method for determining U which generalizes the convex combination method of �� ��
the only assumption being that one can identify a sequence of points in X to serve as
the boundary of the triangulation T � We will discuss later in the paper how one might
identify such a boundary� Thus we assume now that the set X can be split into two disjoint
subsets
 XI � the set of interior points� and XB � the set of boundary points� Without loss
of generality we may assume that XI 	 fx� � � � � xng for some n� and XB 	 fxn�� � � � � xNg�
where the points xn�� � � � � xN are ordered consecutively along the boundary�

The method has two steps� In the �rst step we map the boundary points xn��� � � � � xN
into the boundary of some convex polygon D in the plane� Thus we choose the correspond�
ing parameter points un��� � � � � uN to lie around �D in some anticlockwise order� say� We
could for example take un��� � � � � uN to lie on the unit circle or unit square and we could
determine the distribution of un��� � � � � uN along �D by some standard polygonal param�
eterization� such as uniform or chord length�

In the second step� we choose for each interior point xi � XI � a neighbourhood fxj 

j � Nig� a set of points in X n fxig� which are in some sense close by� These could be
for example the d nearest points to xi for some suitable d� This and other choices of
neighbourhood will be discussed later� We then choose a set of 
strictly� positive weights
�ij � for j � Ni� such that X

j�Ni

�ij 	 ��

Then� in order to �nd the n parameter points u�� � � � � un � lR� corresponding to the interior
points x�� � � � � xn � lR�� we solve the linear system of n equations

ui 	
X
j�Ni

�ijuj � i 	 �� � � � � n� 
����

These equations demand that each interior ui be some convex combination of its neighbours
uj � j � Ni� Thus ui will be contained in the convex hull of its neighbours�

We note that by letting �ij 	 � for i 	 �� � � � � n and j �� Ni� we may write the linear
system 
���� in the form

Au 	 b 
����

where A 	 
aij � is the square n� n matrix with aii 	 � and aij 	 ��ij for i �	 j� u is the
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column vector 
u�� � � � � un�T � and b 	 
b�� � � � � bn�T is the column vector with

bi 	
NX

j�n��

�ijuj�

�� The Linear System

In this section� we derive� in Proposition ���� a weak su�cient condition for when the
linear system 
���� is uniquely solvable� Roughly speaking� solvability occurs when the
neighbourhoods Ni are large enough� On the other hand� we intuitively require that
the neighbourhoods be small enough that the points in each neighbourhood are close to
lying in a plane� at least they should not contain points from �external branches� of the
underlying surface� We have found in numerical examples that provided the points are
sampled densely enough from the underlying surface� one can �nd a good compromise
between the two competing requirements�

In order to study the linear system 
����� we introduce some graph theoretic notation�
The vertices ui in 
���� and the neighbourhoods Ni de�ne a directed graph G� The nodes
V 
G� of the graph are the indices i � I 	 f�� � � � �Ng and the directed edges E
G� are
ordered pairs 
i� j� for distinct i � II 	 f�� � � � � ng and j � I such that j � Ni� We note
that� unlike in �� � and �� �� the graph G will not in general be planar� We say that j is a
neighbour of i if 
i� j� is a directed edge�

By a 
directed� path from i � II to j � I� j �	 i� we mean a sequence of nodes

i 	 p�� � � � � pm 	 j

such that 
pk� pk��� is a directed edge for k 	 �� � � � �m� �� We will be interested in paths
from �interior� nodes i � II to �boundary� nodes j � IB 	 fn� �� � � � �Ng� We de�ne for a
node i � II its reachable boundary Ri � IB as the set of nodes j in IB that can be reached
by a path from i�

Proposition ���� Suppose points u�� � � � � un in lR� satisfy equations ������ Then each
point is contained in the convex hull of its reachable boundary�

ui � CH
fuj 
 j � Rig�� 
����

We will establish this inductively and to this end it helps to remove some interior
point ur from the linear system 
���� and show that the remaining points satisfy a reduced
set of equations with similar properties�

Lemma ���� If u�� � � � � un satisfy the equations in ����� then u�� � � � � ur��� ur��� � � � � un
satisfy the equations

ui 	
X
j� �Ni

��ijuj 
����
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for i � II n frg� where ��ij � � for j � �Ni and

X
j� �Ni

��ij 	 � 
����

and

�Ni 	

�
Ni r �� Ni�

Ni �Nr� n fi� rg r � Ni�

and

��ij 	

�
�ij r �� Ni�
�ij��ir�rj
���ir�ri

r � Ni�

Proof� If r �� Ni then clearly ur does not occur in equation 
���� and so in this case

equations 
���� and 
���� hold with �Ni 	 Ni and ��ij 	 �ij � Otherwise� r � Ni and we
remove ur from the right hand side of 
�����

ui 	
X
j�Ni

�ijuj 	
X

j�Ninfrg

�ijuj � �ir
X
j�Nr

�rjuj

	 �ir�riui �
X

j��Ni�Nr�nfi�rg


�ij � �ir�rj �uj �

giving

ui 	
X
j� �Ni

�ij � �ir�rj
�� �ir�ri

uj 	
X
j� �Ni

��ijuj�

where ��ij � � for j � �Ni� We also have

X
j� �Ni

��ij 	
X
j� �Ni

�ij � �ir�rj
�� �ir�ri

	
�� �ir � �ir
� � �ri�

�� �ir�ri
	 ��

which establishes 
���� and 
�����

In the same way as we associated the directed graph G with the linear system 
�����
we can associate a directed graph �G with the reduced linear system 
����� with nodes
V 
 �G� 	 f�� � � � � r��� r��� � � � �Ng� Clearly� due to the de�nition of �Ni� the set of directed
edges E
 �G� is formed by removing fromE
G� all its directed edges having r as an endpoint
and then adding to it ordered pairs of the form 
i� j�� i� j �	 r� whenever 
i� r� and 
r� j�
were directed edges of G�

Proof of Proposition ���� The proof is by induction on the number of interior vertices
n 	 jIIj� For n 	 �� equation 
���� follows trivially from 
����� Now suppose that n � �
and that the proposition holds when n is replaced by n� �� Choosing any i in II� we will
show that 
���� holds by removing any other interior point ur 
r �	 i� from the equations

����� Applying Lemma ���� and since �G contains only n� � interior nodes� we have from
the induction hypothesis that

ui � CH
fuj 
 j � �Rig��
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where �Ri is the reachable boundary of ui in �G�
The proof will be complete if we can show that �Ri � Ri� Indeed� let j be a node in

�Ri and let i 	 p�� � � � � pm 	 j be a path connecting i to j in �G� We build a path from i
to j in G as follows� For each k� if 
pk� pk��� is not a directed edge in G� then replace it
by the two ordered pairs 
pk� r� and 
r� pk���� which must be directed edges in G by the
construction of �G� Thus j � Ri and so �Ri � Ri�

Using Proposition ��� we can derive a very weak su�cient condition for when the
equations 
���� are uniquely solvable� We will say that an interior vertex i � II is boundary
connected if its reachable boundary Ri is nonempty�

Proposition ���� Suppose all interior vertices u�� � � � � un in ����� are boundary connected�
Then the linear system ����� has a unique solution and moreover every ui is contained in D�

Proof� We �rst show that the matrix A in 
���� is nonsingular� To this end we will show
that Au 	 � implies that u 	 � where u is any column vector 
of scalars� of length n� If
we let un�� 	 � � � 	 uN 	 �� then u�� � � � � un satisfy equations 
���� where each point ui
is now a value in lR� Proposition ��� clearly applies to points ui of any dimension and in
particular points in lR� and so each unknown ui� i � II belongs to CH
fuj 
 j � Rig�� But
since Ri is non�empty� and uj 	 � for all j � Ri� it follows that ui 	 �� Thus u 	 � and A
is nonsingular�

Finally� since Ri � IB� Proposition ��� shows that

ui � CH
fuj 
 j � IBg��

and since D is convex� CH
fuj 
 j � IBg� 	 D�

	� Neighbourhoods and Weights

We next describe three concrete choices of neighbourhood Ni and weights �ij for each
interior point xi which we have tested numerically�

Method �� Let Ni be the ball neighbourhood

Ni 	 fj 
 � � jjxj � xijj � rig� 
����

for some radius ri � � and let the �ij be the uniform weights

�ij 	 ��di�

where di 	 jNij�

Figure �� A ball neighbourhood

�



Figure � shows a ball neighbourhood� In our numerical examples we achieved good
results by taking ri to be constant� and we would expect this to be adequate when the
distribution of the points is reasonably uniform� However� if the density of the point set
X varies� it might be preferable to let ri depend on the local density of X� Though it
requires more CPU time� a good alternative would be to �x di� in other words� let each
neighbourhood fxj 
 j � Nig be the set of d nearest points to xi� for a constant d�

The danger of method � is that due to the uniform weights� some points xi and xj
can be mapped to the same parameter point� as the following proposition shows�

Proposition 	��� Suppose that �ij 	 ��di� where di 	 jNij� If two interior points xi and
xk have the property that

Ni � fig 	 Nk � fkg� 
����

then ui 	 uk�

Proof� Since di 	 dk� we let d 	 di 	 dk and �nd from 
���� that

�
� �

�

d

�
ui 	

�

d

X
j�Ni�fig

uj 	
�

d

X
j�Nk�fkg

uj 	

�
� �

�

d

�
uk�

If Ni is taken to be the ball neighbourhood 
����� equation 
���� is equivalent to the
situation that

B
xi� ri� �X 	 B
xk� rk� �X� 
����

This can occur� especially when xi and xk are close together� Figure � shows two possible
pairs of ball neighbourhoods� In Figure �a the two balls contain di�erent sets of data
points� so condition 
���� does not hold� In contrast� in Figure �b� the two balls share the
same set of data points� so 
���� does hold and the two points will be mapped to the same
parameter point�

Figures �a and �b� Two neighbourhoods can coincide�

This drawback motivates a choice of weights which depends on the distances of the
neighbours to xi�

Method �� Let

Ni 	 fj 
 � � jjxj � xijj � rig�
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for some radius ri � � and let the �ij be the reciprocal distance weights

�ij 	
�

jjxj � xijj

� X
k�Ni

�

jjxk � xijj
�

These weights generalize those used in chord length parameterization of polygonal
curves 
where every vertex has two neighbours�� see � � �� Though we are not yet able to
give a theoretical justi�cation� Method � has yielded distinct parameter points ui and a
well�behaved triangulation in all the numerical exmaples we have run so far�

Our third method attempts to optimize the choice of neighbourhood by gathering a
small number of points which �surround� the point xi� rather like the given neighbourhood
one would have if the points were already triangulated� This method may be more ap�
propriate when the points are unevenly distributed locally� For example� when the data
is �track�like�� a ball will capture too many neighbouring points in one direction and not
enough in the other�

Method �� Collect all points xj in some large ball around xi� �t a least squares plane� and
project the points onto that plane� yielding new points P 
xj�� Triangulate the projected
points P 
xj� with a Delaunay triangulation Ti� Then let Ni be the Delaunay neighbour�

hood

Ni 	 fj 
 P 
xi� and P 
xj� are neighbours in Tig� 
����

and let the �ij be the shape�preserving weights of �� ��

Figure �� A Delaunay neighbourhood

Figure � shows a Delaunay neighbourhood� As long as the ball is large enough and the
least square �t is good� we would expect P 
xi� to be an interior point of the triangulation
Ti� If not� then xi should be a boundary point of the data set X� This suggests an idea for
locating boundary points 
prior to parameterizing the interior points� which is discussed
further in Section ��

We choose the shape�preserving weights in Method � because the neighbours are
now ordered� and� generalizing an argument in �� �� the parameterization will have the
reproduction property
 if the points xi all lie in a plane� the whole parameterization will
be an a�ne mapping� provided the boundary is mapped a�nely� We note that in �� � it
was shown that the harmonic map of �	 � also has the reproduction property� and that
in many numerical examples the result is very similar� However� since the weights of the
harmonic map can be negative� the latter map is not guaranteed to avoid foldover� see �� ��
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Finally� we remark that a special case of the linear system 
���� is obtained from
minimizing a function� Suppose that the neighbourhoods have the property that

j � Ni if and only if i � Nj � 
����

for i� j � f�� � � � � ng� This implies that G can be treated as an undirected graph� If we let
wij 	 wji be some 
strictly� positive value for each pair 
i� j� � E
G�� and we minimize
the function

F 
u�� � � � � un� 	
X

�i�j��E�G�

wij jjui � uj jj
��

keeping un��� � � � � uN �xed� then the solutions u�� � � � � un satisfy the system 
���� with

�ij 	
wijP

k�Ni
wik

�

For example� if Ni is the ball neighbourhood of constant radius r� then condition 
����
holds and solving 
���� with Methods � and � is equivalent to minimizing the functions

X
��jjxi�xj jj�r

jjui � uj jj
� and

X
��jjxi�xjjj�r

jjui � uj jj
�

jjxi � xj jj
�

respectively�

�� Numerical Examples

We have applied Methods �� �� and � to three example data sets
 
�� a foot� 
�� Spock�s
head� and 
�� a bunny� All three examples are quite severe tests as there is necessarily
considerable distortion when mapping them into a plane�

In each example we needed to �rst identify a natural boundary and order the boundary
points� We chose three di�erent approaches in the three examples� In the foot example� we
chose a suitable boundary by hand and in the Spock example� a natural ordered boundary
was already part of the given data set�

In the bunny example� we applied a more sophisticated method� consisting of two
distinct steps� In the �rst step we identi�ed each point of the data set as being either
interior or boundary� We identi�ed xi as a boundary point if the projected point P 
xi� in

���� lay on the boundary of the local triangulation Ti� Otherwise we regarded xi as an
interior point�

In the second step we ordered the boundary points� It was straightforward to divide
the set of boundary points into two halves using a suitable plane� Then for the boundary
points in each half space� two end points were identi�ed� We then ordered each of the two
sets of boundary points by applying the univariate analog of our triangulation method�
that is� we solved a linear system identical to 
���� 
except the points ui are now real
values�� in order to map the boundary points into the unit interval ��� ��� The ordering
of the parameter values was used as the ordering of the corresponding boundary points�
Figure � shows the two half sets of boundary points in the bunny example and their
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Figure �� Ordering the bunny boundary

orderings generated by our method� Note that the two polygonal arcs are curves in lR�

although they look planar in the �gure�

For general data sets� we propose using this latter method for �nding an order bound�
ary� but it does require some user interaction�

In all the numerical examples� we took the parameter domain D to be the unit disc
and we mapped the polygonal boundary XB into the boundary of D according to chord
length�

In Table � we indicate the dimensions of the data sets in the x� y� and z coordinates
and the constant radius we chose both for the ball neighbourhood 
���� and the ball for
collecting points for projection for the Delaunay neighbourhood 
����� A simple cubical
cell structure was used to locate all points in each ball e�ciently�

We found that the results of Method � con�rmed Proposition ���
 two data points xi
and xk can be mapped to the same parameter point� This occurred in the foot and bunny
examples
 in the foot� ���� data points were mapped to only ���� distinct parameter
points� and in the bunny the ����� points were mapped to only ����� distinct parameter
points� Thus when using ball neighbourhoods� the uniform weights are unreliable and we
recommend the reciprocal distance weights instead
 Method ��

When using either Method � or Method �� we found in all three test examples that all
parameter points were distinct� Even so� for the foot� Spock� and the bunny� the smallest
distance between pairs of parameter points was of the order of ���	� ���
� and �����
respectively� so there is considerable distortion in all three mappings�

Tables � and � show the results of Methods � and � respectively� The �rst two columns
show the smallest and largest neighbourhoods Ni for each data set for the two methods

ball neighbourhood and Delaunay neighbourhood�� We see that the Delaunay method is
more e�ective at locating a small neighbourhood Ni� This means a sparser matrix A since
the number of non�zero elements in the i�th row of A is jNi n IBj� �� Similar to �� �� the
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Bi�CGSTAB iterative method was applied to solve the two separate systems

Au� 	 b�� Au� 	 b��

Tables � and � show the number of iterations and CPU times for each of the two component
systems�

Interestingly� there is a substantial increase in the number of iterations when chang�
ing from Method � to Method �� suggesting an increase in the condition number of the
matrix A� On the other hand� the CPU times for Method � are lower than for Method ��
due to the matrix in the Delaunay case being sparser� In fact we also tested the reciprocal
distance weights with the Delaunay neighbourhoods and obtained almost identical results
to Table � so the di�erence in numbers of iterations seems to come from the size of the
neighbourhoods�

We note that building the Delaunay neighbourhoods� and consequently the matrix A�
required considerable CPU time� In fact this time was greater than that used to solve the
two systems in the foot example� but somewhat less for Spock and the bunny�

Data set N x dim y dim z dim r
Foot ���� ���� ��� ��� ���
Spock ���� ���� ���� ���� ����
Bunny ����� ���� ���� ���� �����

Table �� Dimensions of the data sets

Data set mini jNij maxi jNij Num� iterations CPU time
Foot � �� ������� ���������
Spock � �� ������� ���������
Bunny � �� ������� �����������

Table �� Results for Method �

Data set mini jNij maxi jNij Num� iterations CPU time
Foot � � ������� ���������
Spock � � ������� ���������
Bunny � � ������� �����������

Table �� Results for Method �

For the three data sets� we found that both Methods � and � yielded visually pleasing
triangulations T � However� for the foot and Spock data sets� Method � yielded somewhat
better shaped triangles� while for the bunny� Method � su�ered from the lack of density of
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points in the ears and so Method � yielded the best result 
it has less long� thin triangles��
The results are displayed in Figures � to �� Figures �a to �d show respectively
 
a� the
set of parameter points U of X� using Method �� and their Delaunay triangulation� and

b� the resulting triangulation T of X� Figures �c and �d show the corresponding results
of using Method �� Figures �a to �d show corresponding results for the Spock data set�
Figures �a to �b show the corresponding results for Method � for the bunny and Figure �c
shows a close up of the triangulation around the ears�

Finally� we added arti�cial noise to the Spock data set to test the robustness of
Method �� Figure � illustrates how Method � succeeded in generating a satisfactory trian�
gulation 
of a somewhat older�looking Spock��
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Fig� �a Parameterization� method � Fig �b� �D triangulation

Fig �c� Parameterization� method � Fig �d� �D triangulation
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Fig �a� Parameterization� method � Fig �b� �D triangulation

Fig �c� Parameterization� method � Fig �d� �D triangulation
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Fig �a� Parameterization� method � Fig �b� �D triangulation

Fig �c� Close up of �D triangulation� method �

��



Figure �� �D triangulation of Old Spock� method �

�� Conclusions

We have presented a simple method based on parameterization for triangulating unorga�
nized points� Though further numerical tests and analysis are needed� we have found that
Method � provides a simple� fast� and robust method� However� if the data sample is dense
and free of noise� it appears that Method �� though more expensive� yields triangulations
with better shaped triangles in many cases�

Throughout the paper we have used a Delaunay triangulation of the parameter points�
We believe� however� that just as for functional triangulations� it will often be preferable
to triangulate the parameter points according to some criterion which depends on the
geometry of the orginal data points
 a data�dependent triangulation� Nevertheless� we
believe the Delaunay triangulation of the parameter points will usually act as a good initial
triangulation and that the desired triangulation can be reached by swapping 
relatively
few� triangles�

Finally� we note that meshless parameterization� preferably with the reproduction
property as in Method �� can also be used for interpolating or approximating the points
with a smoother parametric surface� such as a spline over the domain triangulation� radial
basis functions� or a tensor�product B�spline surface� see ��� ��
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