Meshless parameterization and surface reconstruction
Michael S. Floater and Martin Reimers

Abstract: This paper proposes a method called meshless parameterization, for param-
eterizing and triangulating “single patch” unorganized point sets. The points are mapped
into a planar parameter domain by solving a sparse linear system. By making a stan-
dard triangulation of the parameter points, we obtain a corresponding triangulation of the
original data set.

Key words: parameterization, triangulation, surface reconstruction, reverse engineering.

1. Introduction

One of the most critical tasks in reverse engineering is the organization of a given scattered
data set, or point cloud, into some kind of topological structure, such as a triangulation;
see [17] for an overview of reverse engineering. Several methods for triangulating unor-
ganized points have been developed in recent years. For example, the methods of [3] and
[10] are based on the idea of successively removing tetrahedra from a Delaunay tetra-
hedrization of the points, while the methods of [16] and [1] are based on properties of
the Voronoi diagram. In [9] and [2] on the other hand, implicit methods are used to
generate triangulations which approximate the data set.

This paper presents a simple new method for triangulating unorganized points which
are assumed to be sampled from a single surface patch. The basic idea is to map the points
into some convex parameter domain in the plane. We call this meshless parameterization
since the mapping is independent of any given topological structure. Then, by triangulating
the parameter points, we immediately obtain a corresponding triangulation of the original
data set.

Many authors have proposed methods for parameterizing organized points, mapping
them either into planar parameter domains [4, 5, 6, 7, 8, 13, 14, 15] or simplified mesh
domains [12]. However, common to all these methods is the assumption that the points
are structured in some kind of mesh. We propose parameterizing unorganized points by
solving a global linear system which generalizes the method of [5]. The equations arise
from demanding that each interior parameter point be some convex combination of some
neighbouring ones. However, unlike in [5 | where the data points are already triangulated,
we use a heuristic to determine neighbourhoods.

As the figures in this paper show, our method yields good results in the numerical
examples we have tested, even when there is considerable distortion or the data is noisy.
Though the method is necessarily heuristic, heuristic input to the algorithm is minimal.

2. The Basic Method

Suppose we are given a sequence of distinct points X = (z1,...,2x) in R®, which are
assumed to be sampled from a patch of some unknown surface in R*. By a surface patch
we understand, as usual, a surface homeomorphic to a disc in R*. We wish to create
a triangulation 7 of the point set. Our basic approach is to determine a corresponding

1

sequence of points U = (uy,...,uy) in R* and triangulate these with a triangulation S.
Then we take T to be the corresponding triangulation of X, in other words, we take T to
be the set of triangles [#;, x;, x] for which [u;, u;, ug] is a triangle in §. We can view the
set of points in 7 as the image of the piecewise linear mapping ¢ : D — R®, where D ¢ R?
is the union of the triangles in S, ¢ is linear over each triangle in S, and ¢ (u;) = x; for
all ¢ = 1,...,N. We can take § to be a standard triangulation such as a Delaunay or
data-dependent one, the data here being the point set X.

The crucial task is to determine the set of parameter points U, and intuitively we
would like U to mimic the geometry of the set X, in the sense that two parameter points
u; and u; ought to be close whenever the two data points z; and x; are close. We propose
a method for determining U which generalizes the convex combination method of [5],
the only assumption being that one can identify a sequence of points in X to serve as
the boundary of the triangulation 7. We will discuss later in the paper how one might
identify such a boundary. Thus we assume now that the set X can be split into two disjoint
subsets: X7, the set of interior points, and Xp, the set of boundary points. Without loss
of generality we may assume that X; = {«y ..., 2,} for some n, and Xp = {x,11...,2n},
where the points @,,41...,2x are ordered consecutively along the boundary.

The method has two steps. In the first step we map the boundary points ,41,...,zN
into the boundary of some convex polygon D in the plane. Thus we choose the correspond-
ing parameter points w,41,...,uy to lie around 0D in some anticlockwise order, say. We
could for example take wu,41,...,uxN to lie on the unit circle or unit square and we could
determine the distribution of w,1,...,uy along 3D by some standard polygonal param-
eterization, such as uniform or chord length.

In the second step, we choose for each interior point x; € X, a neighbourhood {x; :
J € N;}, aset of points in X \ {«;}, which are in some sense close by. These could be
for example the d nearest points to x; for some suitable d. This and other choices of
neighbourhood will be discussed later. We then choose a set of (strictly) positive weights
Aij, for 3 € N;, such that

> =1

JEN;
Then, in order to find the n parameter points uy, ..., u, € IR? corresponding to the interior
points 21, ..., 2, € R®, we solve the linear system of n equations

u; = Z Aijug, i=1,...,n. (2.1)

JEN;

These equations demand that each interior u; be some convex combination of its neighbours
u;, J € N;. Thus u; will be contained in the convex hull of its neighbours.

We note that by letting A;; =0 for i =1,...,n and j ¢ N;, we may write the linear
system (2.1) in the form

Au=b (2.2)
where A = (a;;) is the square n x n matrix with a;; = 1 and a;; = —\;; for i # j, u is the

2

column vector (uy,...,u,)?, and b = (by,...,b,)7 is the column vector with

N
bi= > Aijuj.

j=n+1

3. The Linear System

In this section, we derive, in Proposition 3.3, a weak sufficient condition for when the
linear system (2.1) is uniquely solvable. Roughly speaking, solvability occurs when the
neighbourhoods N; are large enough. On the other hand, we intuitively require that
the neighbourhoods be small enough that the points in each neighbourhood are close to
lying in a plane; at least they should not contain points from ‘external branches’ of the
underlying surface. We have found in numerical examples that provided the points are
sampled densely enough from the underlying surface, one can find a good compromise
between the two competing requirements.

In order to study the linear system (2.1), we introduce some graph theoretic notation.
The vertices u; in (2.1) and the neighbourhoods N; define a directed graph G. The nodes
V(G) of the graph are the indices ¢ € I = {1,..., N} and the directed edges E(G) are
ordered pairs (i,) for distinct ¢ € Iy = {1,...,n} and j € I such that j € N;,. We note
that, unlike in [5] and [6], the graph G will not in general be planar. We say that j is a
neighbour of ¢ if (i,) is a directed edge.

By a (directed) path from i € I7 to j € I, j # i, we mean a sequence of nodes

i:plv"'vpm:j

such that (px, pr+1) is a directed edge for k =1,...,m — 1. We will be interested in paths
from ‘interior’ nodes i € Iy to ‘boundary’ nodes j € Ip = {n+1,..., N}. We define for a
node i € Iy its reachable boundary R; C Ip as the set of nodes j in Ig that can be reached
by a path from 1.

Proposition 3.1. Suppose points uq,...,u, in R? satisfy equations (2.1). Then each
point is contained in the convex hull of its reachable boundary,

U; € CH({UJ] € RZ}) (31)

We will establish this inductively and to this end it helps to remove some interior
point u, from the linear system (2.1) and show that the remaining points satisfy a reduced
set of equations with similar properties.

Lemma 3.2. If uy,...,u, satisfy the equations in (2.1) then wy, ..., up_1,Upf1,..., Uy
satisfy the equations

u; = Z ;\ijUj (3.2)

fori € Iy \ {r}, where \;; > 0 for j € N; and

Y Ai=1 (3.3)

JEN;
and
N - Ni r @Zﬁ Ni,
v (NiUNr)\{i,r} TENZ‘,
and
;\ /\ij r @Zﬁ Ni,
VT Al e N

Proof: If r ¢ N; then clearly u, does not occur in equation (2.1) and so in this case
equations (3.2) and (3.3) hold with N; = N; and Aij = Aij. Otherwise, r € N; and we
remove u, from the right hand side of (2.1),

u; = Z Aijuj = Z Aijttj + Air Z Arjts
JEN; JENA{r} JEN,

JE(NUN O\ {z,r}

giving

Xii + Xir Aps N
e Z]-]_ /\ir/\ri] 4= Z /\l]ujv
JEN; JEN;

where ;\ij > 0 for j € NZ We also have

o Aij FAir Ay 1= + A (1 = Api)
Z /\l] N Z 1-— /\ir/\ri N 1-— /\ir/\ri N 17
JEN; JEN;
which establishes (3.2) and (3.3). =

In the same way as we associated the directed graph G with the linear system (2.1),
we can associate a directed graph G with the reduced linear system (3.2), with nodes
V(é’) ={1,...,r—1,r+1,..., N}. Clearly, due to the definition of N;, the set of directed
edges E(Q) is formed by removing from E(G) all its directed edges having r as an endpoint
and then adding to it ordered pairs of the form (¢,), ¢,j # r, whenever (¢,r) and (r, j)
were directed edges of G.

Proof of Proposition 3.1: The proof is by induction on the number of interior vertices
n = |I7|. For n =1, equation (3.1) follows trivially from (2.1). Now suppose that n > 1
and that the proposition holds when n is replaced by n — 1. Choosing any ¢ in 7, we will
show that (3.1) holds by removing any other interior point u, (r # i) from the equations
(2.1). Applying Lemma 3.2, and since G contains only n — 1 interior nodes, we have from
the induction hypothesis that

ui € CH({u, : j € R;}),

4

where Rl is the reachable boundary of u; in G.

The proof will be complete if we can show that Ri C R;. Indeed, let 7 be a node in
Ri and let i = py,...,pm = j be a path connecting ¢ to j in G. We build a path from i
to j in G as follows. For each k, if (pg,pr+1) is not a directed edge in G, then replace it
by the two ordered pairs (pi,r) and (7, pg+1), which must be directed edges in G by the
construction of G. Thus j € R; and so Rl CR;, m

Using Proposition 3.1 we can derive a very weak sufficient condition for when the
equations (2.1) are uniquely solvable. We will say that an interior vertex ¢ € I is boundary
connected if its reachable boundary R; is nonempty.

Proposition 3.3. Suppose all interior vertices uy,...,u, in (2.1) are boundary connected.
Then the linear system (2.1) has a unique solution and moreover every u; is contained in D.

Proof: We first show that the matrix A in (2.2) is nonsingular. To this end we will show
that Au = 0 implies that « = 0 where u is any column vector (of scalars) of length n. If
we let wpq41 = ... = uy = 0, then uy,...,u, satisfy equations (2.1) where each point wu;
i1s now a value in IR. Proposition 3.1 clearly applies to points u; of any dimension and in
particular points in R" and so each unknown u;,7 € I7 belongs to CH({u; : j € R;}). But
since R; is non-empty, and v; = 0 for all j € R;, it follows that u; = 0. Thus v =0 and A
is nonsingular.
Finally, since R; C Ip, Proposition 3.1 shows that

u; € CH({uj:j € Ig}),
and since D is convex, CH({u; :j€ Ip})=D. =

4. Neighbourhoods and Weights

We next describe three concrete choices of neighbourhood N; and weights A;; for each
interior point x; which we have tested numerically.

Method 1. Let N; be the ball neighbourhood

Ni={j:0 <[[z; —ail| <ri}, (4.1)
for some radius r; > 0 and let the \;; be the uniform weights
/\ij = l/di,

where d; = |N;|.

Figure 1. A ball neighbourhood

5

Figure 1 shows a ball neighbourhood. In our numerical examples we achieved good
results by taking r; to be constant, and we would expect this to be adequate when the
distribution of the points is reasonably uniform. However, if the density of the point set
X varies, it might be preferable to let r; depend on the local density of X. Though it
requires more CPU time, a good alternative would be to fix d;; in other words, let each
neighbourhood {z; : j € N;} be the set of d nearest points to x;, for a constant d.

The danger of method 1 is that due to the uniform weights, some points x; and z;
can be mapped to the same parameter point, as the following proposition shows.

Proposition 4.1. Suppose that \;; = 1/d;, where d; = |N;|. If two interior points x; and
xy have the property that

N; U{i} = Ny U {k}, (4.2)
then u; = uy.

Proof: Since d; = dy, we let d = d; = dj, and find from (2.1) that

1 1 1 1
()= T w=g T w=(14g)u

JENU{:} JENKU{k}

If N; is taken to be the ball neighbourhood (4.1), equation (4.2) is equivalent to the
situation that

B(xi,ri)ﬂX:B(xk,rk)ﬂX. (43)

This can occur, especially when z; and xj are close together. Figure 2 shows two possible
pairs of ball neighbourhoods. In Figure 2a the two balls contain different sets of data
points, so condition (4.3) does not hold. In contrast, in Figure 2b, the two balls share the
same set of data points, so (4.3) does hold and the two points will be mapped to the same
parameter point.

Figures 2a and 2b. Two neighbourhoods can coincide.

This drawback motivates a choice of weights which depends on the distances of the
neighbours to ;.

Method 2. Let
Ni = {] 0 < ||x] —xl|| < Ti},

6

for some radius r; > 0 and let the \;; be the reciprocal distance weights

e/
N II%—wzll IIwk—wzll

These weights generalize those used in chord length parameterization of polygonal
curves (where every vertex has two neighbours); see [5]. Though we are not yet able to
give a theoretical justification, Method 2 has yielded distinct parameter points u; and a
well-behaved triangulation in all the numerical exmaples we have run so far.

Our third method attempts to optimize the choice of neighbourhood by gathering a
small number of points which ‘surround’ the point «;, rather like the given neighbourhood
one would have if the points were already triangulated. This method may be more ap-
propriate when the points are unevenly distributed locally. For example, when the data
is ‘track-like’, a ball will capture too many neighbouring points in one direction and not
enough in the other.

Method 3. Collect all points x; in some large ball around x;, fit a least squares plane, and
project the points onto that plane, yielding new points P(x;). Triangulate the projected
points P(x;) with a Delaunay triangulation T;. Then let N; be the Delaunay neighbour-
hood

N; ={j : P(x;) and P(x;) are neighbours in T}, (4.4)

and let the \;; be the shape-preserving weights of [5].

Figure 3. A Delaunay neighbourhood

Figure 3 shows a Delaunay neighbourhood. As long as the ball is large enough and the
least square fit is good, we would expect P(x;) to be an interior point of the triangulation
T;. If not, then x; should be a boundary point of the data set X. This suggests an idea for
locating boundary points (prior to parameterizing the interior points) which is discussed
further in Section 5.

We choose the shape-preserving weights in Method 3 because the neighbours are
now ordered, and, generalizing an argument in [5], the parameterization will have the
reproduction property: if the points @; all lie in a plane, the whole parameterization will
be an affine mapping, provided the boundary is mapped affinely. We note that in [6] it
was shown that the harmonic map of [4] also has the reproduction property, and that
in many numerical examples the result is very similar. However, since the weights of the
harmonic map can be negative, the latter map is not guaranteed to avoid foldover; see [6].

7

Finally, we remark that a special case of the linear system (2.1) is obtained from
minimizing a function. Suppose that the neighbourhoods have the property that

JEN; if and only if i € Ny, (4.5)

for i,j € {1,...,n}. This implies that G can be treated as an undirected graph. If we let
w;; = wj; be some (strictly) positive value for each pair (7,j) € E(G), and we minimize

the function
F(ul,...,un): Z wz]||ul_u]||27

(i,j)€E(G)
keeping wy41,...,un fixed, then the solutions wuq,...,u, satisfy the system (2.1) with
/\ij = =
EkENi Wik

For example, if N; is the ball neighbourhood of constant radius r, then condition (4.5)
holds and solving (2.1) with Methods 1 and 2 is equivalent to minimizing the functions

a2
S -l and o ol

P . ?
0<|[wi—x; || <r o<llon—asl<r 1% %l

respectively.

5. Numerical Examples

We have applied Methods 1, 2, and 3 to three example data sets: (1) a foot, (2) Spock’s
head, and (3) a bunny. All three examples are quite severe tests as there is necessarily
considerable distortion when mapping them into a plane.

In each example we needed to first identify a natural boundary and order the boundary
points. We chose three different approaches in the three examples. In the foot example, we
chose a suitable boundary by hand and in the Spock example, a natural ordered boundary
was already part of the given data set.

In the bunny example, we applied a more sophisticated method, consisting of two
distinct steps. In the first step we identified each point of the data set as being either
interior or boundary. We identified #; as a boundary point if the projected point P(x;) in
(4.4) lay on the boundary of the local triangulation 7;. Otherwise we regarded «; as an
interior point.

In the second step we ordered the boundary points. It was straightforward to divide
the set of boundary points into two halves using a suitable plane. Then for the boundary
points in each half space, two end points were identified. We then ordered each of the two
sets of boundary points by applying the univariate analog of our triangulation method,
that is, we solved a linear system identical to (2.1) (except the points u; are now real
values), in order to map the boundary points into the unit interval [0,1]. The ordering
of the parameter values was used as the ordering of the corresponding boundary points.
Figure 4 shows the two half sets of boundary points in the bunny example and their

8

Figure 4. Ordering the bunny boundary

orderings generated by our method. Note that the two polygonal arcs are curves in IR®
although they look planar in the figure.

For general data sets, we propose using this latter method for finding an order bound-
ary, but it does require some user interaction.

In all the numerical examples, we took the parameter domain D to be the unit disc
and we mapped the polygonal boundary Xp into the boundary of D according to chord
length.

In Table 1 we indicate the dimensions of the data sets in the x, y, and z coordinates
and the constant radius we chose both for the ball neighbourhood (4.1) and the ball for
collecting points for projection for the Delaunay neighbourhood (4.4). A simple cubical
cell structure was used to locate all points in each ball efficiently.

We found that the results of Method 1 confirmed Proposition 4.1: two data points x;
and x; can be mapped to the same parameter point. This occurred in the foot and bunny
examples: in the foot, 5092 data points were mapped to only 5091 distinct parameter
points, and in the bunny the 30571 points were mapped to only 30568 distinct parameter
points. Thus when using ball neighbourhoods, the uniform weights are unreliable and we
recommend the reciprocal distance weights instead: Method 2.

When using either Method 2 or Method 3, we found in all three test examples that all
parameter points were distinct. Even so, for the foot, Spock, and the bunny, the smallest
distance between pairs of parameter points was of the order of 107°, 10™*, and 1077,
respectively, so there is considerable distortion in all three mappings.

Tables 2 and 3 show the results of Methods 2 and 3 respectively. The first two columns
show the smallest and largest neighbourhoods N; for each data set for the two methods
(ball neighbourhood and Delaunay neighbourhood). We see that the Delaunay method is
more effective at locating a small neighbourhood N;. This means a sparser matrix A since
the number of non-zero elements in the i-th row of A is |N; \ Ig| + 1. Similar to [5], the

9

Bi-CGSTAB iterative method was applied to solve the two separate systems

Au' =0, Au? =b?.
Tables 2 and 3 show the number of iterations and CPU times for each of the two component
systems.

Interestingly, there is a substantial increase in the number of iterations when chang-
ing from Method 2 to Method 3, suggesting an increase in the condition number of the
matrix A. On the other hand, the CPU times for Method 3 are lower than for Method 2,
due to the matrix in the Delaunay case being sparser. In fact we also tested the reciprocal
distance weights with the Delaunay neighbourhoods and obtained almost identical results
to Table 3 so the difference in numbers of iterations seems to come from the size of the
neighbourhoods.

We note that building the Delaunay neighbourhoods, and consequently the matrix A,
required considerable CPU time. In fact this time was greater than that used to solve the
two systems in the foot example, but somewhat less for Spock and the bunny.

Data set N x dim y dim z dim r
Foot 5092 98.7 245 203 9.0
Spock 9508 0.69 0.80 0.68 0.03
Bunny 30571 0.16 0.15 0.12 0.003

Table 1. Dimensions of the data sets

Data set | min; |N;| | max; |N;| | Num. iterations CPU time
Foot 6 57 137/150 5.08/2.30
Spock 3 29 180/170 6.81/6.36
Bunny 1 27 166/406 52.71/45.92

Table 2. Results for Method 2

Data set | min; |N;| | max; |N;| | Num. iterations CPU time
Foot 3 9 930/240 0.84/0.87
Spock 3 9 303,286 152/4.45
Bunny 3 9 635/589 40.44/37.57

Table 3. Results for Method 3

For the three data sets, we found that both Methods 2 and 3 yielded visually pleasing
triangulations 7. However, for the foot and Spock data sets, Method 3 yielded somewhat
better shaped triangles, while for the bunny, Method 3 suffered from the lack of density of

10

points in the ears and so Method 2 yielded the best result (it has less long, thin triangles).
The results are displayed in Figures 5 to 7. Figures 5a to 5d show respectively: (a) the
set of parameter points U of X, using Method 2, and their Delaunay triangulation, and
(b) the resulting triangulation 7 of X. Figures 5¢ and 5d show the corresponding results
of using Method 3. Figures 6a to 6d show corresponding results for the Spock data set.
Figures 7a to 7b show the corresponding results for Method 2 for the bunny and Figure 7¢
shows a close up of the triangulation around the ears.

Finally, we added artificial noise to the Spock data set to test the robustness of
Method 2. Figure 8 illustrates how Method 2 succeeded in generating a satisfactory trian-
gulation (of a somewhat older-looking Spock).

11

A

gty
il AN
SR

P

S

e
o

e ioass

A

yAY
il

NI

I

T
AR

i
p)
7

3
Ay
i

Ry

i)
aratirAs
Getliseis
R B2
NS A,
SRS TOTERES

N

3

-

S
N

2

NV

Ay

>

AV

s
X7

0

7Y
SRk
P

N

SO

Fig 5b. 3D triangulation

Fig. 5a Parameterization, method 2

Evavats!

AR
%wmvw»wwwww&r.
00}%’%1‘“9

)
IV SRS
AR
=
AW

s
S

Tt SRS Ay
SIS
T = VA~
S e
SN

/X
OE
VAV
K %,vmﬂ;v
sy,
RIR
e
el
OR)

=
T

il
o
2
s
\
Zay
i

S

oty

BN

Y
0

.
£
XL

N

S £A
OSSR RS
PSRRI ERR
T AV,

4

%

4
TR SATY
RS

Tava)
SO
IS

A

2

Sy
asay

SR
2 3

N\

b

e
<

Fig 5d. 3D triangulation

method 3

Fig 5c. Parameterization,

12

5&

U
T

DY

S
A
arase. o
CAVAVS
<L ¥
R oo T
DY E Ay
IR RS2
i KSR
LTS

Ly
ay;
Y
K
=
g

anvaliyy
%
AT
I~

o

vy

t

i
A
=
=
W,
iy

o

i
e,
LA

Iy

,Aq";bn.
I

=
OELE
i

K5
it
A
o
S
S0
i)
e

IZAVAT

oavae

e

Pawacrs
N
15
iy

v

RS
';e;f,ﬁ et
QORI
raThva)
TN
InYa%)
WA
A RZIUY
et
S
Ak
=N
i,
i)
ey
% EaTa e
e
S
AT
K
423

a4’
A7
v;

=

Ea

&
7
0
1%
4
2

AVAY

5
oy
Y
e
KA
R

2d
7
KD
b
XA
%
LA
-
e
sy
¥
iangulation

o
i
oy
A
£k

7
274
i

;{
:
D
)
;
S5
L
4:
A

7
5
ik
"/r"
.
o
L]
,n‘
L
w4
K
|
%
‘
%
5
]

e
S
Shaes

Nt

SR

22
g
I
fo
t
L
Y,
i

2SN
AR
DRSS R R
e N AN AN
N AVAYANLY
SSeSEReEs

>
i
i
e

RS

AL
A

=7
i

R
4
5

)

fA
Q)
it
i
e

R
ey et
RS
iy,

55

77
o
,,,éf%?
i
@y

J

=)

h
2
T

AT

o
!
al
L

i

S
2

K

!
o

L7
V'/

easey AN
SR
SEEsEETaaa
wEFESEEnEER

et |
DR 2 e, IR i
£} = 5 e] S
RS SRR ORI SNl SRy)
SRR VA Jy SAA N v AV ivismaniery
s £ OO AN
SRS Bt w%»«!vrﬂrw»«%ﬁ»ﬂmw

i’
7
TTA”
B
st
s,
LRAKT
-
el
%
Pk
S
Ok

2
£
o
i
v,

T
=
TSR
CECORRRERE,
S,
oL
S

o S

St

7
(s
By
a4
%)
o

RESAY BRI RSy
SSRVIRSESE ! R A UG
R % B oo

R R ET N
T RE
ooy =

KRNECR
A
i
s
LR
S e,
E P
Ay

.“v:;f;

W
Fig 6b. 3D triangulation
Fig 6d. 3D tr

TR
?.,.

N
AR

<Q\><"\/
TR
AN AN
DA AR
SN AN sﬂyv}{»ﬂ« 0

S
R

/

N
]
I
%‘\

D
%

%
T A
foas
N
AV

N

Yav N\

$&F
yall

SN
Q2N
P!

S
o
Y

v
AVAY
R
7AVAVAY
R
-
X
&

method 2

\
s
YLy

RS
SRS N A RO
SRS AR IR Y - AR SRS
AR A A A A R A R NSRRI S SORSRON) K O SRR \
A PSRN RN SIS 2 aTAvaY
o e S SO NI s s

vav
S5F

i
X

) N N4
v SHARERSS MR B

tion, method 3

< Ao
KA S POORNINNNAS L P VAV N A
e e S NI A s RS DS e
NNVSRRILY /4 NS T RN NORBINERIKE]
DNy TN g R st s SOSOIRL
VN IR o LR IS SO
VA‘lv«MMAWWWAWWV- ‘>)'(V%_m,44§ '\'4“\,@%%%%@»7 AN AR
lasia (S oS IR ORI RO
':iv’ ! \ > "o IS
\z %>
P

N
5

D
S
Y

2 e | SN RN
S NN
XK d\'
X

4 DRSS s KR
AR AR NI o ‘WA PR

v AN N o YRR

Vv VA P ROIKEECENS
R L O TR \d NE
VA : s (/ 5 3
SR A.«MV‘%)‘\ N A

SRS 7> NV

A

&
N
X
{

a0 SN RO
O
ORKE ORI

o
STavaav
o KR N RS
CREES NS AN s AR
7 RS S VAN K RRSORRE
<85 X o i
XIS o RRERKRRS
SKoeee NS < / KRR SO
VAN =S

T S e TiTATAY
RN DARIROOI KN
R PR EDOORS]
SR
A
S OOSPIREANA=

NK]
KA

AAgEEEﬁf

NG
&

Fig 6a. Parameterization

5
Fig 6¢. Parameteriza

13

TN
S
A

D

V:‘g
)
NN

X
o

R

V)

=
J

S 2t

AN SR
SN
RDRN

Wil
DT

Fig 7b. 3D triangulation

W
i

—

(R

ol
)
2o

S,

g
4l

Tk
S

o

€5¢ ==
e

S
SR Ay
e 5
Sy,
WA

L5
L
e A
S
= T
SoR

=5
T

iy oy
‘%v‘ﬁ‘w a0y
e il
¥ v
DETSsS
ANy
A
AWy

L

‘_
&

Fig 7c. Close up of 3D triangulation, method 2

14

Figure 8. 3D triangulation of Old Spock, method 2

5. Conclusions

We have presented a simple method based on parameterization for triangulating unorga-
nized points. Though further numerical tests and analysis are needed, we have found that
Method 2 provides a simple, fast, and robust method. However, if the data sample is dense
and free of noise, it appears that Method 3, though more expensive, yields triangulations
with better shaped triangles in many cases.

Throughout the paper we have used a Delaunay triangulation of the parameter points.
We believe, however, that just as for functional triangulations, it will often be preferable
to triangulate the parameter points according to some criterion which depends on the
geometry of the orginal data points: a data-dependent triangulation. Nevertheless, we
believe the Delaunay triangulation of the parameter points will usually act as a good initial
triangulation and that the desired triangulation can be reached by swapping (relatively
few) triangles.

Finally, we note that meshless parameterization, preferably with the reproduction
property as in Method 3, can also be used for interpolating or approximating the points
with a smoother parametric surface, such as a spline over the domain triangulation, radial
basis functions, or a tensor-product B-spline surface; see [11].

References

1. N. Amenta, M. Bern, and M. Kamvysselis, A new Voronoi-based surface reconstruction
algorithm, Computer Graphics Proceedings, SIGGRAPH 98 (1998), 415-421.

2. C. L. Bajaj, F. Bernardini, and G. Xu, Automatic reconstruction of surfaces and
scalar fields from 3d scans, Computer Graphics Proceedings, SIGGRAPH 95 (1995),
109-118.

15

10.

11.

12.

13.

14.

15.

16.

17.

. J.-D. Boissonnat, Geometric structures for three-dimensional shape representation,

ACM Transactions on Graphics 3(4) (1984), 266-286.

M. Eck, T. DeRose, T. Duchamp, H. Hoppe, M. Lounsbery, and W. Stuetzle, Multires-
olution analysis of arbitrary meshes, Computer Graphics Proceedings, SIGGRAPH 95
(1995), 173-182.

M. S. Floater, Parametrization and smooth approximation of surface triangulations,
Comp. Aided Geom. Design 14 (1997), 231-250.

M. S. Floater, Parametric tilings and scattered data approximation, International
Journal of Shape Modeling 4 (1998), 165-182.

G. Greiner and K. Hormann, Interpolating and approximating scattered 3D data with
hierarchical tensor product B-splines, in Surface Fitting and Multiresolution Methods,
A. Le Méhauté, C. Rabut, and L. L. Schumaker (eds.), Vanderbilt University Press,
Nashville (1997), 163-172.

K. Hormann and G. Greiner, MIPS: An efficient global parametrization method, in
Curve and Surface Design, P.-J. Laurent, P. Sablonniere, and L. L. Schumaker (eds.),
Vanderbilt University Press, Nashville (2000), 153-162.

H. Hoppe, T. DeRose, T. DuChamp, J. McDonald, W. Stuetzle, Surface reconstruction
from unorganized points, Computer Graphics, Vol. 26, No. 2 (1992), 71-78.
F.Isselhard, G. Brunnett, and T. Schreiber, Polyhedral reconstruction of 3d objects by
tetrahedral removal, Technical Report No. 288/97, Fachbereich Informatik, Univeristy
of Kaiserslautern, Germany, 1997.

J. Hoschek and D. Lasser, Fundamentals of Computer Aided Geometric Design,
AKPeters, Wellesley, 1994.

A. W. F. Lee, W. Sweldens, P. Schroder, L. Cowsar, and D. Dobkin, MAPS: Mul-
tiresolution adaptive parameterization of surfaces, Computer Graphics Proceedings,
SIGGRAPH 98 (1998), 95-104.

B. Lévy and J. L. Mallet, Non-distorted texture mapping for sheared triangulated
meshes, Computer Graphics Proceedings, SIGGRAPH 98 (1998), 343-352.

W. Ma and J. P. Kruth, Parameterization of randomly measured points for least
squares fitting of B-spline curves and surfaces, Computer-Aided Design 27 (1995),
663-675.

J. Maillot, H. Yahia, and A. Verroust, Interactive texture mapping, Computer Graph-
ics Proceedings, SIGGRAPH 93 (1993), 27-34.

T. Schreiber and G. Brunnett, Approximating 3d objects from measured points, in
Proceedings of 30th ISATA, Florence, Italy, 1997.

T. Varady, R. R. Martin, and J. Cox, Reverse engineering of geometric models — an

introduction, CAD 29 (1997), 255-268.

Michael S. Floater and Martin Reimers
SINTEF

Postbox 124, Blindern

0314 Oslo, NORWAY
mif@math.sintef.no
mre@math.sintef.no

16

