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Abstract

The shape of a protein is tmportant for its functions. This includes the location and
size of tdentifiable regions in its complement space. We formally define pockets as regions
in the complement with limited accessibility from the outside. Pockets can be efficiently
constructed by an algorithm based on alpha complexes. The algorithm is implemented
and applied to proteins with known three-dimensional conformations.

Keywords. Combinatorial geometry and topology, algorithms, molecular biology; molecular mod-
eling, docking, space filling and solvent accessible models, Voronoi cells, Delaunay simplices, alpha
complexes.

1 Introduction

The motivation for the work reported in this paper is the apparent difficulty to talk in mathe-
matically concrete terms about intuitive geometric concepts sometimes referred to as ‘depres-
sions’, ‘canyons’; ‘cavities’; and the like. In topology, the notions of homotopy and homology
have long been used to define and study (perfect) holes of various types and dimensions. We
are after a definition and study of imperfect holes, of regions people would instinctively refer
to as holes although they are neither holes in the homotopical nor the homological sense.

Observations about common language reveal a great deal of confusion on what holes are.
A hole in the ground is usually a depression deep or big enough so we would care about its
existence. The fact we can fall into but not through it reveals it is not a hole in a topological
sense. Or consider exploding a balloon by poking through its surface with a needle. The
needle connects the hole holding the balloon’s air with the outside. Topologically, poking a
needle through the surface removes rather than creates a hole.
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Pockets in proteins. The study of imperfect holes in this paper focuses on proteins and
other macromolecules. The ideas are more general though and can be extended to other
3-dimensional shapes and to higher dimensions.

The functions of a protein are determined through its interaction with other molecules.
Such interactions happen frequently in protected yet accessible regions of appropriate size
and shape. The shape complimentary between such a protected binding site and the ligand is
largely responsible for the specificity observed in protein-ligand/protein interactions. There
are also the less frequent situations where the binding ligand sits in an isolated cavity/void and
is completely engulfed by the protein (such as the Xe binding sites in myoglobin). For such
cases, we refer to our earlier results in cavity/void identification and their area and volume
measurements [9]. The above intuitive but vague description of protein binding pockets is
certainly not sufficient to distinguish protected regions from unprotected ones, or to specify the
precise location and extent of a protected region once it is identified. In this paper, we will
formally define pockets as regions in the complement space with limited accessibility from
the outside. The definition deliberately excludes shallow valleys or depressions. Although
there are also binding sites of the latter type, their determination will either require a priori
knowledge or an extension of the ideas described in this paper.

Intuition. The following intuition guides our formulation of an unambiguous criterion. We
declare a region in the complement a pocket if it can be reached only via relatively narrow
pathways: “all paths into the pocket get narrow before they get wider”. This intuition can
also be captured through a growth process: “a pocket becomes a void inaccessible from the
outside before it disappears”.

It is clear that considerations based on relative distance are required to make this intuition
concrete and algorithmically useful. Such considerations are expressed in terms of Voronoi
cells [18] and Delaunay simplices [5]. These are key concepts in this paper and they play a
crucial role in defining, delimiting, and algorithmically constructing pockets. The algorithm
is implemented and sample applications to proteins whose coordinates are available from the
protein databank are given.

Outline. Section 2 discusses common sphere models of molecules and their relationship to
Voronoi cells. Section 3 describes dual sets and complexes of simplices. Section 4 defines
pockets based on an acyclic relation over the Delaunay tetrahedra. Section 5 presents an
algorithm constructing pockets. Section 6 applies the implementation of the algorithm to a
few proteins with known 3-dimensional conformations. Section 7 mentions possible extensions
of this work and directions for further research.

2 Spherical Ball Models

It is common in biology to represent an atom by a spherical ball and a molecule by a union
of balls. Geometric models of this type go back to Lee and Richards [14] and Richards [16].
For a fixed set of atom centers, the space filling model uses van der Waals radii, see e.g. [4,
chapter 4], to unambiguously specify the balls and thus their union. The solvent accessible
model increases radii to reflect accessibility for a solvent, itself modeled as a spherical ball.
This section introduces the geometric terminology necessary to talk about these models and
their relationship to Voronoi cells.



Distance and growth. The Euclidean distance between points z,y € R3 is denoted by
|zy|, and the (spherical) ball with center z € R® and radius r € R is

b(z,r) = {z€ R? | |zz| < r}.

The union of a finite set B of balls is [JB = {# € R® | « € b € B}. The complement,
R3 — B, consists of one or more components. Exactly one component is unbounded and
usually referred to as the outside. The other components are bounded and referred to as voids
of UB. Figure 1 shows the union of a set of 2-dimensional balls or circular disks.

Figure 1: The union of 16 disks is connected and decomposes its complement into 1 unbounded
component (the outside) and 2 bounded components (voids).

The solvent accessible model differs from the space filling model by the size of the balls; the
centers are the same. This suggests we consider the union while growing the balls continuously
and simultaneously. As the balls grow the union grows and the voids shrink. Which voids
appear depends on the relative growth. We find it convenient to grow the balls such that the
circles where two spheres meet sweep out planes.

The growth is controlled by a real parameter o?. Formally, we choose o from R%, that is,
a is either a non-negative real or it is a positive real multiple of the imaginary unit, v/—1.

Define by (z,7) = b(z,Vr? + o?) and
By, = {ba(z,7)]|b(z,7) € B}.

If 72 4+ a? < 0, the radius is imaginary and b, = bs(2,7) is empty. In this case, b, does not
contribute to | JBs but it does influence the formation of pockets. This makes sense since
we argue pockets are regions that will become voids in the future. Future is defined in the

direction of increasing o, and b, is born when o? passes —r2.

Voronoi cells. Define the distance of a point z € R? from a ball b = b(z,r) as m(z) =
|zz|> — r2 and note it is defined even if 2 < 0. In general, z € b iff 73(2) < 0. The Voronoi
cell of b € B is

Vi = {2€R|m(2) < m(x).c€ B,

In words, V3 is the set of points x at least as close to b as to any other ball in B. Define
Vor B = {V} | b € B}. The set of points with equal distance from two balls form a plane. It
follows V4 is the intersection of finitely many closed half-spaces and hence a convex polyhedron.



Figure 2: The 16 disks in figure 1 define a decomposition of R? into 16 Voronoi cells.

Voronoi cells overlap at most along their boundary, and together they cover the entire space:
R3 = JVor B, see figure 2. The vertices, edges, and facets of the Voronoi cells are referred
to as Voronot vertices, Voronot edges, and Voronot facets. It is convenient to assume general
position so a Voronoi edge belongs to exactly 3 Voronoi cells and a Voronoi vertex belongs to
exactly 4 Voronoi cells.

Observe a point € R3 is simultaneously contained in a ball ¢ € B and the Voronoi cell
Vi of b # ¢ only if mp(2) < wo(2) < 0. This implies € b. In other words, V; N|JUB =V, Nb
for every b € B. The sets Ry = V, Nb are convex and any two overlap at most along their
boundary. Define Res B = {R; | b € B} and note it covers the union of balls: [ JB = [ JRes B,
see figure 4.

The growth process is defined so Voronoi cells do not change. Indeed, m3(z) < 7 () iff
., (2) < 7., (2), and therefore Vor B = Vor B, for every a € R3. This will be important
later when we take advantage of the fact the same Voronoi cells decompose every | JB, into
convex cells.

3 Simplex Collections

The connectivity of a union of balls can be expressed by a collection of simplices that keeps
track of which cells Ry overlap. This collection is used to represent the union. Similarly, sets
of simplices are used to represent voids and later pockets. We begin by introducing some
general terminology.

Simplicial complexes. An absiract simplicial complezr is a finite system of sets, A, with
XeAdandY C X implyingY € A. X € A is referred to as an abstract simplez and its
dimension is dimX = card X — 1. The vertez set is Vert A = |JA. A subcomplez is an
abstract simplicial complex B C A. For example, if S is any finite set, then the nerve of S,

NivS = {XCS|[)X#0}

is an abstract simplicial complex with vertex set S. The nerve of every subset of S is a
subcomplex of NrvS. More generally, if S’ is a set and 7 : S’ — S is an injection with
a’ C i(a') for each o' € S’ then Nrv S’ is isomorphic to a subcomplex of Nrv S. Indeed,
B={XCS|X =iX'),X € NrvS'} is clearly a subcomplex of Nrv S and isomorphic to
Nrv §’.



Every abstract simplicial complex, A, can be realized geometrically by a collection of
simplices in R?, for some finite dimension d. The elements of Vert A are represented by points,
and an abstract simplex, X € A, is represented by the convex hull of the corresponding points.
Provided d is large enough, the points can always be chosen so the convex hull is a simplex
of dimension dim X and no two simplices intersect improperly. Formally, let ¢ : Vert A — R?
be an injection so

conve(X)Neonve(Y) = conve(X NY)
for all X,Y € A. The resulting set of simplices,
K = Hconvi(X) | X € A},

is a (geometric) simplicial complex. The underlying space of K is |K| = UK. A subcomplez
of K is a set {conv¢(X) | X € B}, B a subcomplex of A.

Delaunay simplices. We form simplices by taking convex hulls of 1, 2, 3, or 4 ball centers.
The collection of such simplices reflecting the overlap relation among the Voronoi cells is a
complex which is now formally introduced.

Let B be a finite set of balls in R®, assume general position, and recall Vor B is the
set of Voronoi cells. The nerve of Vor B is of course an abstract simplicial complex. It is
geometrically realized by mapping each Voronoi cell to the center of the generating ball.
Formally, let ¢ : Vor B — R3 be defined by «(V3) = z if b = b(z, 7). The Delaunay simplicial
complex of B is

DelB = {conve(X)|X € Nrv Vor B},

see figure 3. General position implies Del B is indeed a simplicial complex. The simplices

Figure 3: The Delaunay simplicial complex of the 16 disks in figure 1.

o € Del B are referred to as Delaunay simplices.

Consider a tetrahedron 7 = conv ¢(X) in Del B. The 4 Voronoi cells in X intersect at
a point z; = ()X referred to as the orthogonal center of 7. Let by, ba,bs, by be the balls
generating the Voronoi cells in X. By construction, the distance of z; from the balls is the

same:
7“3 = Wb1(z‘f) = sz(zT) = 71'(]3(27) = 754(27)'

The radius of 7 is r; and the orthogonal ball is b; = (z;,r;). The name suggests b, meets the
b; in some ways orthogonally. Indeed, for a point on two intersecting spheres, = bd b,Nbd b;,

the two tangent planes passing though « meet at a right angle.



Alpha complexes. The union of balls covers only a portion of the Voronoi cells, and this
portions is represented by a subcomplex of the Delaunay simplicial complex, see [12].

Recall the definitions of Ry = V3 Nb and Res B = {Ry | b € B}. The nerve of Res B is
an abstract simplicial complex that can be geometrically realized by mapping cells to ball
centers, the same way as before. Let ¢ : Res B — R® be defined by «(R;) = b'. The dual
complez of | B is

CpxB = {conve(X)|X € NrvResB},

see figure 4. Clearly, Nrv Res B is isomorphic to a subcomplex of Nrv Vor B, and therefore

Figure 4: The union of disks in figure 1 is decomposed into convex cells. The dual complex
connects 2 centers by an edge and 3 centers by a triangle if the corresponding cells have non-
empty common intersection. The union of disks has 2 voids, each contained in a void of the dual
complex.

CpxB C Del B. The dual complex inherits the property of being a simplicial complex from
Del B.

We refer to [7] for a list of properties CpxB enjoys. This includes CpxB is homotopy
equivalent to | JB. More precisely, | CpxB| C | JB and there is a deformation retraction that
takes | JB to |CpxB|. The same is true for the respective complements. More precisely, each
void of | JB is contained in a void of | Cpx B | and there is a deformation retraction that takes
R3 — |CpxB| to R® — | JB.

Recall the definition of B,, which is obtained by simultaneously growing or shrinking all
balls in B. The a-complez of B is the dual complex of | JB,: Cpx,B = CpxB,. For a? < o}
we have b,, C by,, which implies

{0} C Cpx,, B C Cpx,,B C Del B.

The bounds are tight. For sufficiently small o? all balls have imaginary radius and are empty,
which implies Cpx, B = {0}. For sufficiently large a? the nerves of Res B and Vor B = Vor B,
are isomorphic, which implies Cpx, B = Del B.

The dual set of a void. Recall a void of | B is a bounded component of the complement.
To be specific, let

R?’—UB = HoUH,U...UH



be the partition into maximal connected subsets. Assume Hy is unbounded and H; through
H}, are the voids of [JB. As mentioned earlier, there is a deformation retraction that takes
the complement of | Cpx B | to the complement of [ JB. Let

R® —|CpxB| = HLUH;U...UH,

be the partition into components so the above mentioned deformation retraction takes H/
to H;, see figure 4. The voids of |CpxB/| are naturally represented by the simplices in
Del B — Cpx B that cover them. For 1 <1 <k the dual set of H; is

Hi = {oc€DelB|intec C H!}.

For example, the smaller of the two voids in figure 4 has a dual set consisting of 2 triangles
and 1 edge. The dual set of the larger void consists of 4 triangles and 3 edges. As shown
in [7], the volume and surface area of a void H; can be computed directly from H;, without
explicit construction of H;.

4 Pockets

The concept of a pocket is based on an acyclic relation over the set of Delaunay tetrahedra
motivated by a continuous flow field. After defining and classifying pockets we compare them
with related concepts in the literature.

Flow relation. Let 7" be the set of tetrahedra in Del B and T'= 7" U {7 }, where 7o, =
cl(R3 — |Del B|) is considered a convenient dummy element. We define the flow relation
‘L*CT x T with 7 < o if

(i) 7 and o share a common triangle, ¢, and

(ii) int 7 and the orthogonal center z; of 7 lie on different sides of the plane aff ¢.

The conditions makes sense for ¢ = 7o, but not for 7 = 7,. The flow relation is acyclic
because 7 < o implies r2 < rZ or ¢ = 7. In words, the radius of the orthogonal ball
increases with the flow relation. This is the intuition behind the flow or vector field that
motivates the definition of ‘<’: a point flows in the direction of the closest orthogonal ball.

If 7 < 0 we call 7 a predecessor of o and ¢ a successor of 7. The set of descendents of T is

dest = {7} U U deso,
7<0€T

and the set of ancestors of o 1s

anco = {o}U U ancr.
o>T€ET

o € T is a sink if it has no successors, or equivalently deso = {0}. 7 is necessarily a sink.
A tetrahedron o € T’ is a sink iff it contains its orthogonal center: z, € o. In general, o
cannot have more than 3 successors because z, can be on the other side of at most 3 of the
4 triangles bounding o.

Sinks are important since they are responsible for the formation of voids. Indeed, if H; is
a void of | JB then at least one tetrahedron in H; is a sink. This follows from the observation
that 7 € H; and 7 < ¢ implies 0 € ‘H;. If ¢ € T is a sink that belongs to H; then z, € H;
and 72 > 0. The radii of sinks thus predict the moment in time H; will disappear, namely
when « reaches the maximum radius of any sink in H;. Of course, before H; disappears it
may break up into several voids, each with at least one sink.



Pockets. The combinatorial notions of closure, interior, and boundary motivate analogous
combinatorial notions applicable to sets of simplices. The closure of a subset L of a simplicial
complex K is CIL = {r € K | 7 C 0 € L}; it is the smallest subcomplex that contains L.
The star of T € Kis Sttr = {c € K| 7 C o}. L CK is open in K if St C L for every
7 € L. The interior of a subset L C K is Int L = {7 € L | St C L}; it is the largest open
set contained in L. The boundary of L is BAL = Cl1L — Int L. An open set is connected
if it cannot be partitioned into two non-empty disjoint open sets. The components are the
maximal connected open subsets.

As mentioned earlier, the intention is to define pockets so they are generalizations of voids,
possibly with connections to the outside. The relation over the tetrahedra decides which side
tetrahedra belong and the divide forms the connection to the outside. More precisely, pockets
consist of the Delaunay tetrahedra that do not belong to CpxB and that are not ancestors of
Too. Define P = Int Cl(T' — anc 7o ) — Cpx B, and let

7) == P1UP2UUPk

be the partition into components. For each 1 < i < k,

p = [Jr-JB

is a pocket of | JB, and P; is its dual set. These definitions are illustrated in figure 5.

Figure 5: The 16 disks are obtained by shrinking the disks in figure 1; 3 of them have now
imaginary radii. There are 2 pockets each grown from one of the voids in figure 1. Consult figures
2 and 3 to see that b Delaunay triangles are ancestors of 7,. All other triangles belong to P
and none to the dual complex of the disk union. The component of 4 disks in the middle of the
picture defines a chain of 4 vertices and 3 edges in the dual complex. This chain separates P into
2 components, each defining a pocket.

The above definition of pockets treats the unbounded component special and different from
the voids. Sometimes this may not be appropriate and large voids are to be treated the same
way as the unbounded component. This can formally be done by bounding the radii of the
sinks used in the construction. For a size limit 8% € R define 1 = {7 }U{c € T" | rZ > 3*}
and

Ps = IntCl(T—erTﬂ anco) — CpxB.

As before, the subset of R® — | JB covered by the interiors of the simplices in a component of
Pg is a pocket, and the component is its dual set, see figure 6.



Figure 6: The upper bound on the sink radii used for the example shown excludes sinks whose
orthogonal centers are not covered by the disk union in figure 1. As a result, the 2 pockets in
figure 5 are reduced to b smaller pockets.

Mouth openings. The only type of pockets without connection to the outside are the voids.
All other pockets connect to the outside at one or more places. For a pocket P; consider the
part of BdP; not contained in CpxB. BdP; is a simplicial complex and connectedness and
components relative to Bd P; are well defined for all its open subsets. The mentioned set is
indeed open in Bd P; and we let

BdP; — CpxB = MiUMyU ...UM,

be the partition into components. The mouths of P; are the sets M; = (JM; — B, for
1 < j < ¥, and their dual sets are the M;. Consider for example the two pockets in figure 5.
The left and smaller pocket has 3 mouths, each defined by a single Delaunay edge. The right
and bigger pocket has 4 mouths, 3 defined by a single Delaunay edge each and 1 defined by
a chain of 2 Delaunay edges and 1 Delaunay vertex.

The number of mouths, £, is a useful characteristic of a pocket and can be used to distin-
guish between different types. One would expect a pocket with different number of mouths
in a protein implies different functionalities. We suggest the following terminology reflecting
the resulting classification. Call a pocket a

void if £ =0,
normal pocket ifé=1,
simple connector  if £ =2, and
multiple connector if £>3.

In the presence of a size limit one can furthermore distinguish between connectors whose
mouths connect to the same or to different components of the outside.

Related concepts. The computational biology literature contains at least 3 concepts de-
fined as tools to study regions of limited accessibility. These are the ‘molecular surface’, the
‘interstitial skeleton’, and the ‘molecular interface’. We briefly point out the similarities and
differences between pockets and these concepts. The authors of this paper believe pockets are
superior to all 3 concepts in terms of visual appearance, objective quantification, and wide
applicability.

The molecular surface model defined by Richards [16] is a union of balls, | JB, where
gaps inaccessibly to a sphere modeling a solvent are filled. Let MS D |JB be the resulting



object. The union of pockets is similar to albeit not the same as the difference, M S — | JB,
union all voids of M.S. While pockets are defined in terms of relative distance, the criterion
employed for defining molecular surface uses absolute distance, namely the radius of the
solvent. Furthermore, the object obtained from M S is cluttered with tiny remains within the
crevices and cusps of | JB. Pockets do not share this visual distraction.

The interstitial skeleton defined by Connolly [3] consists of all Voronoi edges outside | JB
and within the convex hull of the balls. A problematic feature of this concept is the lack of
any possibility to clip edges inside delta regions where a depression opens up slowly towards
the outside. Another disadvantage is the mess of edges that possibly attracts the eye to large
pockets, but they offer little in terms of objective quantification.

The molecular interface has recently been suggested by Varshney and coauthors [17] to
study the region between interacting molecules. It assumes 2 or more different molecules
and consists of the points outside all molecules at distance at most ¢ from at least 2 of the
molecules. ¢ is a parameter that can be chosen and adjusted. A shortcoming of this definition
is its lack of dependence on any local shape characteristic. Also, it cannot be used to study
depressions in a single molecule. On the other hand, pockets are easily adjusted to study the
interface: compute pockets for the union of the molecules and select only the ones that touch
at least 2 different molecules.

5 Algorithm

We construct pockets by growing them from sinks. We assume a pointer based data structure
for Del B and a linear list that distinguishes between Delaunay simplices inside and outside an
alpha complex. Both data structures are part of the alpha shape software [10], which forms
the basis of our implementation. The entire software is based on exact arithmetic and the
simulation of general position by infinitesimal perturbation [11]. We begin by describing the
two data structures in sufficient detail to provide the context for the construction of pockets.

Simplex digraph. We refer to the pointer based data structure for Del B as the simplex
digraph. It supports access to neighboring simplices in constant time each. Data structures
with this functionality are reasonably standard and different versions have been described in
the literature, see e.g. [1, 6].

The simplices of Del B are the nodes of the digraph, and they are referenced through
pointers. Each simplex has direct access to its location in the linear list or filter, see below.
In order to avoid a tedious discussion of the details of the simplex digraph, we stipulate
functions FACES and COFACES that provide access to the neighborhood. Given a simplex
o € Del B and a dimension k£ < dim o, FACES returns the k-dimensional faces:

FACES(o, k) = {7 € Cl{c} |dimT = k}.
For £ > dimo, COFACES returns the k-dimensional simplices that share ¢ as a face:
COFACES(o, k) = {7 €Sto |dimT = k}.

It is convenient to assume COFACES(c,3) includes 7o, if o lies on the boundary of |Del B|.
We assume both functions take constant time per returned simplex.

As an example consider the problem of computing the set N (o) of tetrahedra adjacent to
a given tetrahedron o € Del B.

N(o) := 0;

10



for all ¢ € FACES(0,2) do
for both 7 € COFACES(p, 3) do
if 7 # o then
N(o):= N(o)U {7}
endif
endfor
endfor.

The first loop is over 4 triangles and the second over 2 tetrahedra each, so the total time for
finding all adjacent tetrahedra is constant.

Filter and filtration. The Delaunay simplices are stored in the order they enter the alpha
complex. We assume an array representation with constant time access via indices.

Recall the a;-complex of B is a subcomplex of the as-complex if a? < a2. It follows the
infinite sequence of a? defines a sequence of nested complexes. Two consecutive complexes
differ by one or more Delaunay simplices, and the cardinality of Del B is an upper bound on
the number of complexes in the sequence. We represent the sequence by a list of simplices
sorted in the order they enter. We break ties by letting vertices precede edges precede triangles
precede tetrahedra. Remaining ties are broken arbitrarily. The resulting sequence of simplices,

020’0’01’0%'-"0}“

is a filter of Del B. The array is a representation of the filter, with pointers linking simplices
to their locations in the simplex digraph. Each prefix of the filter defines a simplicial complex,
K;={00,01,...,0:}. The resulting sequence of complexes,

{@} — /Co,Kl,/CQ,...,/Cn = DelB,

is a filtration of Del B. For each o? € R there is an index i(«) with Cpx,B = Ki(a), but not
necessarily vice versa.

Suppose we wish to construct the pockets of | J By, or rather their dual sets. The general
idea is to traverse the latter part of the filter, from ;41 to . The algorithm is incremental,
and after processing the simplices in K; the data structures represent the pockets for the
corresponding size limit. Each encountered tetrahedron either joins the outside, joins a set of
delayed tetrahedra because it does not belong to the current set of pockets, or starts a new
pocket and possibly merges some of the existing pockets into one. The delayed tetrahedra
will be added at the appropriate time.

Representing pockets. The pockets are stored as sets of tetrahedra in an evolving system,
T, represented by a union-find data structure. The sets in T are pairwise disjoint and the
data structure supports the following operations:

ADD(u) : Add {u} as a new set to T.
SET(u) : Find set X € T with u € X.
UNION(X,Y): Replace sets X and Y by X UY.

A sequence of m operations takes time O(ma(m)), where a(m) is the extremely slowly growing
inverse of Ackermann’s function, see e.g. [2, chapter V]. For all practical purposes, a(m) can
be considered a small constant.

In our application, the elements in the system are tetrahedra. YT is initialized to {{7wo}}.
SET(Teo ) represents the outside and is the only set in T that does not represent a pocket.

11



Traversing the filter. The index of a simplex specifies its position in the filter. If o; is a
tetrahedron its depth is

dpo; = max{k|oy € deso;}
= max({j} U {dpo | o < o).

The depth determines the minimum size limit from which moment on the tetrahedron belongs
to the set of pockets. The recursive specification of depth lends itself to computing all depth
values in a single traversal of the filter.

for j := n downto 1 do
dpo; = j;
for all 7 € N(g;) do
if 0; < 7 then
dpoj := max{dpo;,dpr}
endif
endfor
endfor.

Pockets are constructed by following the evolution of the ball growth. Only tetrahedra o;
with i(a) < j < i(f) need to be considered, and such a o; belongs to Pg iff dpo; < i(5).
When the traversal reaches o;, all tetrahedra with depth j are added to the union-find system
representing the pockets. These tetrahedra are collected in an initially empty set Y;. At the
time Y; is processed it may or may not contain o;.

for j :=i(a) to i(F) do
k:=dpoj; Yy =Y U{o;};
for all ¢ €Y do
ADD(0);
for all 7 € N(o) with 7 € (T do
UNION (SET(0), SET(T))
endfor
endfor
endfor.

Note the test whether or not the tetrahedron 7 belongs to any set in T that occurs in the
inner for-loop. For 7 = o, the test is equivalent to i(a) < k and dp 7 < j.

Dual sets of pockets and mouths. The traversal constructs a pocket P as a set of
tetrahedra. To compute the dual set, P, we still need to take the closure of this set, then the
interior, and remove simplices in the dual complex of | JB. Similarly, to get the dual sets of
the mouths, we need to take the boundary, remove simplices in the dual complex, and collect
components. We first describe the process for pockets and then for mouths.

Let X € T be the collection of tetrahedra defining P. The closure C = Cl X is obtained
by collecting all faces, with a straightforward marking mechanism to avoid duplication:

C =X U{0};

for all 7 € X do C := C UFACES(T,2)
UFACES(T, 1) UFACES(T, 0)

endfor.

To construct the interior, we use the fact a vertex or edge in C belongs to Z = Int C1 X iff all
triangles in its star belong to 7.

12



I:=C-{0};
for all triangles ¢ € 7 do
for both 7 € COFACES(¢p, 3) do
if 7¢ X thenZ :=7 — {p}
— FACES(¢, 1) — FACES(¢, 0)
endif
endfor
endfor.

The dual set of P is finally obtained by removing all simplices from Z whose indices in the
filter are less than ¢ + 1.

The dual sets of the mouths M; are the components M; of BdP —CpxB. Every boundary
simplex of P belongs to B=BdCl X = C —17 or to CpxB or to both. We can therefore work
with B, which can be constructed along with Z by the above algorithm.

B is a 2-dimensional connected manifold because 7 is connected. This means every edge
belongs to exactly 2 triangles and the star of every vertex is an alternating cycle of edges and
triangles. The M; are the components of B — CpxB. They are computed in a way analogous
to the computation of the dual sets of pockets, only in one dimension lower. First, traverse
the triangles ¢ € B and collect the ones outside Cpx B in a system represented by a union-find
data structure. Whenever a triangle is added, check the 3 adjacent triangles and merge sets
if they are already in the system. In the end, each set Y in the system contains the triangles
of a mouth M;. The dual set of M; is M; =IntClY.

6 Protein Examples
Tunnel extraction for Gramacidin A. Gramacidin A is a synthetic membrane channel

and has been used as an antibiotic. It is composed of D and L amino acid residues in
alternating order.

Figure 7: The alpha shape of gramacidin A reflecting the topological structure of the molecule.

Figure 7 shows the alpha complex of the molecule when o = 0. Figure 8 shows that the
tunnel of the potassium channel is extracted by the pocket construction of gramacidin A.

Pocket in HIV-I protease for inhibitor. HIV-I protease displayed in figure 9 is impor-
tant for the maturation of HIV-I virus. Its complexed structure with VX-478 inhibitor has
been recently solved [13]. Atoms of the HIV-I protease that are in solvent contact with the
inhibitor can be identified by comparing the complexes for the bound and unbound states.
The inhibitor binding site is a pocket and can be seen from the alpha complex on the left of
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Figure 8: The pocket constrcuted from gramacidin A. It is a simple channel connector.

Figure 9: HIV-I protease shown in van der Waals model.

figure 10. This binding site is a simple connector with 2 mouths. The pocket of the binding
site is constructed and shown on the right. Note the complementary nature of the two shapes.

Heme pocket of the myoglobin. Myoglobin is the protein that carries oxygen in muscle
cells, providing the oxygen necessary for cell metabolism. Figure 11 shows the alpha complex
of the apoprotein as well as the heme pocket. The heme binding site is in the pocket that
can be seen from the alpha complex. The dual set of the pocket is constructed and depicted
on the right hand side. Note that unlike the previous example, this is a normal pocket with
a dead end.

7 Discussion and Extensions

Initial experiments have shown that the algorithm for computing pockets described in this
paper cannot find shallow pockets. In systems of large molecules, shallow pockets can occur
quite frequently. One possible solution to this problem is an additional parameter specify-
ing ‘steepness’ or ‘depth’ that will add finer control over the inclusion or exclusion of the
tetrahedra that flow to 7.

The concept of a pocket can be applied to the complementary space of a macromolecule
thus defining protrusions of the molecule. An appropriate notion of complementarity is de-
scribed in [8]. The authors of this paper expect that pockets and protrusion together provide
a good handle on predicting docking pairs and sites.
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Figure 10: The alpha complex of HIV-I protease and the inhibitor binding pocket.

Figure 11: The alpha complex of myoglobin and the dual set of the heme binding pocket.

The notion of limited accessibility arises also in studies of shapes in other fields. For
example, Miller [15] uses it to compute realistic shadings of statues. Notions of local and global
accessibility are related to molecular surfaces and to pockets. The algorithmic techniques in
this paper can be used to improve the performance of the algorithms in [15] by orders of
magnitudes.
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