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Abstract
Splines and deformable surface models are widely used in computer
graphics to describe free-form surfaces. These methods require

manual preprocessing to discretize the surface into patches and to

specify their connectivity. We present a new model of elastic sur-
faces based on interacting particle systems, which, unlike previous
techniques, can be used to sptiL join, or extend surfaces without
the need for manual intervention. The particles we use have long-
range attraction forces and short-range repulsion forces and follow
Newtonian dynamics, much tiie recent computational models of
fluids and solids. To enable our particles to model surface elements
instead of point masses or volume elements, we add an orientation
to each particle’s state. We devise new interaction potentials for

our oriented particles which favor locally planar or spherical ar-
rangements. We atso develop techniques for adding new particles
automatically, which enables our surfaces to stretch and grow. We
demonstrate the application of our new particle system to modefing
surfaces in 3-D and the interpolation of 3-D point sets.

Keywords: Surface interpolation, particle systems, physically-
based modeling, oriented particles, self-organizing systems, sim-
ulation.
CR Categories and Subject Descriptors: 1.3.5 [Computer Graph-
ics]: Computational Geometry and Object Modeling — Curve, sur-
jace, solid, and object represe~adons; 1.3.7 [Computer Graphics]:
Three-Dimensional Graphics and Realism — Animation.

1 Introduction
The modeling of free-form surfaces is one of thecentraf issues
of computer graphics. Spline models [3, 8] and deformable
surface models [25] have been very successful in creating
and animating such surfaces. However, these methods ei-
ther require the discretization of the surface into patches (for
spline surfaces) or the specification of local connectivity (for

spring-mass systems). These steps can involve a significant
amount of manual preprocessing before the surface model
can be used.

For shape design and rapid prototyping applications, we
require a highly interactive system which does not force the
designer to think about the underlying representation or be
limited by its choice [18]. For example, we require the basic
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abilities to join severrd surfaces together, to split surfaces
along arbitrary lines, or to extend existing surfaces, without
specifying exact connectivity. For scientific visualization,

data interpretation, and robotics applications, we require a

modeling system that can interpolate a set of scattered 3-D

data without knowing the topology of the ‘surface. To con-
struct such a system, we will keep the ideas of deformation
energies from elastic surface models, but use interacting par-
ticles to build our surfaces.

Particle systems have been used in computer graphics

by Reeves [16] and Sims [21] to model natural phenomena

such as fire and waterfalls. In these models, particles move
under the influence of force fields and constraints but do
not interact with each other. More recent particle systems

borrow ideas from molecular dynamics to model liquids and
solids [12, 26, 29]. In these models, which have spherically
symmetric potentiaf fields, particles arrange themselves into
volumes rather than surfaces.

In this paper, we develop orienfedparlicles, which over-

come this natural tendency to form solids and prefer to form
surfaces instead. Each particle has a local coordinate frame

which is updated during the simulation [171. We de-

sign new interaction potentials which favor locally planar or
locally spherical arrangements of particles. These interac-
tion potentials are used in conjunction with more traditional
long-range attraction forces and short-range repulsion forces
which control the average inter-particle spacing.

Our new surface model thus shares characteristics of

both deformable surface models and particle systems. Like
traditional spline models, it can be used to model free-form
surfaces and to smoothly interpolate sparse data. Like in-

teracting particle models of solids and liquids, our surfaces
can be split, joined, or extended without the need for re-
pararneterization or manual intervention. We can thus use
our new technique as a tool for modeling a wider range of
surface shapes.

The remainder of the paper is organized as follows.

In Section 2 we review traditional splines and deformable

surface models, as well as particle systems and the poten-
tial functions traditionally used in molecular dynamics. In
Section 3 we present our new oriented particle model and

the new interaction potentials which favor locally planar and
locally spherical arrangements. Section 4 presents the dy -
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namics (equations of motion) associated with our interacting

particle system and discusses numerical time integration and
complexity issues. Section 5 discusses alternative rendering
techniques for particles and surfaces. In Section 6 we present
simple shaping operations for surfaces built out of pwticles.
In Section 7 we show how to extend existing surfaces by

adding new particles, and how to use this approach to auto-
matically fit surfaces to 3-D point collections. In Section 8 we

discuss applications of our system to geometric modeling.

2 Background
Our new surface modeling technique is based on two pre-
viously separate areas of computer graphics, namely de-
formable surface models and particle systems. Below, we
present a brief review of these two fields.

2.1 Deformable Surface Models

Traditional spline techniques [3,8] model an object’s surface

as a collection of piecewise-polynomial patches, with appro-
priate continuity constraints between the patches to achieve
the desired degree of smoothness. Within a particular patch,
the surface’s shape can be expressed using a superposition of
basis functions

S(u], IQ) = ~ vil?i(ul, IQ)
i

(1)

where S(U1, W) are the 3D coordinates of the surface as
a function of the underlying parameters (u1, %), vi are the
control vertices, and B~(U1,W) are the piecewise polynomial
basis functions. The surface shape can then be adjusted by
interactively positioning the control vertices or by directly
manipulating points on the surface [2].

Elastically deformable surface models [25] also start
with a parametric representation for the surface S(U1, w).
To define the dynamics of the surface, Terzopoulos ef al.
[25] use weighted combinations of different tensor (stretching

and bending) measures to define a simplified deformation
energy which controls the elastic restoring forces for the
surface. Additional forces to model gravity, external spring
constraints, viscous drag, and collisions with impenetrable

objects can then be added.
To simulate the deformable surface, these analytic equa-

tions are discretized using either finite element or finite dif-
ference methods. This results in a set of coupled differential

equations governing the temporat evolution of the set of con-
trol points. Physically-based surface models can be thought
of as adding temporal dynamics and elastic forces to an oth-
erwise inert spline model. They can also be thought of as

a collection of point masses connected with a set of finite-
length springs [26].

Physically-based surface models have been used to

model a wide variety of materials, including cloth [30, 6],

membranes [25], and paper [24]. Viscoelasticity, plasticity,

and fracture have been incorporated to widen the range of
modeled phenomena [24].
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Figure 1: Lennard-Jones type function, ~(r) = B/r” –
A/rm. The solid line shows the potentiaJ function ~(r),
and the dashed line shows the force function ~(r) =
– $~(r).

The main drawback of both splines and deformable sur-
face models is that the rough shape of the object must be
known or specified in advance [27]. For spline models, this

means discretizing the surface into a collection of patches
with appropriate continuity conditions, which is generally a
difficult problem [1 1]. For deformable surface models, we
can bypass the patch formation stage by specifying the lo-
cation and interconnectivity of the point masses in the finite
element approximation. In either case, defining the model
topology in advance remains a tedious process. Furthermore,
it severely limits the flexibility of a given surface model.

2.2 Particle Systems

Particle systems consist of a large number of point masses

(particles) moving under the influence of extemat forces such
as gravity, vortex fields, and collisions with stationary obsta-
cles. Each particle is represented by its position, velocity,
acceleration, mass, and other attributes such as color. The
ensemble of particles moves according to Newton’s laws of
motion. Particle systems built from non-interacting parti-

cles have been used to realistically model a range of natural
phenomena including fire [16] and waterfalls [21]. Interact-
ing (oriented) particles have been used to simulate flocks of

“boids” [17].
Ideas from molecular dynamics have been used to de-

velop models of deformable materials using collections of
interacting particles [26, 12, 29]. In these models, long-
range attraction forces and short-range repulsion forces con-
trol the dynamics of the system. Typically, these forces are
derived from an intermolecular potential function such as the
Lennard-Jones function 4U shown in Figure 1. The force f;j

attracting a molecule to its neighbor is computed from the
derivative of the potential function

fi~ = –Vrk(llrijll)j (2)

where r;j = Pj – pi is the vwtor distance betwtxm molecules

z and j (Figure 2).
Physical systems whose dynamics are governed by po-

tential functions and damping will evolve towards lower en-
ergy states. When extemrd forces are insignificant, molecules



Computer Graphics, 26,2, July 1992

t

k
(Pi, R)

Figure 2: Global and local coordinate frames. The global
interparticle distance rij is computed from the global coor-
dinates pi ttnd Pj of particles i ~d j. The lod distance dij
is computed from rij and the rotation matrix I&.

will arrange themselves into closely packed structures to
minimize their total energy. For circularly symmetric po-

tential energy functions in 2-D, the molecules will arrange

themselves into hexagonal orderings. In 3-D, the molecules
will arrange themselves into hexagonally ordered 2-D lay-
ers, and therefore make good models of deformable solids
[29]. When external forces become huger or internal particle
forces smaller, the behavior resembles that of viscous fluids
[26, 12]. More sophisticated models of molecular dynamics

are used in simulations of physics and chemistry [10]; how-
ever, these are designed for high accuracy and are usually too

slow for animation or modeling applications.

3 Oriented Particles
While particle systems are much more flexible than de-
formable surface models in arranging themselves into ar-
bitrary shapes and topologies, they do suffer from one major
drawback: in the absence of external forces and constraints,
3-D particle systems prefer to arrange themselves into solids
rather than surfaces. To overcome this limitation, we in-

troduce a new distributed model of surface shape which we
call orienled particles, in which each particle represents a
small surface element (which we could call a “surfel”). In
addition to having a position, an oriented particle also has its
own local coordinate frame, which adds three new degrees
of freedom to each particle’s state.

To force oriented particles to group themselves into

surface-like arrangements, we devise a collection of new
potential functions. These potential functions can be derived
from the deformation energies of local triangular patches us-

ing finite element analysis [23].
Each oriented particle defines both a normal vector (z

in Figure 2) and a local tangent plane to the surface (defined
by the local z and y vectors). More formally, we write the
state of each particle as (pi, I&), where pi is the particle’s
position and Ri is a 3 x 3 rotation matrix which defines the

orientation of its local coordinate frame (relative to the global
frame (X, Y, Z)). The third column of R is the local normal

Pi rij Pj Pi rij P]

(a) co-planarity (b) co-normality

L-Yn;
Pi rij Pj

(c) co-circularity

Figure 3: The three oriented particle interaction potentials.

The open circles and thin arrows indicate a possible new

position or orientation for the second particle which would
lead to a null potential.

valor 11~.
For surfaces whose rest (minimum energy) configura-

tions are flat planes, we would expect neighboring particles
to lie in each other’s tangent planes. We can express this
co-planarity condition as

h(ni, rij) = (ni - rij)2#(l/rij 11), (3)

i.e., the energy is proportional to the dot product between
the surface normal and the vector to the neighboring particle
(13gure 3a). The weighting function t(r) is a monotone
decreasing function used to limit the range of inter-particle
interactions.

The co-planarity condition does not control the “twist”
in the surface between two particles. To limit this, we intro-

duce a co-normality potential

~N(ni~nj~rij)= [Ini- ‘j[lzt(lkijll), (4)

which attempts to line up neighboring normals, much like
interacting magnetic dipoles (Figure 3b),

An alternative to surfaces which prefer zero curvature
(local planarity) are surfaces which favor constant curvatures.
This can be enforced with a co-circularity potential

k(ni, %,rij) = ((ni + ‘j) “‘ij)’+(llrijll) (5)

which is zero when normals are antisymmetrical with respect
to the vector joining two particles (Figure 3c). This is the
natural configuration for surface normals on a sphere.

The above potentials can also be written in term of a par-

ticle’s local coordinates, e.g., by replacing the interparticle
distance rij by

dij = Rt~lrij = R~l(Pj – pi), (6)
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which gives the coordinates of particle j in particle i’s locat
coordinate frame. This not only simplifies certain potentiat
equations such as (3), but also enables us to write use a
weighting function #(dij ) which is not circularly symmetric,
e.g., one which weights particles more if they are near a given

particle’s tangent plane. In practice, we use

( Zz+y= z=
#(22, y,z) = Kexp –— – —

2a2 2~
)

(7)

with b < u.

To control the bending and stiffness characteristics of
our deformable surface, we use a weighted sum of potentiat
energies

E1j = ~U~U(Ilrajll) + ~p~p(ni, rij) (8)

+ ~N#N(na> nj, rij ) + W+c(ni,nj,rij).

The first term controls the average inter-particle spacing, the
next two terms control the surface’s resistance to bending,
and the last controls the surface’s tendency towards uniform
local curvature. The total internal energy of the system Etit
is computed by summing the inter-particle energies

Ekt = ~~Eij.
ij

4 Particle Dynamics

Having defined the internal energy associated with our sys-
tem, we can derive its equations of motion. The variation
of inter-particle potential with respect to the particle position
and orientations gives rise to forces acting on the positions
and torques acting on the orientations. The formulas for

the inter-particle forces fij and torques Tij are given in Ap-
pendix A. These forces and torques can be summed over all
interacting particles to obtain

f; = ~ fij + f~~~(pa) – fiVij (9)
j CJVi

‘i= ~ Tij ‘~l~i) (lo)

j EN;

where Afl are the neighbors of i (Section 4.2). Here, we
have lumped all external forces such as gravity, user-defined
control forces, and non-linear constraints into fe,l, and added
velocity-dependent damping &vi and ~l~i.

Using these forces and torques, we can write the stan-
dard Newtonian equations of motion

at = fi/~ Ui = I,~17i

%= ai ~=~~

~=vi % = Wij

where rni is the particle’s mass, and Ii is its rotationat inertia
(which for a circularly symmetric particle is diagonal). The
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equations for translational acceleration a, velocity v, and po-
sition p are the same as those commonly used in physically-
based modeling and particle systems. The equations for ro-
tational acceleration a, velocity w, and orientation q are less
commonly used. The rotational accelerations and velocities

are vector quantities representing infinitesimal changes and

can be added and scaled as regular vectors. The computation

of the orientation (local coordinate frame) is more complex,
and a variety of representations could be used. While we use
the rotation matrix R to convert from local coordinates to
global coordinates and vice versa, we use a unit quatemion
q as the state to be updated. The unit quatemion

q = (w,s) with ~
= n sin(t?/2)

= cos(e/2)

represents a rotation of 0 about the unit normal axis n. To

update this quatemion, we simply forma new unit quatemion
from the current angular velocity w and the time step At, and
use quatemion multiplication [20],

4.1 Numerical Time Integration

To simulate the dynamics of our particle system, we integrate
the above system of differential equations through time. At

each time step tj+l = tj + At we sum W of the forces act-
ing on each particle i and integrate over the time interval.
The forces include the inter-particle forces, collision forces,
gravity, and damping forces. We use Euler’s method [15] to
advance the current velocity and position over the time step.
More sophisticated numerical integration techniques such as
Runge-Kutta [15] or semi-implicit methods [25] could also

be used, and would result in better convergence and larger
timesteps, at the expense of a more complicated implemen-

tation.

4.2 Controlling Complexity

The straightforward evaluation of (9) and (10) to compute
the forces and torques at atl of the particles requires 0(iV2)
computation. For large values of N, this can be prohibitively
expensive. This computation has been shown to be reducible
to O(N log N) time by hierarchical structuring of the data
[1]. In our work, we use a k-d tree [19] to subdivide space

sufficiently so that we can efficiently find all of a point’s
neighbors within some radius (e.g., 3 To, where Tois the nat-
ural inter-particle spacing). To further reduce computation,
we perform this operation only occasionally and cache the
list of neighbors for intermediate time steps.

5 Rendering
A variety of techniques have km developed for rendering
particle systems, including light emitting points [16, 21] and
iso-surfaces or “blobbies” [4, 28] for modeling volumes. For
rendering oriented particles, simple icons such as axes (Fig-

ure 4a) or flat discs (Figure 4b) can be used to indicate the
location and orientation of each particle. A more realistic
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Figure 4: Rendering techniques for particle-based surfaces: (a) axes, (b) discs, (c) wireframe triangulation (d) flat-shaded

triangulation.

looking surface display requires the generation of a triangu-
lation over our set of particles, which can then be displayed
as a wireframe (Figure 4c) or shaded surface (Figure 4d).
For shaded rendering, Gouraud, Phong, or flat shading can

be applied to each triangle. For a smoother looking surface,

a cubic patch can be interpolated at each triangle (since we
know the normals at each comer).

Because our particle system does not explicitly give us a

triangulation of the surface, we have developed an algorithm
for computing it. A commonly used technique for triangu-
lating a surface in 2-D or a volume in 3-D is the Delaunay

triangulation [5]. In 2-D, a triangle is part of the Delaunay
triangulation if no other vertices are within the circle circum-
scribing the triarrglc. To extend this idea to 3-D, we check the

smallest sphere circumscribing each triangle. This heuristic
works well in practice when the surface is sufficiently sam-
pled with respect to the curvature. The results of using our
triangulation algorithm arc shown in Figures 4C and 4d.

6 Basic modeling operations
This section describes some basic operations for interactively

creating, editing, and shaping particle-based surfaces.

The most basic operations are adding, moving, and

deleting single particles. We can forma simple surface patch
by creating a number of particles in a plane and allowing the
system dynamics to adjust the particles into a smooth surface.
We can enlarge the surface by adding more particles (either
inside or at the edges), shape the surface by moving particles

around or changing their orientation, or trim the surface by
deleting particles. All particle editing uses direct manipula-

tion. Currently, we use a 2-D locator (mouse) to perform 3-D
locating and manipulation, inferring the missing depth coor-

dinate when necessary from the depths of nearby particles.
Adding 3-D input devices for direct 3-D manipulation [18]

would bc of obvious benefit.

In addition to particle-based surfaces, our modeling sys-
tem also contains user-definable solid objects such as planes,

spheres, cylinders, and arbitrary polyhedra. These objects are
used to shape particle-based surfaces, by acting as solid tools
[14], as attracting surfaces, as “movers” which grab all of

the particles inside them, or as large erasers. These geomet-

ric objects are positioned and oriented using the same direct
manipulation techniques as are used with particles. Another
possibility for direct particle or surface manipulation would

be extended free-form deformations [7].

Using these tools, particle-based surfaces can be “cold
welded” together by abutting their edges (Figure 5). Inter-

particle forces pull the surfaces together and readjust the
particle locations to obtain a seamless surface with uniform
sampling density. We can “cut” a surface into two by separat-
ing it with a knife-like constraint surface (Figure 6). Here, we
use the “heat” of the cutting tool to weaken the inter-particle
bonds [29]. Or we can “crease” a surface by designating a
line of particles to be unorien[ed, thereby locally disabling
surface smoothness forces (co-phmarit y, etc.) without re-

moving inter-particle spacing interactions (Figure 7).

7 Particle creation and 3-D
interpolation

Our particle-based modeling system can be used to shape a
wide variety of surfaces by interactively creating and manip-
ulating particles. This modeling system becomes even more
flexible and powerful if surface extension occurs automati-

cally or semi-automatically. For example, we would like to
stretch a surface and have new particles appear in the elon-
gated region, or to till small gaps in the surface, or extend
the surface at its edges. Another useful capability would be
a system which can fit a surface to an arbitrary collection
of 3-D points. Below, we describe how our system can be
extended to generate such behaviors.

The basic components of our particle-based surface ex-

tension algorithm are two heuristic rules controlling the ad-
dition of new particles. These rules are based on the assump-

tion that the particles on the surface are in a near-equilibrium
configuration with respect to the flatness, bending, and inter-
particle spacing potentials.

The first (stretching) rule checks to see if two neighbor-
ing particles have a large enough opening between them to
add anew particle. If lwo particles are separated by a distance
d such that +~ ~ d g &,X, we create a candidate particle at

the midpoint and check if there are no other particles within

l/zo&~. Vpically Lm = 2.0 TO and A.. x 2.5 TO, where
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Figure 5: Welding two surfaces together. The two surfaces are brought together through interactive user manipulation, and join 
to become one seamless surface. 

Figure 6: Cutting a surface into two. The movement of the knife edge pushes the particles in the two surfaces apart. 

- - 
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‘: 

. 

Figure 7: Putting a crease into a surface. The center row of particles is turned into unoriented particles which ignore smoothness 

forces. 

Figure 8: Particle creation during stretching. As the ball pushes up through the sheet, new particles are created in the gaps 
between pairs of particles. 

190 
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r. is the natural inter-particle spacing. An exampleof this
stretchingrule in action is shown in Figure 8, where a ball
pushing against a sheet stretches it to the point where new
particles are added.

The second (growing) rule allows particles to be added
in all directions with respect to a particle’s local z-y plane.
The rule is generalized to allow a minimum and maximum
number of neighbors and to limit growth in regions of few

neighboring particles, such as at the edge of a surface. The

rule counts the number of immediate neighbors n~ to see
if it falls within a valid range ~~ ~ rtN < ~~X, It also

computes the angles between successive neighbors AO~ =

~i+l – Oa using the particle’s locat coordinate frame, and
checks if these fall within a suitable range 6~ti ~ A6a s &,X.
If these conditions are met, one or more particles are created
in the gap. In generat, a sheet at equilibrium will have interior

particles with six neighbors spaced 60° apart while edge
particles will have four neighbors with one pair of neighbors

180° apart.

With these two rules, we can automatically build a sur-
face from collections of 3-D points. We create particles at
each sample location and fix their positions and orientations.
We then start filling in gaps by growing particles away from
isolated points and edges, After a rough surface approxima-
tion is complete we can release the originat sampled particles

to smooth the final surface thereby eliminating excessive
noise. If the set of data points is reasonably distributed, this

approach will result in a smooth continuous closed surface
(Figure 9). The fitted surface is not limited to a particular

topology, unlike previous 3-D surface fitting models such as
[25, 13].

We can also fit surfaces to data that does not originate
from closed surfaces, such as stereo range data [9, 22]. Sim-
ply growing particles away from the sample points poses

several problems. For example, if we allow growth in all
directions, the surface may grow indefinitely at the edges,
whereas if we limit the growth at edges, we may not be able
to fill in certain gaps. Instead, we apply the stretching heuris-
tic to effectively interpolate the surface between the sample
points (Figure 10). When the surface being reconstructed has
holes or gaps, we can control the size of gaps that are filled
in by limiting the search range. This is evident in Figure
10, where the cheek and neck regions have few samples and
were therefore not reconstructed. We could have easily filled
in these regions by using a larger search range.

8 Geometric Modeling Applications

The particle-based surface models we have presented can be
used in a wide range of geometric modeling and animation
applications. These include applications which have been
previously demonstrated with physically-based deformable

surface models, such as cloth draping [30, 25, 6], plastic

surface deformations [24], and tearing [24].

Using our surface model as an interactive design tool
we can spray collections of points into space to form elastic

sheets, shape them under interactive user control, and then
freeze them into the desired final configuration. We can cre-

ate any desired topology with this technique. For example,
we can form a flat sheet into an object with a stem and then
a handle (Figure 11). Forming such surface with traditional

spline patches is a difficult problem that requires careful at-
tention to patch continuities [11]. To make this example

work, we add the concept of heating the surface near the tool
[29] and only allowing the hot parts of the surface to deform

and stretch. Without this modification, the extruded part of

the surface has a tendency to “pinch off” similar to how soap
bubbles pinch before breaking away. As another example,
we can start with a sphere, and by pushing in the two ends,
form it into a torus (Fig 12). New particles are created inside
the torus due to stretching during the formation process, and
some old sphere particles are deleted when trapped between
the two shaping tools.

Another interesting application of our oriented particle

systems is the interpolation and extrapolation of sparse 3-
D data. This is a difficult problem when the topology or
rough shape of the surface to be fitted is unknown. As
described in the previous section, oriented particles provide
a solution by extending the surface out from known data
points. We believe that these techniques will be particularly
useful in machine vision applications where it can be used

to interpolate sparse position measurements available from
stereo or tactile sensing [22],

9 Discussion

The particle-based surface model we have developed has
a number of advantages over traditional spline-based and
physically-based surface models. Particle-based surfaces are
easy to shape, extend, join, and separate. By adjusting the
relative strengths of various potential functions, the surface’s
resistance to stretching, bending, or variation in curvature can

atl be controlled. The topology of particle-based surfaces can
easily be modified, as can the sampling density, and surfaces
can be fitted to arbitrary collections of 3-D data points.

One limitation of particle-based surfaces is that it is
harder to achieve exact anatytic (mathematical) control over
the shape of the surface. For example, the torus shaped from

a sphere is not circularly symmetric, due to the discretization
effects of the relatively small number of particles. This be-
haviorcould be remedied by adding additional constraints in

the form of extra potentials, e.g., a circular symmetry poten-

tial for the torus. Particle-based surfaces also require more
computation to simulate their dynamics than spline-based
surfaces; the latter may therefore be more appropriate when
shape flexibility is not paramount.

One could easily envision a hybrid system where spline
or other parametric surfaces co-exist with particle-based sur-
faces, using each system’s relative advantages where appro-
priate. For example, particle-based surface patches could

be added to a constructive solid geometry (CSG) modeling

system to perform fileting at part junctions.
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Figure 9: Surface interpolation through a collection of 3-D points. The surface extends outward from the seed points until it 
fills in the gaps and forms a complete surface. 

Figure 10: Interpolation of an open surface through a collection of 3-D points. Particles are added between control points until 
all gaps less than a specified size are filled in. Increasing the range would allow the suarse areas of the cheek and neck to filled 

L 

Figure 11: Forming a complex object. The initial surface is deformed upwards and then looped around. The new topology (a 
handle) is created automatically. 

Figure 12: Deformation from sphere to 
toroidal shape. 

torus using two spherical shaping tools. The final view is from the side, showing the 
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In future work, we plan to apply particle-based surfaces

to iso-surfaces in volumetric data sets. When combined with
the stretching heuristic for particle creation and an inflation
force, this model would behave in a manner similar to the
geometrically deformed models (GDM) of [13]. We could
extend this idea by tracking a volumetric data set through

time by deforming the particle surface from one frame to the
next.

In another application, we could distribute the particles

over the surface of a CAD model and allow the particles to
change position and orientation while remaining on the sur-
face of the model, thereby creating a uniform triangulation of
the surface. Figure 10 shows how this can be achieved, even
without the presence of the CAD model surface to attract the

particles. A curvature-dependent adaptive meshing of the

surface could also be obtained by locally adjusting the pre-
ferred inter-particle spacing. This would be very useful for

efficiently rendering parametric surfaces such as NURBS.

10 Conclusion
In this paper, we have developed a particle-based model of
deformable surfaces. Our new model, which is based on
oriented particles with new interaction potentials, has char-
acteristics of both physically-based surface models and of
particle systems. It can be used to model smooth, elastic,
moldable surfaces, like traditional splines, and it allows for

arbitrary interactions and topologies, like particle systems.
A potential drawback of our technique is the lack of precise
control over the mathematical form of the surface, which may
be important in engineering applications.

Like previous deformable surface models, our new
particle-based surfaces can simulate cloth, elastic and plastic
films, and other deformable surfaces. The ability to grow new
particles gives these model more fluid-like properties which
extend the range of interactions. For example, the surfaces
can be joined and cut at arbitrary locations. These charac-
teristics make particle-based surfaces a powerful new tool
for the interactive construction and modeling of free-form
surfaces.

Oriented particles can also be used to automatically fit
a surface to sparse 3-D data even when the topology of the
surface is unknown. Both open and closed surfaces can be re-
constructed, either with or without holes. The reconstructed
model can be used as the starting point to interactively create
anew shape and then animated within a virtual environment.
Thus oriented particle systems providea convenient interface

between surface reconstruction in computer vision, freeform
modeling in computer graphics, and animation.
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A Computation of internal forces
To compute the internal inter-particle forces and torques, we

compute the variation of inter-particle potentials with respect
to particle positions and orientations. We can compute these
forces and torques using the equations

f = –VP~ and Vp(p. v) = v
r= –VW~ and Vw(n. v)=nxv

where u is the incremental change in orientation R, i.e.,
lianxw.

Applying these equations to the four internal potentials,
we obtain

f~(r~j) n ‘fiij &(llrijll)

fp(I’ii, r;j) = –lli(ni “rij)+(llrijll)

- ~ij(rli . rij)2 %$ ’(llrijll)

~P(ni, rij) = rij x ni(ni “rij)~(llrijll) = rij x fp

fN(Ilijlljjrij) = ‘fiijllni - njllz%$’(llrijll)

‘N(ni~nj, rij) = ‘i x ‘j ~(llrij[l)

fi(nilnj>rij) = ‘ni((ni + nj) “ rij)d(llrijll)

– Fij((lli + nj) .rij)z@’(llrijll)

~c(nitnj, rij) = rij X fc

where tij is the unit vtxtor along rij. These forces have the
following simple physical interpretations.

The co-planarity potential gives rise to a force parallel to
the particle normat and proportional to the distance between
the neighboring particle and the local tangent plane. The
second term in the force, which can often be ignored, arises
from the gradient of the spatial weighting function. The cross
product of this force with the inter-particle vector produces a

torque on the particle. The co-normality potential produces

a torque proportional to the cross-product of the two particle
normrds, which acts to Iign up the normals. The co-circularity
force is similar to the co-planarity force, except that the local

tangent plane is defined from the average of the two normal
vectors.

To compute the total inter-particle force and torque from
atl three potentials, we use the formulas

fa = ~ 2~~f~(rij) + ~p(fp(ni, rij) – fp(nj, rji))

j~tii

+ 2~NfP(Ili, Ilj, rij) + 2~cf&(ni, nj} rij)

‘i= ~ adni,rij)
jEN;

+ 2~N~p(ni, nj, rij ) + 2W~c(ni, nj, rij)


