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Abstract

In this paper we introduce, analyze and quantitatively compare a
number of surface simplification methods for point-sampled
geometry. We have implemented incremental and hierarchical
clustering, iterative simplification, and particle simulation algo-
rithms to create approximations of point-based models with lower
sampling density. All these methods work directly on the point
cloud, requiring no intermediate tesselation. We show how local
variation estimation and quadric error metrics can be employed to
diminish the approximation error and concentrate more samples in
regions of high curvature. To compare the quality of the simplified
surfaces, we have designed a new method for computing numeri-
cal and visual error estimates for point-sampled surfaces. Our
algorithms are fast, easy to implement, and create high-quality sur-
face approximations, clearly demonstrating the effectiveness of
point-based surface simplification.

1 INTRODUCTION
Irregularly sampled point clouds constitute one of the canonical
input data formats for scientific visualization. Very often such data
sets result from measurements of some physical process and are
corrupted by noise and various other distortions. Point clouds can
explicitly represent surfaces, e.g. in geoscience [12], volumetric or
iso-surface data, as in medical applications [8], or higher dimen-
sional tensor fields, as in flow visualization [22]. For surface data
acquisition, modern 3D scanning devices are capable of producing
point sets that contain millions of sample points [18].

Reducing the complexity of such data sets is one of the key pre-
processing techniques for subsequent visualization algorithms. In
our work, we present, compare and analyze algorithms for the sim-
plification of point-sampled geometry.

Acquisition devices typically produce a discrete point cloud that
describes the boundary surface of a scanned 3D object. This sam-
ple set is often converted into a continuous surface representation,
such as polygonal meshes or splines, for further processing. Many
of these conversion algorithms are computationally quite involved
[2] and require substantial amounts of main memory. This poses

great challenges for increasing data sizes, since most methods do
not scale well with model size. We argue that effective surface
simplification can be performed directly on the point cloud, similar
to other point-based processing and visualization applications [21,
1, 14]. In particular, the connectivity information of a triangle
mesh, which is not inherent in the underlying geometry, can be
replaced by spatial proximity of the sample points for sufficiently
dense point clouds [2]. We will demonstrate that this does not lead
to a significant loss in quality of the simplified surface.

To goal of point-based surface simplification can be stated as
follows: Given a surface defined by a point cloud and a target
sampling rate , find a point cloud with such
that the distance of the corresponding surface to the original
surface is minimal. A related problem is to find a point cloud
with minimal sampling rate given a maximum distance .

In practice, finding a global optimum to the above problems is
intractable. Therefore, different heuristics have been presented in
the polygonal mesh setting (see [9] for an overview) that we have
adapted and generalized to point-based surfaces:

• Clustering methods split the point cloud into a number of sub-
sets, each of which is replaced by one representative sample
(see Section 3.1).

• Iterative simplification successively collapses point pairs in a
point cloud according to a quadric error metric (Section 3.2).

• Particle simulation computes new sampling positions by mov-
ing particles on the point-sampled surface according to inter-
particle repelling forces (Section 3.3).

The choice of the right method, however, depends on the intended
application. Real-time applications, for instance, will put particular
emphasis on efficiency and low memory footprint. Methods for
creating surface hierarchies favor specific sampling patterns (e.g.
[30]), while visualization applications require accurate preserva-
tion of appearance attributes, such as color or material properties.

We also present a comparative analysis of the different tech-
niques including aspects such as surface quality, computational
and memory overhead, and implementational issues. Surface qual-
ity is evaluated using a new method for measuring the distance
between two point set surfaces based on a point sampling approach
(Section 4). The purpose of this analysis is to give potential users
of point-based surface simplification suitable guidance for choos-
ing the right method for their specific application.

Figure 1: Michelangelo’s David at different levels-of-detail. From left to right, 10k, 20k, 60k, 200k and 2000k points for the original model,
rendered with a point splatting renderer.
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Earlier methods for simplification of point-sampled models
have been introduced by Alexa et al. [1] and Linsen [20]. These
algorithms create a simplified point cloud that is a true subset of
the original point set, by ordering iterative point removal opera-
tions according to a surface error metric. While both papers report
good results for reducing redundancy in point sets, pure subsam-
pling unnecessarily restricts potential sampling positions, which
can lead to aliasing artefacts and uneven sampling distributions. To
alleviate these problems, the algorithms described in this paper
resample the input surface and implicitly apply a low-pass filter
(e.g. clustering methods perform a local averaging step to compute
the cluster’s centroid).

In [21], Pauly and Gross introduced a resampling strategy based
on Fourier theory. They split the model surface into a set of
patches that are resampled individually using a spectral decompo-
sition. This method directly applies signal processing theory to
point-sampled geometry, yielding a fast and versatile point cloud
decimation method. Potential problems arise due to the depen-
dency on the specific patch layout and difficulties in controlling
the target model size by specifying spectral error bounds.

Depending on the intended application, working directly on the
point cloud that represents the surface to be simplified offers a
number of advantages:

• Apart from geometric inaccuracies, noise present in physical
data can also lead to topological distortions, e.g. erroneous
handles or loops, which cause many topology-preserving sim-
plification algorithms to produce inferior results (see [32], Fig-
ure 3). Point-based simplification does not consider local
topology and is thus not affected by these problems. If topo-
logical invariance is required, however, point-based simplifi-
cation is not appropriate.

• Point-based simplification can significantly increase perfor-
mance when creating coarse polygonal approximations of
large point sets. Instead of using a costly surface reconstruc-
tion for a detailed point cloud followed by mesh simplifica-
tion, we first simplify the point cloud and only apply the
surface reconstruction for the much smaller, simplified point
set. This reconstruction will also be more robust, since geo-
metric and topological noise is removed during the point-based
simplification process.

• Upcoming point-based visualization methods [14, 25, 23] can
benefit from the presented simplification algorithms as differ-
ent level-of-detail approximations can be directly computed
from their inherent data structures.

• The algorithms described in this paper are time and memory
efficient and easy to implement. Unlike triangle simplification,
no complex mesh data structures have to be build and main-
tained during the simplification, leading to an increased over-
all performance.

We should note that our algorithms are targeted towards densely-
sampled organic shapes stemming from 3D acquisition, iso-sur-
face extraction or sampling of implicit functions. They are not
suited for surfaces that have been carefully designed in a particular
surface representation, such as low-resolution polygonal CAD
data. Also our goal is to design algorithms that are general in the
sense that they do not require any knowledge of the specific source
of the data. For certain applications this additional knowledge
could be exploited to design a more effective simplification algo-
rithm, but this would also limit the applicability of the method.

2 LOCAL SURFACE PROPERTIES
In this section we describe how we estimate local surface proper-
ties from the underlying point cloud. These techniques will be used
in the simplification algorithms presented below: Iterative simpli-
fication (Section 3.2) requires an accurate estimation of the tangent

plane, while clustering (Section 3.1) employs a surface variation
estimate (Section 2.1). Particle simulation (Section 3.3) makes use
of both methods and additionally applies a moving least-squares
projection operator (Section 2.2) that will also be used for measur-
ing surfaces error in Section 4.

Our algorithms take as input an unstructured point cloud
describing a smooth, two-manifold boundary

surface of a 3D object. The computations of local surface prop-
erties are based on local neighborhoods of sample points. We
found that the set of -nearest neighbors of a sample ,
denoted by the index set , works well for all our models. More
sophisticated neighborhoods, e.g. Floater’s method based on local
Delaunay triangulations [5] or Linsen’s angle criterion [20] could
be used for highly non-uniformly sampled models at the expense
of higher computational overhead. To obtain an estimate of the
local sampling density at a point , we define ,
where is the radius of the enclosing sphere of the -nearest
neighbors of given by .

2.1 Covariance Analysis
As has been demonstrated in earlier work (e.g. [11] and [27]),
eigenanalysis of the covariance matrix of a local neighborhood can
be used to estimate local surface properties. The covariance
matrix for a sample point is given by

, (1)

where is the centroid of the neighbors of (see Figure 2).
Consider the eigenvector problem

. (2)

Since is symmetric and positive semi-definite, all eigenvalues
are real-valued and the eigenvectors form an orthogonal

frame, corresponding to the principal components of the point set
defined by [13]. The measure the variation of the

, along the direction of the corresponding eigenvectors.
The total variation, i.e. the sum of squared distances of the
from their center of gravity is given by

. (3)

Normal Estimation. Assuming , it follows that
the plane

(4)

through minimizes the sum of squared distances to the neigh-
bors of [13]. Thus approximates the surface normal at

, or in other words, and span the tangent plane at . To
compute a consistent orientation of the normal vectors, we use a
method based on the minimum spanning tree, as described in [11].

Figure 2: Local neighborhood (a) and covariance analysis (b).
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Surface Variation. quantitatively describes the variation
along the surface normal, i.e. estimates how much the points devi-
ate from the tangent plane (4). We define

(5)

as the surface variation at point in a neighborhood of size . If
, all points lie in the plane. The maximum surface vari-

ation is assumed for completely isotropically dis-
tributed points. Note that surface variation is not an intrinsic
feature of a point-sampled surface, but depends on the size of the
neighborhood. Note also that and describe the variation of
the sampling distribution in the tangent plane and can thus be used
to estimate local anisotropy.

Many surface simplification algorithms use curvature estima-
tion to decrease the error of the simplified surface by concentrating
more samples in regions of high curvature. As Figure 3 illustrates,
surface variation is closely related to curvature.

However, is more suitable for simpli-
fication of point-sampled surfaces than cur-
vature estimation based on function fitting.
Consider a surface with two opposing flat
parts that come close together. Even though a
low curvature would indicate that few sam-
pling points are required to adequately repre-
sent the surface, for point-based surfaces we need a high sample
density to be able to distinguish the different parts of the surface.
This is more adequately captured by the variation measure .

2.2 Moving Least Squares Surfaces
Recently, Levin has introduced a new point-based surface repre-
sentation called moving least squares (MLS) surfaces [17]. Based
on this representation, Alexa et al. have implemented a high-qual-
ity rendering algorithm for point set surfaces [1]. We will briefly
review the MLS projection operator and discuss an extension for
non-uniform sampling distributions.

Given a point set , the MLS surface is defined
implicitly by a projection operator as the points that project
onto themselves, i.e. .

is defined by a two-step procedure: First a local reference
plane is computed by minimizing
the weighted sum of squared distances

, (6)

where is the projection of onto and is a global scale fac-
tor. Then a bivariate polynomial is fitted to the points pro-
jected onto the reference plane using a similar weighted least
squares optimization. The projection of onto is then
given as (for more details see [17, 1]).

Adaptive MLS Surfaces. Finding a suitable global scale fac-
tor can be difficult for non-uniformly sampled point clouds. In
regions of high sampling density many points need to be consid-
ered in the least squares equations leading to high computational
cost. Even worse, if the sampling density is too low, only very few
points will contribute to Equation (6) due to the exponential fall-
off of the weight function. This can cause instabilities in the opti-
mization which lead to wrong surface approximations. We propose
an extension of the static MLS approach, where instead of consid-
ering samples within a fixed radius proportional to , we collect
the -nearest neighbors and adapt according to the radius of
the enclosing sphere. By dynamically choosing , we
ensure that only points within the -neighborhood contribute
noticeably to the least-squares optimization of Equation (6). While

our experiments indicate that this adaptive scheme is more robust
than the standard method, a mathematical analysis of the implica-
tions remains to be done.

3 SURFACE SIMPLIFICATION METHODS
In this section we present a number of simplification algorithms
for surfaces represented by discrete point clouds: Clustering meth-
ods are fast and memory-efficient, iterative simplification puts
more emphasis on high surface quality, while particle simulation
allows intuitive control of the resulting sampling distribution.
After describing the technical details, we will discuss the specific
pros and cons of each method in more detail in Section 5.

3.1 Clustering
Clustering methods have been used in many computer graphics
applications to reduce the complexity of 3D objects. Rossignac
and Borrel, for example, used vertex clustering to obtain multires-
olution approximations of complex polygonal models for fast ren-
dering [24]. The standard strategy is to subdivide the model’s
bounding box into grid cells and replace all sample points that fall
into the same cell by a common representative. This volumetric
approach has some drawbacks, however. By using a grid of fixed
size this method cannot adapt to non-uniformities in the sampling
distribution. Furthermore, volumetric clustering easily joins
unconnected parts of a surface, if the grid cells are too large. To
alleviate these shortcomings, we use a surface-based clustering
approach, where clusters are build by collecting neighboring sam-
ples while regarding local sampling density. We distinguish two
general approaches for building clusters. An incremental
approach, where clusters are created by region-growing, and a
hierarchical approach that splits the point cloud into smaller sub-
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Figure 3: Comparison of surface curvature and surface variation
on the igea model (a). In (b), curvature is computed analytically
from a cubic polynomial patch fitted to the point set using moving
least squares (see Section 2.2). (c) and (d) show surface variation
for different neighborhood sizes.
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sets in a top-down manner [3, 27]. Both methods create a set
of clusters, each of which is replaced by a representative sample,
typically its centroid, to create the simplified point cloud .

Clustering by Region-growing. Starting from a random seed
point , a cluster is built by successively adding nearest
neighbors. This incremental region-growing is terminated when
the size of the cluster reaches a maximum bound. Additionally, we
can restrict the maximum allowed variation of each cluster.
This results in a curvature-adaptive clustering method, where more
and smaller clusters are created in regions of high surface varia-
tion. The next cluster is then build by starting the incremental
growth with a new seed chosen from the neighbors of and
excluding all points of from the region-growing. Due to frag-
mentation, this method creates many clusters that did not reach the
maximum size or variation bound, but whose incremental growth
was restricted by adjacent clusters. To obtain a more even distribu-
tion of clusters, we distribute the sample points of all clusters that
did not reach a minimum size and variation bound (typically half
the values of the corresponding maximum bounds) to neighboring
clusters (see Figure 4 (a)). Note that this potentially increases the
size and variation of the clusters beyond the user-specified max-
ima.

Hierarchical Clustering. A different method for computing
the set of clusters recursively splits the point cloud using a binary
space partition. The point cloud is split if:

• The size is larger than the user specified maximum cluster
size or

• the variation is above a maximum threshold .

The split plane is defined by the centroid of and the eigenvector
of the covariance matrix of with largest corresponding

eigenvector (see Figure 2 (b)). Hence the point cloud is always
split along the direction of greatest variation (see also [3, 27]). If
the splitting criterion is not fulfilled, the point cloud becomes a
cluster . As shown in Figure 4 (b), hierarchical clustering builds
a binary tree, where each leaf of the tree corresponds to a cluster. A
straightforward extension to the recursive scheme uses a priority
queue to order the splitting operations [3, 27]. While this leads to a
significant increase in computation time, it allows direct control
over the number of generated samples, which is difficult to achieve
by specifying and only. Figure 5 illustrates both incre-
mental and hierarchical clustering, where we use oriented circular
splats to indicate the sampling distribution.

3.2 Iterative Simplification
A different strategy for point-based surface simplification itera-
tively reduces the number of points using an atomic decimation
operator. This approach is very similar to mesh-based simplifica-
tion methods for creating progressive meshes [10]. Decimation
operations are usually arranged in a priority queue according to an

error metric that quantifies the error caused by the decimation. The
iteration is then performed in such a way that the decimation oper-
ation causing the smallest error is applied first. Earlier work [1],
[20] uses simple point removal, i.e. points are iteratively removed
from the point cloud, resulting in a simplified point cloud that is a
subset of the original point set. As discussed above, true subsam-
pling is prone to aliasing and often creates uneven sampling distri-
butions. Therefore, we use point-pair contraction, an extension of
the common edge collapse operator, which replaces two points
and by a new point . To rate the contraction operation, we
use an adaptation of the quadric error metric presented for polygo-
nal meshes in [6]. The idea here is to approximate the surface
locally by a set of tangent planes and to estimate the geometric
deviation of a mesh vertex from the surface by the sum of the
squared distances to these planes. The error quadrics for each ver-
tex are initialized with a set of planes defined by the triangles
around that vertex and can be represented by a symmetric
matrix . The quality of the collapse is then rated
according to the minimum of the error functional

.
In order to adapt this technique to the decimation of unstruc-

tured point clouds we use the -nearest neighbor relation, since
manifold surface connectivity is not available. To initialize the
error quadrics for every point sample , we estimate a tangent
plane for every edge that connects with one of its neighbors

. This tangent plane is spanned by the vector and
, where is the estimated normal vector at . After

this initialization the point cloud decimation works exactly like
mesh decimation with the point inheriting the neighborhoods of
its ancestors and and being assigned the error functional

. Figure 6 shows an example of a simplified point
cloud created by iterative point-pair contraction.

3.3 Particle Simulation

In [29], Turk introduced a method for resampling polygonal sur-
faces using particle simulation. The desired number of particles is
randomly spread across the surface and their position is equalized
using a point repulsion algorithm. Point movement is restricted to

Figure 4: (a) Clustering by incremental region growing, where
“stray samples” (black dots) are attached to the cluster with closest
centroid. (b) Hierarchical clustering, where the thickness of the
lines indicates the level of the BSP tree (2D for illustration).
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the surface defined by the individual polygons to ensure an accu-
rate approximation of the original surface. Turk also included a
curvature estimation method to concentrate more samples in
regions of high curvature. Finally, the new vertices are re-triangu-
lated yielding the resampled triangle mesh. This scheme can easily
be adapted to point-sampled geometry.

Spreading Particles. Turk initializes the particle simulation
by randomly distributing points on the surface. Since a uniform
initial distribution is crucial for fast convergence, this random
choice is weighted according to the area of the polygons. For
point-based models, we can replace this area measure by a density
estimate (see Section 2). Thus by placing more samples in
regions of lower sampling density (which correspond to large tri-
angles in the polygonal setting), uniformity of the initial sample
distribution can ensured.

Repulsion. We use the same linear repulsion force as in [29],
because its radius of influence is finite, i.e. the force vectors can be
computed very efficiently as

, (7)

where is the force exerted on particle due to particle ,
is a force constant and is the repulsion radius. The total force

exerted on is then given as

, (8)

where is the neighborhood of with radius . Using a 3D
grid data structure, this neighborhood can be computed efficiently
in constant time.

Projection. In Turk’s method, displaced particles are projected
onto the closest triangle to prevent to particles from drifting away
from the surface. Since we have no explicit surface representation
available, we use the MLS projection operator (see Section 2.2)
to keep the particles on the surface. However, applying this projec-
tion every time a particle position is altered is computationally too
expensive. Therefore, we opted for a different approach: A particle

is kept on the surface by simply projecting it onto the tangent
plane of the point of the original point cloud that is closest to

. Only at the end of the simulation, we apply the full moving
least squares projection, which alters the particle positions only
slightly and does not change the sampling distribution noticeably.

Adaptive Simulation. Using the variation estimate of Section
2.1, we can concentrate more points in regions of high curvature
by scaling their repulsion radius with the inverse of the variation

. It is also important to adapt the initial spreading of particles
accordingly to ensure fast convergence. This can be done by
replacing the density estimate by . Figure 7 gives an
example of an adaptive particle simulation.

4 ERROR MEASUREMENT

In Section 3 we have introduced different algorithms for point-
based surface simplification. To evaluate the quality of the sur-
faces generated by these methods we need some means for mea-
suring the distance between two point-sampled surfaces. Our goal
is to give both numerical and visual error estimates, without
requiring any knowledge about the specific simplification algo-
rithm used. In fact, our method can be applied to any pair of point-
sampled surfaces. Assume we have two point clouds and
representing two surfaces and , respectively. Similar to the
Metro tool [4], we use a sampling approach to approximate surface
error. We measure both the maximum error , i.e. the
two-sided Hausdorff distance, and the mean error , i.e.
the area-weighted integral of the point-to-surfaces distances. The
idea is to create an upsampled point cloud of points on and
compute the distance for each

. Then

and (9)

. (10)

is calculated using the MLS projection operator with
linear basis function (see Section 2.2). Effectively, computes
the closest point such that for a ,
where is the surface normal at and is the distance between

and (see Figure 8). Thus the point-to-surface distance
is given as . Note that this surface-based

approach is crucial for meaningful error estimates, as the Hauss-
dorff distance of the two point sets and does not adequately
measure the distance between and . As an example, consider

Figure 6: Iterative simplification of the Isis model from 187,664
(left) to 1,000 sample points (middle). The right image shows all re-
maining potential point-pair contractions indicated as an edge be-
tween two points. Note that these edges do not necessarily form a
consistent triangulation of the surface.
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a point cloud that has been created by randomly subsampling
. Even though the corresponding surfaces can be very different,

the Haussdorff distance of the point sets will always be zero.
To create the upsampled point cloud we use the uniform par-

ticle simulation of Section 3.3. This allows the user to control the
accuracy of the estimates (9) and (10) by specifying the number of
points in . To obtain a visual error estimate, the sample points of

can be color-coded according to the point-to-surface distance
and rendered using a standard point rendering technique

(see Figures 10 and 13).

5 RESULTS & DISCUSSION

We have implemented the algorithms described in Section 3 and
conducted a comparative analysis using a large set of point-sam-
pled models. We also examined smoothing effects of the simplifi-
cation and MLS projection (Section 5.2) and compared point-
based simplification with mesh-based simplification (Section 5.3).

5.1 Comparison of Simplification Methods

Surface error has been measured using the method presented in
Section 4. Additionally, we considered aspects such as sampling
distribution of the simplified model, time and space efficiency and
implementational issues. For conciseness, Figures 9 (a) and 10
show evaluation data for selected models that we found represen-
tative for a wide class of complex point-based surfaces.

Surface Error. Figure 10 shows visual and quantitative error
estimates (scaled according to the object’s bounding box diagonal)
for the David model that has been simplified from 2,000,606
points to 5,000 points (see also Figure 1). Uniform incremental
clustering has the highest average error and since all clusters con-
sist of roughly the same number of sample points, most of the error
is concentrated in regions of high curvature. Adaptive hierarchical
clustering performs slightly better, in particular in the geometri-
cally complex regions of the hair. Iterative simplification and parti-
cle simulation provide lower average error and distribute the error
more evenly across the surface. In general we found the iterative
simplification method using quadric error metrics to produce the
lowest average surface error.

Sampling Distribution. For clustering methods the distribu-
tion of samples in the final model is closely linked to the sampling
distribution of the input model. In some applications this might be
desirable, e.g. where the initial sampling pattern carries some
semantics such as in geological models. Other applications, e.g.
pyramid algorithms for multilevel smoothing [15] or texture syn-
thesis [30], require uniform sampling distributions, even for highly
non-uniformly sampled input models. Here non-adaptive particle
simulation is most suitable, as it distributes sample points uni-
formly and independent of the sampling distribution of the under-
lying surface. As illustrated in Figure 11, particle simulation also

provides a very easy mechanism for locally controlling the sam-
pling density by scaling the repulsion radius accordingly. While
similar effects can be achieved for iterative simplification by
penalizing certain point-pair contractions, we found that particle
simulation offers much more intuitive control. Also note the
smooth transition in sampling rate shown in the zoomed region.

Computational Effort. Figure 9 shows computation times for
the different simplification methods both as a function of target
model size and input model size. Due to the simple algorithmic
structure, clustering methods are by far the fastest technique pre-
sented in this paper. Iterative simplification has a relatively long
pre-computing phase, where initial contraction candidates and cor-
responding error quadrics are determined and the priority queue is
set up. The simple additive update rule of the quadric metric (see
Section 3.2) make the simplification itself very efficient, however.
In our current implementation particle simulation is the slowest
simplification technique for large target model sizes, mainly due to
slow convergence of the relaxation step. We believe, however, that
this convergence can be improved considerably by using a hierar-
chical approach similar to [31]. The algorithm would start with a
small number of particles and relax until the particle positions
have reached equilibrium. Then particles are split, their repulsion
radius is adapted and relaxation continues. This scheme can be
repeated until the desired number of particles is obtained.

It is interesting to note that for incremental clustering and itera-
tive simplification the execution time increases with decreasing
target model size, while hierarchical clustering and particle simu-
lation are more efficient the smaller the target models. Thus the
latter are more suitable for real-time applications where the fast
creation of coarse model approximations is crucial.

Figure 8: Measuring the distance between two surfaces (red
curve) and (black curve) represented by two point sets (red
dots) and (black dots). is upsampled to (blue dots) and for
each a base point is found (green dots), such that
the vector is orthogonal to . The point-to-surface distance

is then equal to .
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Figure 9: Execution times for simplification, measured on a Pen-
tium 4 (1.8GHz) with 1Gb of main memory: (a) as a function of tar-
get model size for the dragon model (435,545 points), (b) as a
function of input model size for a simplification to 1%.
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Memory Requirements and Data Structures. Currently all
methods presented in this paper are implemented in-core, i.e.
require the complete input model as well as the simplified point
cloud to reside in main memory. For incremental clustering we use
a balanced kd-tree for fast nearest-neighbor queries, which can be
implemented efficiently as an array [26] requiring bytes,
where is the size of the input model. Hierarchical clustering
builds a BSP tree, where each leaf node corresponds to a cluster.
Since the tree is build by re-ordering the sample points, each node
only needs to store the start and end index in the array of sample
points and no additional pointers are required. Thus this maximum
number of additional bytes is , where is the size of
the simplified model. Iterative simplification requires 96 bytes per
point contraction candidate, 80 of which are used for storing the
error quadric (we use doubles here as we found that single preci-
sion floats lead to numerical instabilities). If we assume six initial
neighbors for each sample point, this amounts to
bytes. Particle simulation uses a 3D grid data structure with buck-
eting to accelerate the nearest neighbor queries, since a static kd-
tree is not suitable for dynamically changing particle positions.
This requires a maximum of bytes, where is the
resolution of the grid.

Thus incremental clustering, iterative simplification and particle
simulation need additional storage that is linearly proportional to
the number of input points, while the storage overhead for hierar-
chical clustering depends only on the target model size.

5.2 Simplification and Smoothing
Figure 12 demonstrates the smoothing effect of simplification in
connection with the MLS projection. The dragon has first been
simplified from 435,545 to 9,863 points using incremental cluster-
ing and upsampled to its original size using particle simulation.
Observe the local shrinkage effects that also occur in iterative
Laplacian smoothing [28]. Computing the centroid of each cluster
is in fact very similar to a discrete approximation of the Laplacian.
Additionally, the MLS projection with Gaussian weight function
implicitly defines a Gaussian low-pass filter.

5.3 Comparison to Mesh Simplification
In Figure 13 we compare point-based simplification with simplifi-
cation for polygonal meshes. In (a), the initial point cloud is sim-
plified from 134,345 to 5,000 points using the iterative
simplification method of Section 3.2. The resulting point cloud has
then been triangulated using the surface reconstruction method of
[7]. In (b), we first triangulated the input point cloud and then sim-
plified the resulting polygonal surface using the mesh simplifica-
tion tool QSlim [6]. Both methods produce similar results in terms
of surface error and both simplification processes take approxi-
mately the same time (~3.5 seconds). However, creating the trian-
gle mesh from the simplified point cloud took 2.45 seconds in (a),
while in (b) reconstruction time for the input point cloud was 112.8
seconds. Thus when given a large unstructured point cloud, it is
much more efficient to first do the simplification on the point data
and then reconstruct a mesh (if desired) than to first apply a recon-
struction method and then simplify the triangulated surface. This
illustrates that our methods can be very useful when dealing with
large geometric models stemming from 3D acquisition.

6 CONCLUSIONS & FUTURE WORK
We have presented and analyzed different strategies for surface
simplification of geometric models represented by unstructured
point clouds. Our methods are fast, robust and create surfaces of
high quality, without requiring a tesselation of the underlying sur-
face. We have also introduced a versatile tool for measuring the
distance between two point-sampled surfaces. We believe that the

surface simplification algorithms presented in this paper can be the
basis of many point-based processing applications such as multi-
level smoothing, multiresolution modeling, compression, and effi-
cient level-of-detail rendering.

Directions for future work include out-of-core implementations
of the presented simplification methods, design of appearance-pre-
serving simplification, progressive schemes for representing point-
based surface and point-based feature extraction using the varia-
tion estimate .
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Figure 10: Surface Error for Michelangelo’s David simplified from 2,000,606 points to 5,000 points.

Figure 11: User-controlled particle simulation. The repulsion radius has been decreased to 10% in the region marked by the blue circle.

Figure 12: Smoothing effect on the dragon by simplification and successive upsampling.

Figure 13: Comparison between point cloud simplification and mesh simplification: The igea model simplified from 134,345 to 5,000 points.

(a) uniform incremental clustering (b) adaptive hierarchical clustering (c) iterative simplification (d) particle simulation

∆max 0.0049= ∆avg 6.32 10
4–⋅= ∆max 0.0046= ∆avg 6.14 10 4–⋅= ∆max 0.0052= ∆avg 5.43 10 4–⋅= ∆max 0.0061= ∆avg 5.69 10 4–⋅=

original: 3,382,866 points simplified: 30,000 points

(a) original: 435,545 points (b) simplified: 9,863 points (incremental clustering) (c) upsampled: 435,545 points (part. simulation)

(a) Iterative point cloud simplification (b) QSlim (mesh simplification)

∆max 0.0011= ∆avg 5.58 10 5–⋅= ∆max 0.0012= ∆avg 5.56 10 5–⋅=


