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Summary. Smooth interpolation of unstructured surface data is usually achieved
by joining local patches, where each patch is an approximation (usually parametric)
defined on a local reference domain. A basic mesh-independent projection strategy
for general surface interpolation is proposed here. The projection is based upon the
"Moving-Least-Squares’ (MLS) approach, and the resulting surface is C*° smooth.
The projection involves a first stage of defining a local reference domain and a
second stage of constructing an MLS approximation with respect to the reference
domain. The approach is presented for the general problem of approximating a (d —
1)-dimensional manifold in R%, d > 2. The approach is applicable for interpolating
or smoothing curve and surface data, as demonstrated here by some graphical
examples.

1 Introduction

The problem of interpolating or approximating a function on R? using scat-
tered data values has many nice and well established solutions [4], [10]. Some
of the methods use meshing strategies, but the preferred methods are those
which are mesh-free, such as polynomial approximation, approximations by
shifts of radial basis functions [3], and moving least-squares approximations
[8].

The situation is quite different in the problem of surface approximation
in R?, given scattered points on a surface. In general, it is not possible to find
a natural global reference domain, or a parametric domain, which may be
used as a base for launching one of the standard global approximation tools.
The common practice in this case is to use a collection of local reference
domains, related to some meshing of the data (e.g. triangulation), and the
approximating surface is obtained as the collection of patches defined over
those reference domains. The patches are usually defined as piecewise polyno-
mial or piecewise rational parametric patches, smoothly joined together, and,
in most cases, the resulting surface depends upon the specific mesh defining
the patches. This long established approach works very well in numerous ap-
plications, and the Statue of Liberty is a fine example of a surface generated
by patches [2].

The main goal of this work is to develop a mesh-independent method for
smooth surface interpolation (or approximation) from unstructured scattered
data. Such data sets are common in reverse engineering processes, where the
surface of a sculptured object is measured by a laser-scanner or by a co-
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ordinate measurement machine. A mesh-independent surface approximation
may be valuable, for example, serving as a reference surface for comparing
different patching approximations of the surface.

To achieve the above goal we present in this work a different paradigm for
surface approximation, namely, a projection procedure. This is an approach
which seems more complex on the one hand, but, as shown later, may also be
considered as simpler and more natural, on the other hand. It is based upon
the basic notions of surfaces in differential geometry, namely a local reference
system and a local mapping function for each point of the surface. The main
tool used here for realizing this approach is based on the moving least-squares
idea, which seems appropriate since it uses local approximations.

Let us first recall the definition of the moving least-squares approximation
for the case of function approximation [8]. Let {z;}icr be a set of distinct
data points in R?, and let {f(z;)}scr be some data values at these points.
The moving least-squares approximation of degree m at a point z € R?¢ is
the value j(z) where § € IT? is minimizing, among all p € IT¢, the weighted
least-squares error

> (@) = f(2:)*0(l¢ — i) - (1.1)
i€l
Throughout the paper 6 is a non-negative weight function, || - || is the Eu-

clidean distance in R? and IT2, is the space of polynomials of total degree m in
R?. The approximation is made local if 6(s) is rapidly decreasing as s — oo,
or is of finite support, and interpolation is achieved if lims_, 8(s) = oo.

The above function approximation method is adopted here for defining a
surface approximation strategy which we name MLS (the initials MLS may
stand for Moving Least-Squares, or for Moving Local System, or for Meshless
Surface). To prepare the presentation of the MLS approach we start in Sec-
tion 2 with a basic MLS procedure for data smoothing, which is interesting
and powerful by itself. Already here it is made clear that the MLS approach is
applicable in any dimension in the most natural way. In section 3 we present
a modified strategy, resulting is an MLS projection procedure. This proce-
dure is the basis for the smoothing and the interpolation methods defined in
Section 4. It is argued that the resulting approximating surfaces are mesh-
independent, localized and infinitely smooth. We stress that the purpose of
this work is to present the projection idea for the construction of surface
approximants. The MLS approach should be viewed as one of the possible
tools for implementing this idea. Some theoretical problems concerning the
projection idea and the MLS approach remain open at this stage.

2 Smoothing Noisy Surface Data

Let S be a (d — 1)-dimensional manifold in R?, let {r;};csr be points on S
or situated near S, e.g., points obtained from some measurements of S. An
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interpolating approximation is a manifold passing through {r;};cs, while a
smoothing approximation is a manifold passing 'near’ the data points {r; };cr.
Considering the smoothing problem, rather than looking for a smoothing
manifold, let us try to approximate the projection of the data points rj,
j € I, and of points near the data set, onto S. The projection procedure
suggested here involves two steps: Given a point r near S, we first find a
local approximation to S by a hyperplane in R?. Then we ’project’ the point
r on a local polynomial approximation of S, defined over that hyperplane.
Formally, the process is as follows:

The Basic MLS Procedure:

Step 1 — The local approximating hyperplane. Find a hyperplane
H.={z|{a,z)—D =0, x € R}, a € R?, ||a|]| = 1, such that the following
quantity is minimized,

> (a,rs) = Dy*6(llri = rll) (2.1)

il

where (-,-) is the standard inner product in R?. Since the weights {8(||r; —
||} decrease as the distance ||r; — r|| increases, the resulting hyperplane H,
approximates a tangent hyperplane to S near the point r. In general, there
may be several local minima of (2.1). We choose the one which is the closest
to r, namely, such that |{(a,r) — D] is the smallest.

Step 2 — The approximated projection P,,. Let {z;}ic; be the or-
thogonal projections of the points {r;};cr onto H,., represented in a specific
orthonormal coordinate system on H,, and let f; = (r;,a) — D, i € I, be the
heights of the points {r;}icr over H, . Also, let ¢ be the orthogonal projec-
tion of r onto H,, and let us choose the origin of the orthonormal coordinate
system on H, to be at q. We define a local approximation of degree m to S
by a polynomial p € IT¢ ! minimizing, among all p € IT%1, the weighted
least-squares error

> (@) = £:)*0(lri = 7ll) - (2.2)

iel
The value p(0) approximates the height of S over H,. at the origin, hence the
point ¥ = g + p(0)a is defined to be the approximation of the projection of r
on S. The result may be denoted in an operator notation as 7 = P, ().

Remark 1. The operator P,, defined by the basic MLS procedure is not a
projection.

It is essential to note that the distances defining the weights in (2.2) are
defined by the distances from the data points {r;}, rather than the distances
from the points z; as in (1.1). Also, the distances are taken from the point
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r which is not on H,. The last issue plays a central role later on. It actually
implies that the above projection step is not really a projection, namely, in
general, the projection of 7 is not going to stay 7.

Ezample 1. (Curve smoothing) The applications in mind are of course for
surfaces in R®, but the procedure is best understood when applied to the
approximation of curves in R2. In the upper part of Figure 1 we display the
data points {r;}, drawn with the polygonal line connecting them, and the
local approximating line H, for some data point r = ;. In the lower part the
points are rotated so that the y- coordinate is in the direction of the local
normal to H,., and the local approximating quadratic and cubic polynomial
approximations are drawn. In all our examples, the weight function used in
the computation of the MLS approximations is 0(s) = e=%"/P* where h is an
average separation distance between the data points.

Fig. 1. Upper part: the noisy data and a local approximating line. Lower part:
the data points rotated to the local normal, and the local 2nd and 3rd degree
polynomial approximations.
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3 The MLS Projection

We recall that the main objective of this work is to develop a method for
smooth surface interpolation from unstructured scattered data. As shown
later this is achieved by using a proper projection procedure. The basic MLS
procedure for approximated projection described above is very effective for
thinning data sets. L.e., given a cloud of points representing noisy curve or
surface data, the cloud is made thinner by applying the basic MLS procedure
to each of the data points. This has already been implemented in [6]. Yet,
as explained in Remark 1, the basic MLS procedure does not actually define
a projection operator. Another important argument against the basic MLS
procedure, related to Remark 1, is the following:

Remark 2. The basic MLS procedure in R? is not a mapping onto a d — 1
dimensional manifold.

Instead of proving this statement in general, let us try to explain it and
to demonstrate it for the case d = 3. Let {r;} be data points near a surface
S in R3, and consider the application of the basic MLS procedure for the
approximate projection of a point r onto S, # = P, (r). Let B(s,d) denote
the closed ball of radius § centered at s, and consider the image of B(r,d)
under B,,:

Pm(B(s,é)) = {Pm(r) |7 € B(s,d)} .

The statement in Remark 2 claims that P, (B(s,d)) is not a two dimen-
sional manifold. In general it contains interior points. To visualize this
consider S to be the z-y plane in R® and the points {r;} to be {r;} =
{(irh,izh, (=1)2F2Rh)}; ) i)eze with B << 8. Also, let m = 0 and s =
(0,0,0). As we project a point r € B(s,d), the weights used for determining
the local plane fit are decaying with the distance from r. Hence, the best
fitted plane is going to be above the z-y plane if r is above the z-y plane, and
vice versa. The same applies to the next step of a local approximation by a
constant (m=0). As a result, the image set Py (B(s,d)) of the ball B(s, ) is
going to be lentil-shaped.

Remarks 1 and 2 set the goals in defining a modified MLS procedure for
approximated projection in R? below; First, is should be a projection, second,
it should project the points onto a d — 1 dimensional manifold.

The MLS Projection Procedure:

Given a data set of points {r;}icr on a d — 1 hypersurface S in R?, or near
S, and given a point r near S, the projection of r with respect to {r;};cr is
defined as follows:
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Step 1 — The local approximating hyperplane. Find a hyperplane
H={z|{a,z) =D =0, z € R*},a € R?, ||la]| = 1, and a point q on H,
ie., {(a,q) = D, such that (r — q) || a, i.e.,

g=r+ta,teR, (3.1)

and such that the following quantity is locally minimized,

> (a,ri) = D)*0(llrs — gll) - (3.2)
iel
Reformulating this, we look for a direction a € R?, |la|| = 1, and a finite
distance t € R such that
> (a,ri = —ta)*0(|lrs — r — tal]) , (3.3)
iel

is locally minimized. Usually, there may exist more than one pair {a, ¢} locally
minimizing the above quantity. The pair {a,t} is then chosen to be the one
with the minimal |¢|.

For later use we introduce the notation ¢ = Q(r) and a = A(r).

Step 2 — The MLS projection P,,. Let {z;}icr be the orthogonal pro-
jections of the points {r;};cr onto H, represented in an orthonormal coor-
dinate system on H so defined that r is projected to the origin. Also, let
fi = (ri,a) — D, i € I, be the heights of the points {r;};c; over H. Find a
polynomial $ € IT%~! minimizing, among all p € IT¢1, the weighted least-
squares error

> (@) = £:)*6(llri — all) - (3.4)

el

The projection of r is defined as
Pn(r)=q+p0)a . (3.5)

An important observation, related to the projection property, follows di-
rectly from (3.3):

Proposition 1. If the pair {a,t} minimizes (3.3) for some r = r* € R?,
then the pair {a,t — s} minimizes (8.8) for r = r* + sa.

Proposition 2. @) is a projection operator. Furthermore, if there exists a
subset U C R? such that for any r € U the minimization problem (3.3) has a
unique global solution, and P, : U — U, then P, |y is also a projection
operator.

Proof. Since ¢ = r + ta then, by Proposition 1, A(q) = A(r) and Q(q) =
Q(r) = q. Also, note that Py, (r) = ¢ + 5(0)a = r + ta + p(0)a = r + sa with
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s = t + p(0). Hence, by Proposition 1, and the uniqueness assumption, it
follows that

and

Q(Pr(r)) = Pu(r) + (t = (¢ + 5(0)))a = ¢+ p(0)a — p(0)a = ¢ = Q(r) .

Now, since only a = A(r) and ¢ = Q(r) are used to define P,,(r), the result
follows. |

The subset U in Proposition 2 is going to be a neighborhood of the hy-
persurface S to be approximated.
Let us now repeat the previous examples, using the MLS projection.

Ezample 2. (Curve smoothing by the MLS projection) In Figure 2 we depict
a noisy data set (the same one used in Example 1), a line segment L near
the data set, and its MLS projection P»>(L). The data points are drawn with
the polygonal line connecting them, and the projected curve is drawn as the
polygonal line connecting the projections of 30 equidistant points on L. To
visualize the projection, one of the points on the line segment is connected
with its projection.

Fig. 2. The noisy data, a line segment, and its MLS projection

Let S be a smooth hypersurface in R?, and let {r;};cr be points on S.
We say that the data set R = {r;};cr has a mesh size h if h is the minimal



8 David Levin

value for which RN B(s,h/2) #  for any s € S, where B(s,0) = {z |
||z —s|| < d}. A point P, (r) defined by the MLS projection is a generic point
on the approximating hypersurface defined by the data set {r;};cr. Based
upon Proposition 2, P, (r) = P (Q(r)) = Pr(Q(q)) = Pn(q). For a data set
R = {r;}icr of a mesh size h on a smooth hypersurface S, we introduce the
following definition:

Definition. (The MLS approximating hypersurface) For a given data set R
of mesh size h let

Q={r|Q(r)=r, RNB(r,h) # 0} . 3.7)

Then the MLS approzimating hypersurface induced by the data set {r;};cr is
defined as

S ={Pu(r)|reqQ}. (3.8)

The above formal definition seems quite strange, and it raises many ques-
tions, such as:

— Is S really a d — 1 dimensional hypersurface?
— How smooth is this hypersurface?

— What is the approximation order?

— How can one reconstruct S?

Before we approach some of these questions, let us try to gain some in-
tuition for the above definition. We note that in case the underlying hyper-
surface S is a hyperplane, then Q = S and S = S. Also, for any r € R?,
Q(r) is just the orthogonal projection of r onto S and P, (r) = Q(r). If the
hypersurface S is smooth, and the mesh size h tends to zero, while the weight
function 6 is of finite support of size O(h), then it can be shown that Q- S
linearly in h.

Let us consider the system of equations defining the points in Q. These are
derived by considering the minimization problem (3.3), and with the extra
condition that the minimum is attained for ¢ = 0. The necessary conditions
for a minimum provide d+ 2 equations for the 2d+ 1 unknowns which are the
components of a and of r and the Lagrange multiplier for the side condition
[la]| = 1. A naive counting implies that the solution is a d — 1 parameter
family, and thus Q is expected to be a d — 1 dimensional manifold.

The issues of smoothness and convergence rate are not analyzed here. Yet,
based upon the results in [7] we expect the following:

Conjecture (Smoothness and approximation order). Let us assume S is C™+!
and that the mesh size h tends to zero, while the weight function 6 is infinitely
smooth and is of finite support of size O(h). Then S is a C™ surface and
S — S at a rate O(h™*!), where m is the degree of the polynomials used in
the MLS procedure.
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4 The MLS Interpolation Scheme and Mesh
Independence in R3

In this section we aim at the two goals set in the title of this paper, namely,
interpolation and mesh-independence. As remarked in the Introduction, in
the case of function approximation, interpolation is obtained if the weight
function is chosen so that lims_,o 6(s) = co. Doing just this is not enough for
achieving interpolation in the case of surface data. In addition, Step 2 of the
MLS projection method should be revised as follows:

Let {ri}icr, {zi}ier, {fi}ier, ¢ = Q(r) be as defined in the MLS projection
procedure, and define ¢; = Q(r;), i € I.

In the revised MLS projection procedure the local polynomial approxima-
tion p € IT¢! is obtained by minimizing the weighted least-squares defined
with distances measured from the points {g; };cr, namely,

> (i) — £i)?60(lgi — qll) - (4.1)

iel
The projection of r is thus defined as

Py(r) = g+ 5(0)a . (4.2)

Assume we are given a data set R = {r;}icr, of mesh size h, of points
on a hypersurface S in R%, and let Q and S be defined by (3.7) and (3.8). If
r € Q then, following Proposition 1, Q(r +tA(r)) = r for a small enough |t].
This observation induces the following definition:

Definition. (Equivalence sets) The equivalence set E(r) of a point r € Q is
the connected set containing v of all the points of the form r+tA(r) for which
Q s u[nquely defined and Q(r + tA(r)) = r. Consequently, the equivalence
set E(Q) is defined as E(Q) = Upeg E(r).

Proposition 3. (MLS interpolation) Let R = {r;};cr be a data set on a d—1
hypersurface S in R? and let the MLS projection be defined as above, by (4.2),
using (4.1) with a decreasing weight function 0 satisfying lims_,o 6(s) = oo.
Then,

Pr(r)y=r; VreEQ(r;), jeI. (4.3)
Proof. The proof follows directly from the fact that ¢ = Q(r) = Q(r ) =gqj
for any r € E(Q(r;)). Together with the condition lim,_,o6(s) = this
enforces p to satisfy p(0) = p(z;) = f;, and thus Pr(r) = ¢ + (O)a =
q; + fja =7j. [ |

The other goal set in the title is to achieve a method which is mesh-
independent. Here we restrict the discussion to surfaces in R®. Assume we
are given a data set R = {r;};cr, of mesh size h, of points on a surface S in
R3, or near S. In practice the MLS approximating surface is to be defined by
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using some underlying parametrization domain, but the resulting surface is
going to be independent of the choice of the parametrization domain.

Consider a proper triangulation 7 = {T} }xecx of the data set R. I.e., each
Ty, k € K, is a triangle in R? with vertices in {r;};cr, and the vertices and
edges in T define a planar graph. We denote the boundary of 7 by 97, i.e.,
the set of all edges in 7 which belong to one triangle in 7 only.

The linear surface defined by a triangulation 7 is an approximation of
S, also denoted by 7, and it may serve as a base for defining the MLS
approximating surface.

Definition. (The MLS approximation S7) Let T be a triangulation of R =
{ri}icr and assume T C E(Q). The MLS approzimation based upon T is
defined as

St ={Pu(z) |z € T} = Pu(T)

i.e., the collection of the MLS projections of all the points on T, with respect
to the data set {r;}icr.

Practically, we have T C E(Q) if there are enough data points where the
underlying surface S has high curvature or is nearly self intersecting, and if
the edges in 7 are short enough. In particular, we assume that R ¢ 07 .

Proposition 4. (Mesh independence) Assume S is a two-dimensional sub-
manifold. Let Ty and T be two simply connected triangulations of R = {r;}icr

sharing the same boundary, 0T1 = 072, such that T; C E(Q), and Vr € 0T}
EQ(r)NT;=r,j=1,2. Then Py(Ti) = Pp(T2).

Proof. Clearly, ~ B

J

and

Pn(9T) = Pr(3T5) .

Also we note that the MLS projection is a continuous operator over a trian-
gulation 7; ,j = 1,2. That is, || Py, (r1) — Pm(r2)|| < € if ||ry — 72| < d(¢) and
r1,72 € T;. Hence, P,,(0T;) is a simple closed curve in R®. The condition
E(Q(r))NT; =r Vr € 0T, implies that each point in P, (07;) has a unique
source in 7. In particular, Py, (0T;) NP, (int(7;)) = 0 where int(T) = T\OT.
Tt also implies that P,,(97;) is a simple closed curve on S. Given a contin-
uous map on a simply connected domain, which is a one-to-one mapping on
the boundary, we know from differential topology [5], that its image is also
a simply connected domain. It thus follows that Py (T}), j = 1,2, are both
simply connected domains, sharing the same boundary. Since they also share
some interior points, and are both subsets of S which is assumed to be a
submanifold, they must be identical. [ ]

Remark 3. The conditions of Proposition 4 seem quite difficult to verify be-
forehand, but they can be checked while computing the projection.
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Ezample 3. (Surface approximation by the MLS projection) The application
of the MLS projection for surface approximation is presented in Figure 3. The
data points are depicted by small circles, and in the upper figure we also see a
rectangular plane segment M near the data points. This rectangular domain
is used as a local parametric base domain for the projection procedure. In
the lower figure we see the mesh of points which is the P, projection of a
rectangular mesh on M.

Some computational hints. Step 1 of the MLS projection procedure in-
volves minimizing the quantity in (3.3), subject to ||a|| = 1, and with the ad-
ditional constraint that |¢| is small. This is a non-linear optimization problem,
and we have used an iterative method to solve it. To handle the constraints
we represent the unknown parameters in terms of unconstrained parameters
u, v and w. The constant h defined the maximal value we allow for |¢|.

a = (cos(u) cos(v), sin(u) cos(v), sin(v)) , t=h-sin(w) . (4.4)

5 Discussion and Conclusions

We have presented a projection approach to surface approximation from un-
structured point cloud data. The method is motivated by the MLS approach,
where both a local coordinate system and a local polynomial approximation
are computed by MLS for the projection of each point. The method has al-
ready proved to be useful in practical computer graphics applications for the
visualization and simplification of point-sampled surfaces [1] [9]. Both [1] and
[9] present strategies for making the ideas presented here more practical, and
they also present very nice figures of surface data smoothing by the MLS
projection.

From a theoretical point of view, there is an open question regarding the
assumption in Proposition 2 about the existence of a subset U which satis-
fies certain implicit properties. It is not clear under what circumstances this
assumption holds, or how to check it, and this calls for further investigation.
Yet, the main contribution of the paper is in presenting the idea of a pro-
jection operator for surface reconstruction. The challenge set here is to find
other projection operators which may be more robust or easier to compute.
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