
FEATURE EXTRACTION FROM POINT CLOUDS

ÆStefan Gumhold, �Xinlong Wang & �Rob MacLeod

ÆWSI/GRIS
University of T�ubingen
stefan@gumhold.com

�Scienti�c Computing and Imaging Institute
University of Salt Lake City, Utah

wangxl@cs.utah.edu
macleod@cvrti.utah.edu

ABSTRACT

This paper describes a new method to extract feature lines directly from a surface point cloud. No surface recon-

struction is needed in advance, only the inexpensive computation of a neighbor graph connecting nearby points.

The feature extraction is performed in two stages. The �rst stage consists of assigning a penalty weight to each point

that indicates the unlikelihood that the point is part of a feature and assigning these penalty weights to the edges

of a neighbor graph. Extracting a sub-graph of the neighbor graph that minimizes the edge penalty weights then

produces a set of feature patterns. The second stage is especially useful for noisy data. It recovers feature lines and

junctions by �tting wedges to the crease lines and corners to the junctions.

As the method works on the local neighbor graph only, it is fast and automatically adapts to the sampling resolution.

This makes the approach ideal as a preprocessing step in mesh generation.

Keywords: Feature Detection, Scattered Data, Crease Recovery, Border Detection, Edge Linking

1. INTRODUCTION

Figure 1. di�erent elements in the crease and border
patterns

In this paper we consider the feature detection and re-
construction problem for the case of the input surface
being described by a point cloud. Figure 1 illustrates
for the surface of the well known Stanford bunny the
different types of feature elements that we want to ex-
tract. The crease pattern, shown in dark blue, consists
of crease lines that either terminate in junctions or sin-
gleton ends or they close to form a loop. The border
pattern consists only of border loops. Input points that
lay on a crease are called crease points, points on the
border loops are border points. At a junction the corre-
sponding data point is called a corner or junction point
and at singleton ends we find end points.

Feature reconstruction on a point cloud is a useful
preprocessing step for surface reconstruction. The
detected and reconstructed features enable splitting
the surface reconstruction problem into simpler sub-



problems on smooth surface patches. Another possi-
bility to exploit reconstructed features is to enrich the
point cloud around feature lines in order to ensure a
sufficient sampling density. The feature extraction al-
gorithm that we describe here is fully automated and
no seed or junction points need to be marked by the
user.

Figure 2 illustrates our feature extraction pipeline. The
input is a point cloud a); in this case the underlying
surface is a model of the human torso. In the anal-
ysis stage we construct a neighbor graph b) on the
point cloud that reflects proximity and compute the lo-
cal sampling density. The feature extraction stage c),
d) and e) first fits ellipsoids c) to the neighborhoods
of the input points, approximates the surface curva-
ture and the maximum open angle; the latter is used
to detect border points. From these vertex properties
crease, corner and border penalty functions are de-
fined that measure the unlikelihood that a specific point
is on a crease or border line, respectively. From the
penalty functions at the vertices penalty weights are
computed for the edges of the neighbor graph. The fea-
ture line linkage d) finds a minimum spanning graph in
the neighbor graph that minimize the crease or border
penalty weights, respectively. The minimum spanning
graph is similar to a minimum spanning tree but allows
for significantly long cycles, which are needed to de-
tect feature patterns with loops. A pruning algorithm
cuts off short branches e). For noisy data the extracted
crease lines are jittery because no input points lay di-
rectly on the actual crease line, in which case we ap-
ply the crease line and junction recovery stage. Here
wedges, a simple crease representation consisting of
two half planes meeting at a line, are fit to the crease
neighborhood along the crease lines. Then the neigh-
borhoods of junction points are fit to corners that con-
sist of a corner point and several incident planes. The
number of planes incident to a corner equals the degree
of the crease junction. The crease points with jitter are
projected onto the wedges and corners. In a final step
the feature lines and loops are converted to a spline
representation f) by a least squares fitting approach.

Our feature detection and recovery approach is tailored
as a preprocessing stage for surface reconstruction and
optimized for fast execution. Two complexity mea-
sures influence the overall run time: the total number
n of input points from the point cloud and the number
m of output points on the feature patterns. As the point
cloud describes a surface and the feature patterns sets
of lines, m is of the orderO(

p
n). It is obvious that we

have to consider every input point as we do not know
where the features are and that therefore our algorithm
has to be at least linear in n. Our approach tries to
keep the computational cost per input point as low as
possible by computing only some penalty functions,
which reject instantly most of the edges in the neigh-

bor graph. In this way the run time for the computation
of the minimum spanning graph already depends on m
and not on n.

1.1 Related Work

The feature extraction problem is closely related to
surface reconstruction, which has important applica-
tions in laser range scanning, scientific computing,
computer vision, medical imaging, and computer as-
sisted surgical planning. Our algorithm addresses
some of the problems that arise in surface reconstruc-
tion of datasets that contain creases and corners [19,
10, 18, 6, 3]. For these approaches it is very helpful to
extract the feature lines and junctions beforehand.

Most of the reconstruction algorithms that can accom-
modate creases and corners do so either implicitly or
in a post processing step. The graph-based surface re-
construction of Mencl and Müller [15] handles sharp
edges by maximizing for each point the sum of dihe-
dral angles of the incident faces. The optimization is
performed only locally and depends on the order in
which the input points are processed. Especially in
degenerate cases this approach can produce ”crispy”
crease lines i.e., lines that are broken by notches. A
problematic constellation of points that often arises at
sharp edges occurs when two points on the crease form
an equilateral tetrahedron with two points on differ-
ent sides of the crease. There is no guarantee that the
crease edge is preferred over the edge connecting the
two points on the two sides. The tetrahedron described
by the problematic points need not be exactly equilat-
eral as the locations of the input points could acciden-
tally favor constellations that cut the crease. Adamy et
al. [2] described corner and crease reconstruction as a
post processing step of finding a triangulation describ-
ing a valid manifold surface. The previously described
case is again a problem. Both constellations for trian-
gulating the four points on a near equilateral tetrahe-
dron are perfectly manifold and there is no reason why
the crease edge should be preferred over the crease cut-
ting edge. The power crust algorithm of Amenta et
al. [16] treats sharp edges and corners also in a post
processing step. However, they reconstructed the fea-
tures by extending the surfaces adjacent to the features
and calculating the intersections. This idea is quite
similar to our approach but their simple approach of
surface extension does not tolerate noisy data. Dey and
Giesen [9] proposed a method to detect undersampled
regions, which allows the detection of border loops,
creases and corners. The surface near the features is re-
constructed in a similar way as Adamy et al. proposed.
Funke and Ramos [8] described a surface reconstruc-
tion method based on a directional nearest neighbor
search, that avoids the construction of a voronoi dia-
gram and runs in near linear time. So far their algo-



Figure 2. a) input point cloud. b) the neighbor graph. c) analysis of point neighborhoods. d) crease pattern
forming. e) pruning of crease pattern. f) spline representation of crease pattern

rithm can only handle surfaces without features.

In the computer vision literature there exist quite old
approaches for depth images that can handle features
correctly and extract the feature lines. The weak con-
straint optimization technique by Blake and Zisser-
man [7] uses a non linear fitting approach. The global
energy functional, which is minimized, contains a term
that penalizes the generation of a crease line in or-
der to avoid permanent creation of creases. This ap-
proach can also reconstruct the crease lines and junc-
tions. Sinha and Schunk [17] fit spline patches to depth
images and adjusted the spline parameters such that
the spline patches could bend sharply around creases.

Guy and Medioni [12] described a robust algorithm
to extract surfaces, feature lines and feature junctions
from noisy point clouds. They discretized the space
around the point cloud into a volume grid and accumu-
lated for each cell surface votes from the data points.
From the accumulated votes they defined a saliency
function for junctions and a combined scalar and vec-
tor valued saliency function for the crease lines. Junc-
tions are simply global maxima of the saliency func-
tions and crease lines are extracted with a modified
marching cubes algorithm. One of our goals was to
avoid the discretization into a volume grid in order to
allow for efficient handling of non uniformly sampled
point clouds.

1.2 Paper Overview

The paper is partitioned into three different sections
corresponding to the stages of the feature extraction
pipeline. Section 2 describes the analysis stage, where
the neighbor graph is constructed. In section 3 we ex-
plain the feature detection stage in detail. The recovery
of crease lines and junctions is the topic of section 4.
Applications and results are presented in section 5 be-
fore we end with a brief discussion in section 6.

2. ANALYSIS

The analysis phase of this approach consists of com-
puting a neighbor graph on the input points and esti-
mating for each point the sampling density. The neigh-
bor graph connects points that are probably close on
the underlying surface. On the one hand, the neighbor
graph will be used to find the neighborhood of each
data point, which allows for fast local computations.
On the other hand, it serves as the domain for detect-
ing the feature line patterns.

2.1 Neighbor Graph

In most cases we use the Riemannian Graph as the
neighbor graph. The Riemannian graph contains for
each data point the edges to the k nearest neighbors,
where we chose k between 10 and 16. For our pur-
poses, it was enough to compute an approximation to
the Riemannian graph with the approximate nearest
neighbor library ANN [4] in near linear time. For the
brain dataset, the Riemannian graph was computed in
7 to 10 seconds for k = 10 to 16. The Riemannian
graph does not minimize the number of edges in the
neighbor graph.

To achieve this minimization, we propose a Delaunay
filtering approach that has a worse asymptotic running
time. It is practical for data sets with a size up to
fifty thousand points. First we computed the Delau-
nay tetrahedralization of the input point set with the
public domain software package Qhull [5]. Then we
followed the approach of Adamy et al. [2] and first fil-
tered out all triangles of the Gabriel complex. These
are the triangles, that do not contain any fourth point
within their minimum circumsphere. Triangles not in
the Gabriel complex are most probably not part of the
surface because a fourth data point is close to these tri-
angles and the surface more likely passes through this
point. The Gabriel triangles can be found by inves-
tigating the incident tetrahedra. If there is only one
incident tetrahedron, we check if the center of its cir-



cumsphere is on the same side of the triangle as the
fourth point of the tetrahedron. In case of two incident
tetrahedra, we check if their circumsphere centers lay
on different sides of the triangle.

The second step of the algorithm is to filter out a
reasonable subset of the Gabriel complex, which de-
scribes the surface. We used two triangle filters. The
first was a simplified version of Adamy et al.’s um-
brella filter, which ensures that the triangles incident
on each data point form at least one closed fan. To
find a good guess for this fan, the Gabriel triangles
incident on a point are sorted according to a param-
eter, which gives a reasonable measure of whether the
triangle should be part of the surface. For each data
point, triangles are extracted from the sorted list, until
the first fan is completed at which point these trian-
gles are validated as part of the output of the filter. We
implemented the fan detection and identification with
a modified version of a disjoint set data structure that
did not prune the trees of the connected sets.

The simplified umbrella filter closes the holes in the
model and connects different surface parts (see figure 4
a) and c)). The aim of the second filter was to recover
the holes and to disconnect distant surface parts sim-
ply by eliminating triangles that have extraordinarily
long edges. For this, we first computed the average
edge length at each data point. Then we removed all
triangles which contained an edge that was three times
longer than the average edge length of the two incident
vertices. In this way we recovered holes and discon-
nected nearby but disjoint surface parts (see figure 4 b)
and d)).

a) b)

Figure 3. a) triangles recovered by Delaunay �lter-
ing, b) problems at creases

The Delaunay filtering has the advantage that it helps
to disconnect data points that lay on different surface
parts. Our simplified filter did not provide adequate
surface reconstruction in cases in which the models
contained sharp edges as figures 3 a) and b) illustrate.
But this is not important for our purpose as we detect

the creases later on and only need the neighbor infor-
mation contained in the produced triangles. The two
Delaunay filters are relatively fast and consumed for
the brain dataset of figure 13 with 84,000 points about
10 seconds, which is about one third of the time con-
sumed by Qhull.

a) b)

c) d)

Figure 4. E�ects of �ltering long triangles: a) closed
holes before �lter, b) holes recovered, c) inter-surface
connections before �lter, d) surface separated

2.2 Sampling Density

In the computations that followed it was often impor-
tant to relate the computed quantities to the sampling
density. Most often we needed the sampling density
in units of length. Therefore we defined the average
distance �i from a data point pi to the set Ni of direct
neighbor points in the neighbor graph as the average
distance to the neighbors.

3. FEATURE DETECTION

In this section we describe how to find the crease
and border patterns in three steps as illustrated in fig-
ure 5. The first step a) analyzes the neighborhood of
each data point. The points are not explicitly classi-
fied into surface, crease, corner or border points, but
penalty functions are computed that describe how far
the point is off a crease, corner or border point. The
second step b) transfers the point penalty functions
to the edges of the neighbor graph and combines the



a) b)

c)

Figure 5. Feature line
extraction a) correla-
tion ellipsoids are used
to calculate penalty
functions, b) minimum
spanning graph, c)
short branches pruned

edge penalty functions with the edge lengths to edge
weights. These weights are used to compute a modi-
fied minimum spanning tree – the so called minimum
spanning graph (MSG). The MSG allows the creation
of cycles if they are sufficiently long. This is an es-
sential ingredient to be able to extract feature patterns
with loops. In the third step c) the short branches of
the MSG are pruned away.

3.1 Point Penalty Functions Calculation

For each data point pi we want to exploit the informa-
tion in the nearest neighbors to compute penalty func-
tions that estimate how improbable it is that the point is
close to a feature. The extent of the considered neigh-
borhood depends on the noise level of the dataset. For
data with low or no noise it is sufficient to gather the di-
rect neighbors of the data points while for highly noisy
data one must consider all neighbors with a graph dis-
tance less than three, four or five edges depending on
the noise level.

With the set of neighbors Ni, we first compute the
center location ci and the correlation matrix Ci of the
neighborhood given by

IR3 3 ci
def
=

1

jNij
X

q2Ni

q (1)

IR3�3 3 Ci
def
=

1

jNij
X

q2Ni

(q � ci)(q � ci)
t; (2)

before we calculate the different penalty functions for
each point. The eigenvectors fe0; e1; e2g of the corre-

lation matrix together with the corresponding eigen-
values f�0; �1; �2g, where �0 � �1 � �2, define
the correlation ellipsoid that adopts the general form
of the neighbor points. Hoppe [13] used the smallest
eigenvalue of the correlation matrix to determine the
normal direction of the surface. Similar to Guy and
Medioni [12] we use the eigenvalues to measure the
probability of feature lines. Figure 6 shows the differ-
ent shapes, that we are interested in. It shows in green
color the surface type at the current data point: plane,
crease wedge, border half plane and corner. The data
point is the yellow ball and the correlation ellipsoid is
depicted around the centroid ci in violet.

For a point on a flat surface the ellipsoid degenerates
to a pancake with �1 � �2 and �0 � 0. The unit
vector e0 points in the normal direction, illustrated by
the arrow in figure 6 a). The normal derived in this way
is actually the surface normal of a plane fitted to the set
of neighbors that minimizes the squared distance to the
neighbors, which goes through c i.

For data with low noise we can estimate the average
curvature from the least square fitted plane given by
(e0; ci). Figure 7 a) shows a two dimensional projec-
tion of the data point p with its tangent plane degen-
erated to the horizontal line. The point has the dis-
tance d = jet

0
(p � ci)j from its tangent plane. The

curvature radius, shown as a dashed line in the figure
intersects the tangent plane at approximately the av-
erage neighbor distance �. From s2 = �2 � d2 and
s2 = r2 � (r � d)2, the curvature � = 1=r computes
to 2d=�2 and is a good criterion for detecting crease
and corner points. We define the curvature estimate � i

for each data point pi with distance di from the fitted
plane as

�i
def
=

2di
�2i

; (3)

a) b)

c) d)

Figure 6. shape of the correlation ellipsoid around
di�erent types of data points: a) surface point, b)
crease point, c) border point, d) corner point



a) b)

Figure 7. a) curvature estimation from �tted plane
and average neighbor distance �, b) determination of
maximum open angle

By computing the maximum curvature estimation
�max of all data points, we can define the curvature
penalty function !� as

!�(p)
def
= 1� �(p)

�max

: (4)

The correlation ellipsoid tells us more than the approx-
imated normal direction. Figure 6 b) shows that in
the case of a crease point the correlation ellipsoid is
stretched in the direction of the crease and the eigen-
values obey �0 � �1 and �0 + �1 � �2. We encapsu-
late the information of how well the eigenvalues fit to
the crease case together with the primary direction of
the ellipsoid into a vector valued penalty function ! cr

~!cr(p)
def
=

max f�1 � �0; j�2 � (�0 + �1)jg
�2

�e2: (5)

In the case of a border point, the ellipsoid degenerates
to an ellipse. The smallest eigenvalue is still approxi-
mately zero and the corresponding eigenvector gives a
good approximation of the surface normal. The other
two eigenvalues obey 2�1 � �2. The eigenvector e2
of the biggest eigenvalue gives again the approximate
direction of the border loop. This yields the vector val-
ued border penalty function ~!b1

~!b1(p)
def
=
j�2(p)� 2�1(p)j

�2(p)
e2(p): (6)

With the help of the normal direction we can derive
a second penalty function for the border. For this we
project the point p together with its neighbors into an
xy-coordinate system orthogonal to the normal direc-
tion, where p is the origin as shown in figure 7 b). Then
we sort the neighbors according to their angle around
p. Let � be the maximum angle interval that does not
contain any neighbor point. The bigger � is, the higher

is the probability that p is a border point. The corre-
sponding penalty !b2 function is given by

!b2(p)
def
= 1� �(p)

2�
: (7)

Finally, at a corner (see figure 6 d)) the correlation el-
lipsoid has no preferential direction and all eigenvalues
should be approximately the same. The corner penalty
function !co is defined as

!co(p)
def
=

�2(p)� �0(p);

�2(p)
: (8)

3.2 Minimum Spanning Graph Computation

In the previous section we defined several penalty
functions for creases, corners and border loops. Now
we exploit them to compute the minimum spanning
graph, which contains a superset of the edges in the
final feature patterns. In the case of crease pattern
extraction we define the weight wc(e) of an edge
e = (p; q) with length jej = jq � pj and direction
~e = (q � p)=jej as

wc (e)
def
= � (!�(p) + !�(q)) +

(1� �)
�
min

�j~!cr(p)t~ej;= !co(p)
	
+

min
�j~!cr(q)t~ej; !co(q)

	�
+

2jej
�(p) + �(q)

:

We take the minimum of the directional penalty func-
tion ~!cr and the corner penalty function!co in order to
incorporate the corner penalty function that improves
the locations of the detected crease corners. The fac-
tor � depends on the amount of noise in the data. For
data sets with nearly no noise, we choose � = 1=2. In
cases of high noise levels we reduce � to 0:2, as the
curvature estimate is no longer very reliable. The edge
length term that favors short edges is added in order
to straighten the feature lines. The scaling of the edge
length term does not significantly influence the output
of the algorithm. Therefore, we refrained from adding
another weighting parameter.

To detect border loops we define the edge weight
wb(e) from the corresponding penalty weights of the



incident points

wb (e)
def
= 
 (!b2(p) + !b2(q)) +

(1� 
)
�j~!b1(p)t~ej+ j~!b1(q)t~ej

�
+

2jej
�(p) + �(q)

:

We chose the factor 
 = 1=2, which produced closed
border loops in all cases that we tested.

For the extraction of the MSG as shown in figure 5
b) we first compute the weights for all edges in the
neighbor graph. Edges are not considered at all if the
portion of the penalty derived from the vertex penalty
functions exceeds a tolerance � . The tolerance � is a
measure of the sensitivity of the crease detection. As
all the penalty functions are normalized to the interval
[0; 1], it turns out that a value of � = 1 is appropri-
ate. If the dataset contains blunt creases, � will require
some fine tuning by the user.

The remaining edges are entered into a queue. The
MSG is built by considering the edge with the small-
est remaining weight. A disjoint set data structure is
used to determine whether this edge produces a cycle.
If not, the edge is added to the crease pattern. In the
case in which the edge under consideration produces a
cycle in the crease pattern, we check if the produced
cycle is longer than a user defined constant �. In that
case this edge also becomes part of the crease pattern.
Given the number of input points n a good guess for
� is

p
n=2, which reflects the assumption that a cyclic

crease should at least have the length of half of the
diameter of the described object. The pseudo code for
the first part of the feature line detection looks like this:

f compute MSG g
iterate all edges e in neighbor graph

if weight(e).penalty < � then
queue.insert(e, weight(e))

while not queue.empty() do
e = (p; q) := queue.extractMinimum()

if disjointSet.find(p; q) or
pattern.pathLonger(p; q; �) then

pattern.addEdge(p; q)

The method find(p; q) in the disjoint set checks if
the edge produces a cycle. If not, it joins the two
connected components incident to p and q and re-
turns true. Otherwise it returns false and the method
pathLonger(p; q; �) of the graph data structure
checks if the cycle is long enough. The latter method is
time critical for large values of �. We implemented it
with a breadth first search through the graph, in which

we kept track of the visited vertices. We used coun-
ters instead of flags for the tracking of visited ver-
tices in order to avoid expensive initializations for each
breadth first search. In this way the search cost was
O(�2) in the worst case. But the vast majority of edges
are added to graph components with diameter much
smaller than �. In practice there is hardly any depen-
dence of the run time on �. Even for the brain model
with 84,000 vertices and a � of 150 the pattern was
extracted after two seconds.

3.3 Pattern Pruning

At this point in the process, the extracted pattern looks
like the one in figure 5 b). There are a lot of short
branches that we have to remove. The basic idea is
to remove all branches shorter than �=2 while still
managing to take care of singleton ends, which we
do not want to cut short. Thus in a first iteration
over these points in the pattern that have more than
two incident edges, we check at each incident edge
whether the incident branch is a sub-tree with maxi-
mum depth less than �=2. The check is performed with
a similar breadth first searching algorithm as we used
for pathLonger(p; g; �). If there are at least two
branches with depth larger than �=2, we can safely re-
move all incident branches with smaller depth without
affecting singleton ends. The second step takes care of
the singleton ends and finds for each tree at a singleton
end the longest path with minimum edge weight. All
other branches at the singleton end are removed. The
final result of this process can be seen in figure 5 c).

4. FEATURE RECOVERY

For datasets in which the data points lie directly on the
feature lines, the above algorithm robustly extracts the
crease and border loop patterns. For datasets scanned
from real data with for example a laser range scanner
even without any noise the probability that a data point
lies on a feature line is extremely low. If the laser beam
of the scanning device directly hits a feature line, the
beam is dispersed and the measurement impossible.
Thus we rather have to expect that there are no points
directly on the feature lines. As a result of the lack of
feature points, the output of the feature line detection
algorithm is a zigzag line strip around the actual fea-
ture line. Figure 8 a) and b) give two examples of this
behavior. A simple solution is sufficient for many ap-
plications. We just smooth the zigzag away by fitting
a low degree spline to the feature lines. An example
of the result from such an approach is shown in fig-
ures 8 c) and d). As the points on the crease lines are
ordered, we can use a standard spline fitting procedure,
which estimates the spline parameter values of the in-
put points via a chordal length parameterization and



a) b)

c) d)

Figure 8. a) zigzag crease line, b) zigzag border line,
c) smoothed crease, d) smoothed border loops

then solves the resulting least squares problem. For
this fitting, we have used the Nurbs++ library.

a) b)

c)

Figure 9. a) the two
dimensional wedge �t-
ting problem, b) the
simpli�ed wedge �tting,
c) sweeping through all
possible groupings

In the case of crease line reconstruction, we propose a
better solution than spline fitting. The basic idea is to
reconstruct the crease from a sufficiently large neigh-
borhood and then move the points on the zigzag pat-
tern line onto the reconstructed crease. The question
is how to reconstruct the crease lines and corner loca-
tions at the crease junctions. Given a point close to a
crease line and its neighborhood one would like to fit
a wedge to the neighbor points. Figure 9 a) illustrates
the fitting in two dimensions. The wedge is defined
by two planes p1 and p2. The dotted line shows how
the wedge splits the space into three regions A;B and
C. All points in region A are closest to plane p1, the
ones in region B to p2, and the points in region C are

closest to the intersection line (or in two dimensions,
the intersection point) of the two planes. This split into
three regions makes a least squares fitting approach ex-
tremely difficult, as it is not known in advance which
point will fall into which region after the fitting pro-
cess. Thus the primary question is how to split the
input points into regions.

The approach described in the next section splits
the difficult three-dimensional problem into a num-
ber of simplified two-dimensional problems, where
the grouping problem can be solved efficiently. A
robust approximate solution to the three-dimensional
grouping problem is then composed from the two-
dimensional solutions via a voting process. In this way
we can exploit the information available from the fea-
ture detection stage to simplify the feature recovery.
After we have derived a reliable grouping we can fit
the wedges to the points in the crease neighborhood
and project the potential crease points directly onto the
crease.

This crease line recovery approach breaks down close
to crease junctions as too many data points are incor-
porated into the fitting process. For this reason we first
determine the point grouping around corners. As we
exploit the solution strategy of the line recovery but in
a more complicated manner, we describe the line re-
covery process first.

4.1 Feature Line Recovery

a) b)

c) d)

Figure 10. Crease Recovery a) detected crease pat-
tern, b) smoothing through spline �tting, c) summed
grouping weights along crease strip, d) points moved
onto recovered crease



Figure 10 demonstrates the different steps of crease
line recovery on a very noisy dataset. We generated
this dataset by randomly distribution 10,000 points in a
volume defined as the solid difference between a cube
with edge length 2 and one with edge length 1.6, both
centered around the origin. The result was a cube sur-
face with 20% noise in all directions.

In order to project the wedge fitting problem for each
crease point to the two dimensions case as shown in
figure 9 a), we need to know the crease direction or a
good approximation to it. As the detected feature lines
are noisy, we use the spline approximation. From the
spline fitting process we know for each crease point, p,
the parameter value tp of its counterpart on the spline
s(t). Thus we can compute the smoothed location
ps

def
= s(tp) and crease direction ds

def
= _s(tp)=j _s(tp)j.

We extend ds to an orthogonal coordinate system with
an xy plane orthogonal to ds and project neighbor
points of p to the xy plane arriving at the configura-
tion described in figure 9 b).

The wedge fitting problem in two dimensions is still
very difficult as we do not know the zenith location of
the wedge. Thus we simplify the problem be assum-
ing that ps is the zenith of the wedge. Furthermore we
split the space at the split line into only two regions
A and B, as depicted in figure 9 b). The distances
from the points in the previously defined region C to
the wedge are underestimated (see neighbors qA and
qB in figure 9 b) for two examples). This is not a se-
rious problem for our application as these points are
rare and their existence either implies that we detected
the crease point incorrectly or that there is noise in the
data.

The helpful property of the simplified wedge fitting
problem is that no matter what the solution is, the
points are split into two groups at a split line that goes
through ps. There are only n of these groupings, where
n is the number of points in the neighborhood. We can
enumerate them by sweeping the split line in a rota-
tional motion through the neighbor points as illustrated
in figure 9 c). The final solution is the one with the
smallest residual.

Given the set of neighbor points N and a grouping
N1

_\N2 = N , the solution of the simplified wedge fit-
ting problem is found by solving two least square line
fitting problems. To each neighbor group N1 and N2

we fit a line through the origin ps. To avoid the O(n)
floating point operations per grouping, we prepare the
input matrices

IR2�2 3 mj
def
=
X

q2Nj

qqt j 2 f1; 2g

incrementally during the rotation of the split line. For

the first split line location we compute the matrices ex-
plicitly. Each time the split line rotates one step fur-
ther, only one point q changes from one group to the
next. We subtract qqt from the matrix of the group that
q leaves and add it to the other matrix. As the matrices
are symmetric and we are in two dimensions, the cost
is only three multiplications and six additions. Given
the matrix mi, the normal to the optimal line is given
by the eigenvector of mi corresponding to the small-
est eigenvalue. The following algorithm computes this
eigenvector of a matrixmwith three square root opera-
tions, one division, four multiplications, five additions
and some sign and binary shift operations.

a := (m11 �m22)=2;
if a = 0 and m12 = 0 then return (1; 0)
if m12 = 0 then

if a > 0 then return (0; 1)
else return (1; 0)

if a = 0 then
if m12 > 0 then return (

p
2;�p2)=2

else return (
p
2;
p
2)=2

f := a=(2
p
a2 +m2

12
)

c :=
p

1=2 + f

d := sgn(m12)
p

1=2� f
if sgn(a) = sgn(d2 � c2) then return (c; d)

else return (d;�c)
Now we are in the position to efficiently group the
neighborhoods of each crease point optimally accord-
ing to the simplified wedge fitting problem. However,
each single grouping might contain a few misgrouped
data points, for example if the crease has a sharp turn.
We want to combine as many groupings of adjacent
crease points as possible. The maximum sub-graph
of a crease pattern, where the neighboring points split
into exactly two groups, is either a closed loop or a
path connecting two crease points of degree unequal
two, i.e. crease junctions and singleton ends. We call
these maximum crease paths crease strips. For each
crease strip we attach a weight field to each of the data
point that is adjacent to at least one point on the crease
strip. After initializing the weights to zero, we start a
voting process at one end of the strip. We build the
xy coordinate system orthogonal to the spline direc-
tion and find the optimal grouping of the neighbors
that solves the simplified wedge fitting problem. The
weights of neighbors are incremented for members of
group A and decremented for group B members. The
amount of the increment decreases with increasing dis-
tance from the wedge zenith. When we move on to
the next crease point on the strip, we choose x- and
y-axes as close as possible to the previous axes, such
that we can identify the groups A and B of the new
grouping with the previous groups. In this way we
sweep through the strip and increment and decrement
weights for the neighbors. A sample weighting along



one crease strip in the cube model is shown in fig-
ure 10 c). After all crease points have contributed to
the weights, we classify the neighbor points into group
A if their final weight is positive and into group B if
the resulting weight is negative. If a weight is very
close to zero we do not consider the corresponding
neighbor point in the final recovery stage.

In the end we derive a grouping of the crease neigh-
bors that exploits all the information we get from the
feature detection stage. A final iteration through the
points on the crease strip recovers the origin crease lo-
cations. The neighborhood of each point on the strip
is now reliably split into two groups. Thus we can fit
two planes to the two groups in the least square sense
by computing and analyzing the correlation matrix for
each group relative to the centroid of the group. The
local crease approximation is the intersection of the
resulting planes. We project the crease point orthog-
onally onto the crease approximation. Figure 10 d)
shows the result, a more or less straight line for the
cube dataset with 20% noise. There are still problems
near the crease junctions because we do not exclude
neighbors in opposite faces of the creases. The solu-
tion to this problem is described in the next section.

4.2 Feature Junction Recovery

In order to find realistic crease lines and their inter-
section at crease line junctions, we have to solve the
corner fitting problem. Suppose we have a junction
of k intersecting crease lines. The surface is split into
k regions, which are planar near the junction as de-
picted in figure 11 a). The corner, which we want to
fit to the data points, is given by the piecewise planar
approximation of the surface at the junction. It is de-
fined by the corner point and k plane normals. For a
least squares fit of a corner to a set of data points we
have to split the data points into k groups, such that the
total residual of square distances is minimized, when
k planes are fit to the k groups. Figure 11 c) shows
such a grouping. This problem is more difficult than
the wedge fitting problem and the number of different
groupings increases exponentially with k, even if we
can arrange the vertices in a linear order.

Figure 11 illustrates our approach to an approximate
solution of the corner fitting problem. Suppose we
start of with a crease junction point pc detected in the
feature detection stage. First we find a two dimen-
sional projection of the problem, in which the points
in the neighborhood Nc of pc can be sorted around pc
according to their angle relative to an arbitrary x-axis
in the projected space (figure 11 b)). We can imagine
different approaches to do this. First we could fit an
ellipsoid to the point set [1] and use the direction from
the center to the junction point as the projection direc-
tion. A second approach would be to trace the nor-

a) b)

c) d)

e) f)

Figure 11. Junction Recovery a) a corner is given
by a set of planes, b) �nding a suitable 2d projection,
c) initial grouping, d) grouping along crease strip, e)
summed weights after strip grouping, f) corners and
creases reconstructed

mal direction, given from the correlation tensor, from
the surrounding points to the junction. We used the
following approach, which works very well in all test
cases we evaluated. We selected the direction from the
centroid of the neighborhood to the junction point as
the projection direction.

An initial group of the neighbor points is derived from
the spline approximation of the incident crease lines.
We partition the two dimensional space into k angular
partitions, which split the neighbor points fromNc into
k groups as shown in 11 c).

To improve the grouping, we use the weighting idea
described in the previous section. We trace along each
of the k incident crease strips and solve the simplified
wedge fitting problem without considering data points
in the groups not incident to the strip (see figure 11 d)).
Each data point in Nc accumulates distance-weighted
group votes in k weight variables. Each strip is traced
until no more votes are added to the points in Nc or
the end of the strip is reached. After all incident strips
have been traced, a new grouping is derived from the



weights, an example of these steps is shown in fig-
ure 11 e). Each data point in Nc is assigned to the
group with the maximum weight. Then we start the
whole strip tracing and voting process over and over
again until no data point changes the group or a maxi-
mum number of iterations is reached. In all our exam-
ples the grouping terminated after two or three itera-
tions.

Given the optimal grouping, we can fit k planes to each
of the k groups and reconstruct the corner. For k > 3
the planes do not always intersect in a single point.
Therefore, we again use a least squares approach to re-
construct the corner location. We minimize the square
distance to all of the k planes. The tool to solve this
minimization problem is also known as quadric error
metrics, originally introduced by Garland and Heck-
bert [11] in mesh simplification to find optimal loca-
tions for the mesh vertices after an edge collapse op-
eration. With the knowledge of the vertex grouping
around the junction point, we can finally recover the
crease close to the junction by not considering any of
the data points of Nc that do not belong to the two
groups of the crease strip.

Let us summarize. The feature recovery stage first
groups the neighborhoods around crease junctions into
as many groups as there are incident faces. From the
grouping the corner locations are recovered. Then the
crease lines close to the junctions are reconstructed
with the knowledge about grouping near the junctions.
Finally, the remaining parts of the crease lines are re-
covered with the method described in the previous sec-
tion. Figure 11 f) shows the final result of the noisy
cube.

5. APPLICATIONS & RESULTS

5.1 Surface Meshing

Our primary goal in developing the feature extraction
algorithm was as the first stage of a point cloud mesh
generation tool. The basic idea behind the point cloud
mesh generator is to locally fit polynomial patches to
the point cloud and directly generate a mesh with el-
ement sizes that are adapted to curvature and to an
anisotropic sizing function. The mesh is generated
with an advancing front algorithm. While the front ad-
vances a new local approximation is computed when-
ever the front leaves the domain of the current polyno-
mial patch. An important ingredient is again a neigh-
bor graph that reflects the proximity along the surface.
Problems arise, as always, at the crease lines, where a
naively computed neighbor graph connects the differ-
ent surface parts incident to the crease. This will di-
minish the quality of the fitted patch near the crease
lines significantly. With the help of point grouping

along the edges, as described in section 4.1 and 4.2,
we can easily remove all edges that cut the creases
and corners. Thus our feature extraction stage not only
produces the feature lines for the point cloud mesher,
but also a sophisticated neighbor graph.

5.2 Point Cloud Enrichment

a) b)

c)

Figure 12. The trian-
gulations produced by
simple Delaunay �lter-
ing resulting from point
cloud enrichment. a)
enriched torso model
(compare �gure 3 b)),
b) fandisk without en-
richment, c) enriched
fandisk

A very simple but useful application of the feature ex-
traction algorithm is point cloud enrichment. The goal
here is to improve the resolution of feature lines by
resampling the initial point set so that standard algo-
rithms can now handle the features. Figure 12 shows
two examples, the torso model and the fandisk. The
torso is reconstructed correctly with the simplified De-
launay filter. On the fan disk there are problems with
a few triangles that connect two different sides of a
crease. An example can be seen in the middle of
the concave crease. As we group the vertices around
creases during the feature recovery stage, we could
add a third filter for the simplified surface reconstruc-
tion that removes triangles that interconnected differ-
ent sides of a crease. We have not implemented this
yet.

5.3 Non Photorealistic Rendering

In non photorealistic rendering [14] surface display is
often enhanced along feature lines and lines of high
curvature. Our first example of surface enhancement
was the bunny model in figure 1, in which we singled
out the crease and border lines. We did the same for
the brain model as shown in figure 13.



a) b)

c)

Figure 13. non pho-
torealistic rendering of
brain a) surface model
reconstructed with De-
launay �ltering b) ex-
tracted feature lines c)
combined rendering

5.4 Results

Figure 14 shows the extracted crease patterns of the
torso, the fandisk, the bunny and a frog model. The
crease patterns of the random cube and the brain can
be seen in figure 11 f) and 13 c). The surface triangu-
lations were generated with the Delaunay filtering ap-
proach described in section 2.1. The frog model was
acquired with an optical 3D scanner and is composed
of 26 depth images.

a) b)

c) d)

Figure 14. Crease patterns on torso, fandisk, bunny
and frog model

Table 1 gathers more information on the used param-
eters and the run time consumption of the different
stages. All times were measured in seconds on a Pen-
tium III 600 MHz CPU. The capitalized columns in
table 1 contain timing measurements. The second col-
umn contains the number of input data points. The
next three columns document the analysis stage. We
measured the time consumed by the Delaunay filter-
ing for comparison only. The time is split into the
run time of Qhull and the run time of the filters. For
all models the Riemannian graph with the tabulated k
was used as neighbor graph. The running time was
for the larger models significantly less than for the De-
launay filtering. The next four columns contain the
parameter values used for feature detection and the
consumed time, which is split into the time consumed
by the calculation of the point correlation matrix and
penalty functions and the time consumed by the min-
imum pattern extraction and pruning. The calculation
of the correlation matrices consumed the most time for
the cube dataset with twenty percent noise as we used
all neighbor points with graph distance up to three.
The last three columns tabulate the feature recovery
stage. First we specify the graph distance in which we
analyzed the neighborhood around corners and crease
strips. The last two columns contain the run times for
the corner and strip recovery, respectively.

6. CONCLUSION

6.1 Summary

We have presented a new approach for feature extrac-
tion of crease and border patterns from point clouds.
The proposed method is reasonably fast, robust in the
face of noise, and adapts easily to non uniformly sam-
pled point clouds. For noisy data or data that is under-
sampled on the crease lines a least square based feature
recovery algorithm allows us to project data points that
were close to the actual crease junctions and lines onto
the features. These properties make our approach an
excellent preprocessing step for surface reconstruction
algorithms. Other applications like point cloud enrich-
ment and non photorealistic rendering have been de-
scribed.

6.2 Discussion & Future Work

We presented efficient solutions to the wedge and cor-
ner fitting problem. The information from the feature
detection stage was exploited to simplify the problems.
In future work we plan to determine whether the fea-
ture detection and recovery stages can be combined to
make the algorithm even more robust.

Some datasets contain isolated peeks without any



Model Analysis Feature Detection Feature Recovery

name vertices DELAUNAY RIEM. k � 
 � TIME dist COR. STR.

torso 771 0:15 + 0:05 0:06 13 0:5 0:5 15 0:05 2 0 0:07

random cube 10; 000 2:5 + 1:2 2 16 0:25 0:5 40 10:2 + 1:4 4 0:4 1:4

fandisk 16; 477 6:4 + 2:0 3:13 13 0:667 0:5 40 2:9 2 1:3 1:8

bunny 34; 835 9:5 + 5:1 2:7 10 0:667 0:5 40 3:5 + 0:8 2 0:8 2:3

brain 83; 835 26 + 10 5:2 13 0:5 0:5 80 10 + 3:5 2 5:8 12:3

frog 120; 125 39 + 11 8:5 13 0:7 0:5 80 17 + 4:8 2 0:2 2:9

Table 1. Parameter values and run time measurements for the di�erent feature extraction stages measured on
di�erent models. The times were measured in seconds on a Pentium III with 600 MHz CPU.

creases. For example, the well known cow dataset
has two peaks at the horns. These peaks are single-
ton points in the crease pattern and not detected by our
algorithm. Their neighborhood is also quite difficult
to mesh with polygonal faces. We want to investigate
how to fit cones to the peaks and how to incorporate
them into polygonal mesh representations.

ACKNOWLEDGEMENTS

This work was supported by the National Institutes of
Health [NCRR Grant #5-P41-RR12553-02].

REFERENCES

[1] R. Fisher A. Fitzgibbon, M. Pilu. Direct least-square
fitting of ellipses. In International Conference on
Pattern Recognition, August 1996.

[2] U. Adamy, J. Giesen, and M. John. New tech-
niques for topologically correct surface reconstruc-
tion. In Proceedings Visualization 2000, pages 373–
380, 2000.

[3] M.-E. Algorri and F. Schmitt. Surface reconstruction
from unstructured 3D data. Computer Graphics Fo-
rum, 15(1):47–60, March 1996.

[4] S. Arya, D. M. Mount, N. S. Netanyahu, R. Silver-
man, and A. Wu. An optimal algorithm for approx-
imate nearest neighbor searching fixed dimensions.
JACM: Journal of the ACM, 45, 1998.

[5] C. B. Barber, D. P. Dobkin, and H. Huhdanpaa. The
quickhull algorithm for convex hulls. ACM Transac-
tions on Mathematical Software, 22(4):469–483, De-
cember 1996.

[6] E. Bittar, N. Tsingos, and M.-P. Gascuel. Automatic
reconstruction of unstructured 3D data: Combining
medial axis and implicit surfaces. Computer Graph-
ics Forum, 14(3):C/457–C/468, September 1995.

[7] A. Blake and A. Zisserman. Invariant surface recon-
struction using weak continuity constraints. In Proc.
IEEE Computer Vision and Pattern Recognition, July
1985.

[8] T. K. Dey, S. Funke, and E. A. Ramos. Surface re-
construction in almost linear time under locally uni-
form sampling. Proc. European Workshop on Com-
putational Geometry, March 2001.

[9] T. K. Dey and J. Giesen. Detecting undersampling in
surface reconstruction. Proc. 17th ACM Symposium
Computational Geometry, pages 257–263, June 2001.

[10] P. Fua and P. Sander. Reconstructing surfaces from
unstructured 3d points. In Image Understanding
Workshop, January 1992. San Diego, California.

[11] M. Garland and P. S. Heckbert. Surface simplifica-
tion using quadric error metrics. In SIGGRAPH’97
Conference Proceedings, pages 209–216, 1997.

[12] G. Guy and G. Medioni. Inference of surfaces, 3d
curves and junctions from sparse, noisy 3d data, 1997.

[13] H. Hoppe, T. DeRose, T. Duchamp, J. McDonald,
and W. Stuetzle. Surface reconstruction from unor-
ganized points. Computer Graphics (SIGGRAPH ’92
Proceedings), 26(2):71–78, July 1992.

[14] J. Lansdown and S. Schofield. Expressive rendering:
a review of nonphotorealistic techniques. IEEE Com-
puter Graphics and Applications, 15(3):29–37, May
1995.

[15] R. Mencl and H. Müller. Graph-based surface recon-
struction using structures in scattered point sets. In
Proceedings of the Conference on Computer Graph-
ics International 1998 (CGI-98), pages 298–311, Los
Alamitos, California, June 22–26 1998. IEEE Com-
puter Society.

[16] S. Choi N. Amenta and R. Kolluri. The power crust.
In to appear in ACM Symposium on Solid Modeling
and Applications, 2001.

[17] S. S. Sinha and B. G. Schunck. A two-stage algo-
rithm for discontinuity-preserving surface reconstruc-
tion. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, 14(1):36–55, January 1992.

[18] R. Szeliski and D. Tonnesen. Surface modeling with
oriented particle systems. Computer Graphics (SIG-
GRAPH ’92 Proceedings), 26(2):185–194, July 1992.

[19] D. Terzopoulos and D. Metaxas. Dynamic 3D mod-
els with local and global deformations: Deformable
superquadrics. IEEE Transactions on Pattern Analy-
sis and Machine Intelligence, PAMI-13(7):703–714,
July 1991.


