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Abstract’

In our early work, a representation called Harmonic
Shape Images for 3D free-form surfaces was proposed
and applied to solve the surface-matching problem. In this
paper, extensive experiments using real data are
conducted to analyze the performance of Harmonic Shape
Images with respect to discriminability, stability and
robustness to resolution and occlusion. The results show
that Harmonic Shape Images are an appropriate
representation for 3D surface comparison. Examples of
surface comparison using real data are presented in the

paper.

1. Introduction

Surface comparison is a fundamental issue in computer
vision. A large amount of work has been done regarding
this issue. The approaches to solving the problem can be
classified into two categories: model-based matching[5]-
[17] and matching by registration[18]-[21].

In our early paper[23], a representation called Harmonic
Shape Images was proposed to represent and compare 3D
free-form surfaces. The basic idea of Harmonic Shape
Images is to-map a 3D surface patch with disc topology to
a 2D domain and encode the shape information of the
surface patch into the 2D image. This simplifies the
surface-matching problem to a 2D image-matching
problem. When constructing Harmonic Shape Images, a
mathematical tool called harmonic maps is employed to
solve the mapping problem between a 3D surface patch
with disc topology and a 2D domain.

In this paper, we focus on the experimental analysis of
Harmonic Shape Images with regard to the following
issues: how discriminative Harmonic Shape Images are,
how stable Harmonic Shape Images are and how robust
Harmonic Shape Images are with respect to resolution
and occlusion. Those issues are important for obtaining
consistently good performance when applying Harmonic
Shape Images to surface comparison.

A library of twenty surface patches is constructed by
extracting patches from real free-form objects. The
discriminability of Harmonic Shape Images is evaluated
by how different the patches are from one another in
terms of shape. Using surface patches of similar shapes,
the stability of Harmonic Shape Images is evaluated by
how similar those patches are. Patches of the same shape
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but with different resolutions are compared to one another
in order to evaluate the robustness of Harmonic Shape
Images with respect to resolution. Similar experiments are
conducted to evaluate the robustness to occlusion.

This paper is organized as follows: Harmonic Shape
Images are briefly reviewed in Section 2; in Section 3,
experimental analysis of Harmonic Shape Images is
presented in detail; applying Harmonic Shape Images in
surface matching is discussed in Section 4 along with
experimental results. Conclusions and future work will be
presented at the end of the paper.

2. Harmonic Shape Images

In this section, we will briefly review the concept of
Harmonic Shape Images, the generation process and the
properties. Please refer to [23] for details.

2.1. General Concept

The 3D free-form surfaces studied in this paper are
represented by polygonal meshes. According to [18], a
free-form surface S is defined to be a smooth surface such
that the surface normal is well defined and continuous
almost everywhere, except at vertices, edges and cusps.
Comparing two such meshes directly is difficult due to
the following reasons: the topology may be different for
different objects; the sampling may be different even for
the same object; the surfaces may not be complete
because of occlusion and clutter in the scene.

The development of Harmonic Shape Images was
motivated by the above difficulties. Given a 3D surface S
as shown in Figure 1(a), let v denote an arbitrary vertex in
S. Let D(v, R) denote the surface patch which has the
central vertex v and radius R and has disc topology. D(v,
R) is connected and consists of all the vertices in S whose
surface distance is less than, or equal to, R. The overlaid
region in Figure 1(a) is an example of D(v, R). Its
amplified version is shown in Figure 1(b). If the unit disc
is selected to be the domain and D(v, R) is mapped onto
the domain using certain strategy, then the resultant image
h(D(v, R)) is called harmonic image as shown in Figure
1(c). The harmonic image preserves the shape and
continuity of D(v, R). Because correspondences can be
established between the vertices in D(v, R) and the
vertices in A(D(v, R)), the Harmonic Shape Image of D(v,
R), HSI(D(v, R)), can be obtained by associating shape
attributes, e€.g., curvature, at each vertex of D(v, R) with
the corresponding vertex in A(D(v, R)). Figure 1(d) shows
the Harmonic Shape Image of the surface patch in Figure



1(b). The curvature values are gray-coded. High intensity
values correspond to high curvature values.

Harmonic Shape Images can be generated for any vertex
on a given surface as long as there exists a valid surface
patch at that vertex. Here, a valid surface patch means a
connected surface patch with disc topology.
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Figure 1: (a) A surface patch (overlaid region) D(v, R)
on a given surface; (b) Amplified version of D(v, R) in
(a); (¢) The harmonic image of D(v, R); (d) The
Harmonic Shape Image of D(v, R).

2.2. Generation of harmonic images

The generation of harmonic images is based on a
mathematical tool called harmonic maps[1][2]. Harmonic
maps solve the problem of mapping between different
metric manifolds by solving partial differential equations.
Due to the expensive computational cost in solving partial
differential equations and the discrete nature of surfaces
we deal with in practice, it is natural to look for an
approximation of harmonic maps.

Eck et al proposed an approximation approach to
harmonic maps in [4]. Eck’s approximation consists of
two steps. At the first step, the boundary of the 3D surface
patch is mapped onto the boundary of an equilateral
triangle that is selected to be the 2D target domain. At the
second step, the interior of the surface patch is mapped
onto the interior of the equilateral triangle with the
boundary mapping as a constraint. Our approach uses the
same interior mapping strategy as that of Eck’s approach
but a different target domain and a different boundary
mapping strategy.

2.2.1. Interior Mapping

Let D be a 3D surface patch with disc topology and P be a
unit disc in 2D. We use D(v, R) to denote that the central
vertex of D is v and the radius of D is R. Let dD and
oP be the boundary of D and P, respecitively. Let v/
i=l,..,n, be the interior vertices of D. The interior
mapping ¢ maps v/ i=1,...,n", onto the interior of the unit
disc P with a given boundary mapping b:0D — oP . (i)
is obtained by minimizing the following energy
functional.

E@=1  Tkilpor -0 M
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in which ¢(i) and ¢(j) are the images of the interior
vertices i and j of D on P. The values of ¢(i) define the
mapping ¢. k;; serve as spring constants[4]. The minimum
of the energy functional E(¢) can be found by solving a
sparse linear least-square system of (1) for the values
i),

The 2D image of D after being mapped onto P is named
the harmonic image h(D) of D. Examples of D and k(D)
are shown in Figure 1(b) and (c) respectively.

2.2.2. Boundary Mapping

The constuction of the boundary mapping b:0D — dP is
illustrated in Figure 2.

Figure 2: INustration of the boundary mapping
between the surface patch and the 2D domain.

First of all, let us define the vertices and vectors in Figure
2. O is the central vertex of D and O’ is the center of P. v;,
i=1,...,5 are the boundary vertices of D. D is said to have
radius R when the surface distance from any vertex in D
to the central vertex O is less than, or equal to, R. For
some boundary vertices, e.g., v/, i=],...,4, the surface
distance between any of them and the central vertex O is
equal to R; for other boundary vertices, e.g., v,°, the
surface distance is less than R. The vertices in the former
case are called radius boundary vertices and the vertices
in the later case are called occluded boundary vertices.
Radius boundary vertices are determined by the size of
the surface patch, while occluded boundary vertices are
determined by occlusion (either self occlusion or
occlusion by other objects). The vector from the central
vertex O to a radius vertex v, is called a radius vector,
while the vector from O to an occluded boundary vertex
v/ is called an occlusion vector.

Now let us define the angles in Figure 2. Angles g,
i=1,..,4 are the angles between two adjacent radius

vectors v;,"O and v_,"O. Angles b, j=I, 2, are the
angles between two adjacent occlusion vectors, or one
occlusion vector and one adjacent radius vector, in an
occlusion range. An occlusion range is a consecutive
sequence of occlusion boundary vertices except for the
first and last ones. For example, (v/, v,° v/") is an



occlusion range. The sum of b; over an occlusion range is
the angle g; formed by the first and last radius vectors of
this occlusion range.

The construction of the boundary mapping consists of two
steps. At the first step, the radius boundary vertices are
mapped onto the boundary of the unit disc P, which is a
unit circle. In Figure 2, v/, i=1,...,4, are mapped to v/,
i=1,...,4, respectively. It can be seen that once the angles
6, are determined, the positions of v/ are determined. & is
computed as follows:

i
n
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At the second step, the occlusion boundary vertices in
each occlusion range are mapped onto the interior of the
unit disc P. For example, in Figure 2, v,°, which is in the
occlusion range (v{, v,, v/"), is mapped onto v,°. Once
the angles ¥; and the radii r; are determined, the position
of v,° is determined. y; are computed as follows.
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in which »n is the number of angles within the occlusion
range and a; is the angle corresponding to the occlusion
range. r;is defined to be

dist(rj,O)
rp =———
J R
in which dist(rj,O) is the surface distance between the

)

occlusion boundary vertex v;* and the central vertex O. R
is the radius of the surface patch D.

It should be noted that Harmonic Shape Images generated
using different starting vertices are different by a planar
rotation[23]. The rotation difference will be found later by
the comparison process. Therefore, the starting vertex can
be selected randomly.

2.3. Generation of Harmonic Shape Images

In Section 2.2, we have shown that, given a surface patch
D, its harmonic image h(D) can be created using
harmonic maps. There is one-to-one correspondence
between the vertices in D and the vertices in h(D).
Harmonic Shape Images, HSI(D), are generated by
associating a shape attribute at each vertex of #(D). In our
current implementation, an approximation of the
curvature at each vertex is used to generate Harmonic
Shape Images. For details about the curvature
approximation, please refer to [5].

Figure 1(d) is an example of Harmonic Shape Image in
which the curvature values are gray-scale coded. High
intensity values represent high curvature values.
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2.4. Properties of Harmonic Shape Images

Due to the way that Harmonic Shape Images are
generated and the application of harmonic maps in the
generation, Harmonic Shape Images have many good
properties. First of all, this representation is local. It does
not depend on the overall topology of the underlying
object. Second of all, the mapping between a given
surface patch D and the 2D target domain P is one-to-one
and onto. Therefore, when two Harmonic Shape Images
match, the correspondences between vertices on the two
patches being compared can be established immediately.
Furthermore, this mapping constructs a parameterization
of D in P. This parameterization allows us to resample the
original surface patch, if necessary. In practice,
resampling such as raster scanning makes it easy to
compare two Harmonic Shape Images. Lastly, Harmonic
Shape Images are intrinsic to the shape of the underlying
surfaces. Therefore, they are invariant to the pose of the
underlying surfaces. They are unique and their existence
is guaranteed by the existence of harmonic maps.

3. Experimental Analysis of Harmonic Shape
Images

Harmonic Shape Images, their generation and properties
have been discussed in Section 2. Considering the
application of Harmonic Shape Images, which is surface
comparison, the following issues need to be investigated
because they are directly related to the performance of
surface comparison.

e Discriminability

o Stability

e Robustness to resolution

e Robustness to occlusion

These issues will be discussed in detail in this section.

3.1. Discriminability

For a surface patch in a given scene, its Harmonic Shape
Image needs to be representative or discriminative enough
in order for its best match to be identified from a library
of surface patches. The following experiment has been
conducted to illustrate how discriminative Harmonic
Shape Images are.

A library of surface patches is created which consists of
twenty patches extracted from real free-form objects.
Their Harmonic Shape Images are computed and stored in
the library as well. Two examples of the surface patches
in the library and their Harmonic Shape Images are shown
in Figure 3.

Pair comparison of the Harmonic Shape Images has been
done among the twenty surface patches in the library. The
comparison of two Harmonic Shape Images is
implemented as the combination of a planar rotation plus
the normalized correlation between the two images(5).



R(D;,Dy)= max rg(HSI(Dy),HSIo(Dy)) ®)
0<0<27

High values of R(D,, D,) indicate high similarity between
surface patches, while low values indicate low similarity.
Figure 4 shows the pair comparison result. It can be seen
from Figure 4 that the values on the diagonal are 1.0. This
is not surprising because all the surface patches are the
same as themselves. The values elsewhere are much
lower than the values on the diagonal. This indicates that
all the twenty patches are quite different from one another
in terms of shape.
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Figure 3: Examples of surface patches in the library
and their Harmonic Shape Images.

Given a set of correlation coefficients, in order to
quantitatively show how distinctive one Harmonic Shape
Image is from other Harmonic Shape Images based on
those correlation coefficients R(D, D), a statistic
approach is used to detect the distinctive one as an outlier
in that data set[22]. Considering the correlation
coefficients R(D,, D;) as values of a random variable, the
first step of the statistic approach is to transform the set of
correlation coefficients R(D,;, D,) into a normalized
distribution according to the following formula:

1+ R(D,;, Dy)

C(Dy,D;)=1n
(Dy,Dz) 1—R(D,.Dy)

6)
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in which R(D,;, D;), which is defined in (5), is the
correlation coefficient between surface patches D, and D,.
C(D,, D) is defined to be the similarity value between the
two patches. The second step is to plot the histogram of

the similarity values as shown in Figure 5.

L o

Figure 4: Pair comparison of Harmonic Shape Images
among the twenty surface patches in the library. High
correlation coefficient values on the diagonal indicate
the surface patches are the same as themselves. Low
correlation coefficient values elsewhere indicate the
patches are quite different from one another.

The third step is to find the outliers in the histogram using
the following method[22]: The fourth spread f; of the
histogram is defined as the median of the largest N/2
measurements (upper fourth) minus the median of the
smallest N/2 measurements (lower fourth). Statistical
moderate outliers are 1.5fs units above (below) the upper
(lower) fourth. Extreme outliers are 3fs units above
(betow) the upper (lower) fourth,

Figure 5 shows the histogram of the similarity values of
the surface patch D,(Figure 3(a)) to all twenty patches in
the library.. The line in Figure 5 indicates the value for
extreme outliers. One extreme Sutlier is found in Figure 5
and that is the similarity value of the surface patch D, to
itself. Therefore, D, is sufficiently different from other
patches in the library based on the comparison of their
Harmonic ~ Shape Images. This illustrates how
discriminative Harmonic Shape Images are. Figure 6
shows another example.

3.2. Stability

In addition to" being discriminative, Harmonic Shape.
Images should be stable as well. This means that surface
patches of similar shapes should have similar Harmonic
Shape Images. For example, on smooth free-form
surfaces, the surface patches of two neighboring vertices
should have similar shapes. Therefore, their Harmonic
Shape Images should also be similar to each other. This
observation is important in surface comparison because in




practice, no two discrete surfaces are sampled exactly the
same way. In this case, the surfaces should still be
matched using their Harmonic Shape Images.

correlation coefficients are color-coded and displayed in
Figure 7(d), (e) and (f). High brightness corresponds to
high correlation coefficient values. It can be seen that the
central vertices of those patches that are similar to D, are
in the neighborhood of the central vertex of D;(Figure
7(d) and 8). The histogram in Figure 9 shows how those
similar patches differ from other patches.

surface patch D;(Figure 3(a) to all twenty patches in
the library.

arity :

Figure 6: Histogram 6f the similarity values of the
surface patch D,(Figure 3(c) to all twenty patches in
the library.

The following experiment is conducted to illustrate the
stability of Harmonic Shape Images. One object model is
shown in Figure 7(a). Surface patches are created for each
vertex on the model. For example, the patch D, in Figure
7(b) is centered at the vertex shown on the head of the
duck in Figure 7(a). The patch in Figure 7(c) is centered
at the vertex shown on the wing of the duck. Harmonic
Shape Images of all the patches are computed and
compared -to the Harmonic Shape Image of D;. The

© ®
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Figure 7: Illustration of the stability of Harmonic
Shape Images. (a) An object model; (b) The surface
patch centered at the vertex shown on the head of the
duck in (a); (c) The surface patch centered at the
vertex shown on the wing of the duck in (a); (d) Top
view of the color-coded object using the correlation
coefficients; (e) Side view; (f) Front view.



Figure 8: The central vertices of those patches that are
similar to the patch in Figure 7(b).
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Figure 9: The histogram of the similarity values of the
patch D; to all the patches on the object shown in
Figure 7(a). The extreme outliers have their central
vertices in the highlighted area of Figure 7(d) and
marked in Figure 8.

3.3. Robustness to Resolution

As discussed in previous sections, Harmonic Shape
Images do not depend on any specific sampling strategy,
e.g., uniform sampling. For a given surface, as long as the
sampling rate is high enough such that the shape of the
surface can be sufficiently represented, its Harmonic
Shape Image is also good enough for surface matching. It
should be noted that the comparison of Harmonic Shape
Images does not require the two surface patches have the
same sampling frequency. In practice, it is rare for
discrete surfaces to have exactly the same frequency.
Although different resolutions may introduce noise in
creating Harmonic Shape Images, it can be seen from the
following experiment that Harmonic Shape Images are
robust to this kind of noise.

Seven surface patches of different resolutions are created.
They all have the same shape as the patch shown in
Figure 3(a). Two of them are shown in Figure 10(b) and
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(c), respectively. The Harmonic Shape Images of the
seven patches are computed and added to the library. Pair
comparison of any two Harmonic Shape Images in the
library is conducted and the result is shown in Figure 11.

(@) ®) ©

Figure 10: Surface patches of the same shape but of
different resolutions. (a) The original patch. Its
rendered version is shown in Figure 3(a); (b) The
patch with resolution ratio 3:1; (c) The patch with
resolution ratio 25:1.

In Figure 11, High correlation coefficient values on the
back center indicate that the newly added seven patches
are similar to one another. The high values on both the
front sides indicate that the seven patches are similar to
the first patch in the library. Low values everywhere else
indicate that the seven surfaces are quite different from
other surfaces in the library.
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Figure 11: Pair comparison of Harmonic Shape
Images among the twenty-seven surface patches in the
library. High correlation coefficient values on the back
center indicate that the newly added seven patches are
similar to one another. The high values on both the
front sides indicate that the seven patches are similar
to the first patch in the library. Low values
everywhere else indicate that the seven surfaces are
quite different from other surfaces in the library.




The statistic approach discussed in section 3.1 is used to
determine the best match of the seven patches among the
original twenty patches in the library. The first patch
(Figure 10(a)) is found to be the best match for all seven
patches, which is the correct result. Figure 12 shows the

recognition result for the patch shown in Figure 10(c).

Resolution Ratio: 25:1

. milai

see how much difference the occlusion causes. Figure
13(c) shows the disparity map. The brightness of a pixel
is proportional to the norm of the difference vector
between the two harmonic images. It can be seen that the
largest differences appear at the occlusion boundary, and
the differences decrease gradually as moving away from
the occlusion boundary. This shows that harmonic image
does not change significantly in the presence of occlusion.
Therefore, the Harmonic Shape Image does not change
significantly, either. Figure 14 shows the Harmonic Shape
Images with and without occlusion.

(a) (b) ©)

Figure 12: Histogram of the similarity values of the
surface patch(Figure 10(c)) to the original twenty
patches in the library. The patch shown in (Figure
10(a)) is found to be the best match.

3.4. Robustness to Occlusion

One important issue for surface representations is their
robustness to occlusion, i.e., correct matching result
should still be obtained even when the surfaces being
compared are not complete. In this section, we first
explain why Harmonic Shape Images are robust to
occlusion and then, using real data, demonstrate their
robustness.

The reason for the robustness of Harmonic Shape Images
with respect to occlusion lies in the way in which the
boundary mapping is constructed. Recall that in Section
2.2.2, the boundary vertices are classified into radius
boundary vertices and occluded boundary vertices. It is
the radius boundary vertices that determine the angles a;,
which then determine the overall boundary mapping. The
effect of occlusion is limited within the occlusion range;
therefore, it does not propagate much outside of the
occlusion range. This means that, as long as there are
enough radius boundary vertices present in the surface
patch, the overall harmonic image will remain
approximately the same in spite of occlusion.

In order to verify the above observation, the following
experiment is conducted. Take the surface patch D, shown
in Figure 13(a) and cut one part off it to simulate
occlusion. The resulted patch D,. is shown in Figure
13(b). Because the vertices on D,. are a subset of the
vertices on D,, we can compare their-harmonic images to

Figure 13: Simulation of occlusion. (a) The original
patch; (b) The same patch as (a) with a part cut off;
(c) The disparity map between the harmonic images of
the patches with and without occlusion.

(b)
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Figure 14: Harmonic Shape Images of surface patches
with and without occlusion. (a) The Harmonic Shape
Image of the original patch; (b) The Harmonic Shape
Image of the patch with occlusion; (¢) The Harmonic
Shape Image in (b) with pixels close to the occlusion
boundary cut off; (d) The Harmonic Shape Image in
(c) after Gaussian smoothing using 6 =0.25.




By comparing the Harmonic Shape Images in Figure
14(a) and (b), it can been that the difference is fairly
small. It should be noted that the rotational difference is
caused by the selection of different starting vertices for

- the boundary mapping. The two Harmonic Shape Images
will be aligned in the same orientation by the comparison
process. This has already been discussed in section 2.2.2.
It is not surprising to see that the two Harmonic Shape
Images in Figure 14(a) and (b) still have high correlation
coefficient 0.86. This value is good enough to find the
best match in the library of twenty patches. By cutting off
the pixels that are close to the occlusion boundary (Figure
14(c)) and smoothing both Harmonic Shape Images using
a Gaussian kernel -with o =0.25 (Figure 14(d)), the
correlation coefficient can be improved to 0.9.

Another example is shown in Figure 15 and Figure 16 to
illustrate the robustness of Harmonic Shape Images with
respect to occlusion. The patches in Figure 15(b) has
three parts occluded compared to the patch in Figure
15(a). The effect of occlusion can be seen from the
disparity map (Figure 15(c)) of their harmonic images.
Again the effect is mostly localized in the neighborhood
of the occlusion boundaries. Figure 16 shows the
Harmonic Shape Images with and without occlusion. The
correlation coefficient of the Harmonic Shape Images in
Figure 16(a) and (b) is 0.78. It is good enough for the best
match to be identified among the patches in the library.
This value can be improved to 0.82 by cutting off close-
to-occlusion-boundary  pixels(Figure  16(c))  and

smoothing the Harmonic Shape Images(Figure 16(d))
with a Gaussian kermel of 0 =0.25. |

(a) ®)

Figure 15: The simulation of occlusion. (a) The
original surface patch; (b) The same patch as (a) with
three parts occluded; (c) The disparity map between
the harmonic images of the patches in (a) and (b).

A more realistic example is shown in Figure 17 to further
demonstrate the robustness of Harmonic Shape Images
with respect to occlusion. The surface patch in Figure
17(b) has the same shape as the one in Figure 17(a).
However, their sampling vertices are different. The
resolution ratio between them is 2:1. The patch in Figure
17(b) has an occlusion part. The Harmonic Shape Image
of this patch is compared to the twenty patches in the
library to find the best match. The correct result is
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obtained and the histogram of the similarity values is
shown in Figure 18.

(b)
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Figure 16: Harmonic Shape Image of (a) the original
patch; (b) the original patch with occlusion. (c)
Harmonic Shape Image of the occluded patch with
pixels that are close to the occlusion boundary cut off;
(d) (c) with Gaussian smoothing using 0 =0.25.

(b

(a)

Figure 17: Surface patches of the same shape but
different resolutions and occlusion parts.

4. Surface Matching Using Harmonic Shape
Images

We have discussed the generation and properties of
Harmonic Shape Images in the previous sections. In this
section, we will apply Harmonic Shape Images to solve
the surface-matching problem. The matching algorithm
will be explained first and then some experimental results
using real data will be presented.




Resolution Ratio: 2:1

" Figure 18: Histogram of the similarity values of the
surface patch(Figure 17(b)) to the original twenty
patches in the library. The patch shown in (Figure
17(a)) is found to be the best match.

4.1. The Matching Algorithm

The surface matching algorithm using Harmonic Shape
Images is as follows: Given two 3D surfaces S; and S, to
be matched, the Harmonic Shape Images HSI(D(v; R))
are generated for each surface patch of ;. Then a surface
patch Dyv;, R} is randomly selected on S, and its
Harmonic Shape Image HSK(D;(v;, R)) is computed. At the
third step, HSI(D{(v; R) is compared to HSI(Di(v; R)),
i=1,...,n, and the similarity value C(D;(v; R) is computed.
The best match is identified based on the histogram of all
the similarity values using the statistical approach that has
" been discussed in section 3.1.

Recall the stability property of Harmonic Shape Images in
section 3.2, the comparison of Harmonic Shape Images
described in the above surface-matching algorithm can be
improved using a coarse-to-fine approach. The Harmonic
Shape Image, HSI(D(v;, R)), of the randomly selected
patch, D{v; R), on S, does not need to be compared to
every patch on ;. In fact, only a certain. number of
fandomly selected patches are enough for the coarse
comparison. Once a maich is found, the fine comparison
is conducted by comparing the patch on S; to the newly
selected patches on ;. Those newly selected patches are
in the neighborhood of the best-matched patch found in
the previous comparison. The computation of comparing
Harmonic Shape Images can be greatly reduced using this
coarse-to-fine approach.

4.2. Surface Matching Examples

The first example is used to illustrate the coarse-to-fine
surface-matching algorithm explained in the previous
section. Two surfaces, S; and S,, to be registered are
shown in Figure 19(a) and (b), respectively. A patch on S,

217

is selected as shown in Figure 19(c). The dot marks the
central vertex of the patch. For the coarse comparison
step, 100 patches are randomly selected on S,. The central
vertices of those patches are marked by dots in Figure
19(d). The circled dot indicates the central vertex of the
best-matched patch. At the fine comparison step, the
patches that are in the neighborhood of the best-matched
patch at the coarse comparison step are candidates to
match the patch on S,. The central vertices of those
patches are marked by dots in Figure 19(e). The dot
pointed by the arrow indicates the central vertex of the
best-matched patch(Figure 19(f)).

®
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Figure 19: An example of surface matching using
Harmonic Shape Images. (a), (b) Surfaces S; and S; to
be registered; (c) A selected patch on S; with its
central vertex marked; (d) The central vertices of the
randomly selected patches on S, for coarse
comparison; the circled vertex is the center of the best-
matched match; (e) The central vertices of the patches
for fine comparison; the vertex pointed by the arrow is
the center of the best-matched patch in the fine
comparison; (f) The best-matched patch with its
central vertex marked.

After the best-matched patch is found, the
correspondences between the two patches are established
(Figure 20(a)). The transformation between the original
surfaces is computed using those correspondences. The
registered surfaces are shown in Figure 20(b).

It should be noted that for the above example, the best-
matched surface patch is found by one iteration of fine
comparison. In practice, more iterations may be needed to
find the best-matched patch. On the other hand, from the
registration point of view, the result of coarse comparison




may be good enough to provide an initial estimate of the
transformation for some registration algorithms such as
ICP. In fact, the coarse comparison result in the above
experiment does provide a good initial estimate for the
ICP algorithm. The registration result using this approach
is shown in Figure 20(c). Another surface registration
example is shown in Figure 21.

(a) (b) ©

Figure 20: (a) Some of the correspondences between
the two matched patches; (b) The registered surfaces
using the coarse-to-fine surface matching scheme; (c)
The registered surfaces using the coarse comparison

and the ICP algorithm.
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Figure 21: An example of Surface registration. (a) A
front view of a person’s face; (b) A side view; (c) The
registered surfaces.

5. Conclusion and Future Work

In this paper, the experimental analysis of Harmonic
Shape Images has been conducted with respect to
discriminability, stability and robustness to resolution and
occlusion. It has been shown that Harmonic Shape Images
are discriminative and stable. Consistently good
performance of surface comparison using Harmonic
Shape Images can be obtained in the presence of
occlusion and different resolution.

There are two directions for the future work. The first one
is to investigate the possibility of theoretical analysis of
the robustness of Harmonic Shape Images. The second
one is to apply the proposed surface matching approach to
more applications such as object recognition and
classification.
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