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Abstract*

The surface-matching problem is investigated in this
paper using a mathematical tool called harmonic maps.
The theory of harmonic maps studies the mapping
between different metric manifolds from the energy-
minimization point of view. With the application of
harmonic maps, a surface representation called harmonic
shape images is generated to represent and match 3D free-
form surfaces.

The basic idea of harmonic shape images is to map a 3D
surface patch with disc topology to a 2D domain and
encode the shape information of the surface patch into the
2D image. This simplifies the surface-matching problem
to a 2D image-matching problem.

Due to the application of harmonic maps in generating
harmonic shape images, harmonic shape images have the
following advantages: they have sound mathematical
background; they preserve both the shape and continuity
of the underlying surfaces; and they are robust to
occlusion and independent of any specific surface
sampling scheme.

The performance of surface matching using harmonic
maps is evaluated using real data. Preliminary results are
presented in the paper.

1. Introduction
Surface matching is a fundamental issue in computer
vision. Generally speaking, given two free-form surfaces
in 3D space, the goals of surface matching are to find the
rigid transformation between the two surfaces, to
establish the correspondences, and to determine whether
the two surfaces are similar in terms of shape. Surface
matching is of both theoretical interest and practical
importance because it is closely related to the basic
problem of surface representation and it has wide
applications in surface registration, object recognition and
object classification.

A large amount of research has been done on surface
matching. The approaches to solving the problem can be
classified into two categories: model-based matching[5]-
[17] and matching by registration[18]-[21].
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Among the surface representations proposed so far, the
one that uses local shape signature[17] is one of those that
have been quite successful in real applications. This
representation is independent of surface topology and
easy to compute. The matching performance using this
representation decreases gracefully as the occlusion and
clutter increases. However, the major limitation of this
representation is that it only provides sets of individual
point correspondences that have to be grouped into sets of
mutually consistent correspondences. This limitation
comes from the fact that the local signatures capture the
shape of the surface only partially.

In this paper, in our continuing effort to develop the data-
level representations for surface matching, we investigate
the surface-matching problem using a mathematical tool
called harmonic maps with the goal of addressing the
limitation of the representation in[17]. The harmonic map
theory studies mappings between different manifolds
from an energy-minimization point of view. With the
application of harmonic maps, a surface representation
called harmonic shape images is created and used for
surface matching. Furthermore, owing to the properties of
harmonic maps, harmonic shape images are able to
provide all the point correspondences once two regions
are matched. This will be shown in detail in the paper.

The basic idea of harmonic shape images is to map a 3D
surface patch with disc topology to a 2D domain and
encode the shape information of the surface patch into the
2D image. This simplifies the surface-matching problem
to a 2D image-matching problem. When constructing
harmonic shape images, harmonic maps provide a
mathematical solution to the mapping problem between a
3D surface patch with disc topology and a 2D domain.

This paper is organized as follows: The mathematical
background of harmonic maps is introduced in Section 2;
in Section 3, an approximation of harmonic maps is
discussed in detail; applying harmonic maps in surface
matching is discussed in Section 4 followed by the
experimental results and analysis in Section 5.
Conclusions and future work will be presented at the end
of the paper.

2. Harmonic Maps
According to [2], the concept of harmonic maps is closely
related to the concept of geodesics. Geodesics are the
shortest connection between two points in a metric



continuum, e.g., a Riemannian manifold. Geodesics are
critical points of the following length integral
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where [ ] Nc →1,0:  is the parametrization of the curve
propotional to arc length. The generalization of energy
integral in (1) for maps between Riemannian manifolds
leads to the concept of harmonic maps. Harmonic maps
are critical points of the corresponding integral where
energy density is defined in terms intrinsic to the
geometry of the source and target manifolds and the map
between them.

Formally, harmonic maps are defined as follows[1][2].
Let (M, g) and (N, h) be two smooth manifolds of
dimensions m and n, respectively and let

),(),(: hNgM →φ be a smooth map. Let (xi), i = 1, …, m

and (yα), α = 1, …, n be local coordinates around x and
φ(x), respectively. Take (xi) and (yα) of M and N at
corresponding points under the map φ whose tangent

vectors of the coordinate curves are ix∂∂ and
αy∂∂ respectively. Then the energy density of φ is
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in which gij and hαβ  (hαβ   is the inverse of hαβ) are the
components of the metric tensors in the local coordinates
on M and N. The energy of φ in local coordinates is given
by the number
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If φ is of class C2, ∞<)(φE , and φ is an extremum of the

energy, then φ is called a harmonic map and statisfies the
corresponding Euler-Lagrange equation.

The above is a general definition of harmonic maps. Now
let us look at a special case in which both the source
manifold and the target manifold are surfaces in the 3D
Euclidean space. To be more specific, let D be a surface
of disc topology and P be a planar region. According to
the results in the theory of harmonic maps[2], the
following problem has a unique solution: given a
homeomorphism b between the boundary of D and the
boundary of P, there exists a unique harmonic map

PD →:φ  that agrees with b on the boundary of D and

minimizes the energy functional of D.

Furthermore, the harmonic map φ has the following
properties[2]: it always exists; it is unique and
continuous; it is one-to-one and onto and it is intrinsic to
D and P. All the above properties show that the harmonic
map φ is a well-behaved mapping.

3. Approximation of Harmonic Maps
As we have already seen in the previous section,
harmonic maps are solutions of partial differential
equations. Due to the expensive computational cost in
solving partial differential equations and the discrete
nature of surfaces we deal with in practice, it is natural to
look for an approximation of harmonic maps.

Eck et al proposed an approximation approach to
harmonic maps in [4]. Eck’s approximation consists of
two steps. At the first step, the boundary of the 3D surface
patch is mapped onto the boundary of an equilateral
triangle that is selected to be the 2D target domain. At the
second step, the interior of the surface patch is mapped
onto the interior of the equilateral triangle with the
boundary mapping as a constraint. Our approach uses the
same interior mapping strategy as that of Eck’s approach
but a different target domain and a different boundary
mapping strategy. In this section, we will first discuss the
interior mapping with a given boundary mapping and then
discuss our boundary mapping in detail.

3.1. Interior Mapping
Let D be a 3D surface patch with disc topology and P be a
unit disc in 2D. We use D(v, R) to denote that the central
vertex of D is v and the radius of D is R. Let D∂  and

P∂ be the boundary of D and P, respecitively. Let vi
i
,

i=1,…,ni, be the interior vertices of D. The interior
mapping φ maps vi

i
, i=1,…,ni, onto the interior of the unit

disc P with a given boundary mapping PDb ∂→∂: . φ(i)
is obtained by minimizing the following energy
functional.
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in which φ(i) and φ(j) are the images of the interior
vertices i and j of D on P. The values of φ(i) define the
mapping φ. kij serve as spring constants with the definition
in (5)
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in which ),( mjmi eeθ and ),( ljli eeθ are defined in Figure 1.

If eij is only associated with one triangle, then there will
be only one term on the right of (5).

Figure 1: Definition of spring constants.
An instance of the functional E(φ) can be interpreted as
the energy of a spring system by associating each edge in



D with a spring. Then the mapping problem from D to P
can be viewed as adjusting the lengths of those springs
when squeezing them down onto P. If the energy of D is
considered to be zero, then the energy is increased when
squeezing the springs down to P because all the springs
are compressed. Different ways of adjusting the spring
lengths correspond to different mappings φ. The best φ
minimizes the energy functional E(φ). By defining the
spring constants in (5), the best φ best preserves the ratios
of edge lengths in D, therefore the shape of D, under the
boundary mapping b. The minimum of the energy
functional E(φ) can be found by solving a sparse linear
least-square system of (4) for the values φ(i)[4]. This φ is
an approximation of the harmonic maps discussed in the
previous section.

The 2D image of D after being mapped onto P is named
the harmonic image h(D) of D. Examples of D and h(D)
are shown in Figure 2(a) and (b) respectively.

(a) (b) (c)

Figure 2: (a) An example of surface patch; (b) its
harmonic image; (c) its harmonic shape image. (c) is
the same as (b) except that it has shape attribute color-
coded at each vertex. It will be introduced later in the
paper.

3.2. Boundary Mapping

The constuction of the boundary mapping PDb ∂→∂:  is
illustrated in Figure 3.
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Figure 3: Illustration of the boundary mapping
between the surface patch and the 2D domain.

First of all, let us define the vertices and vectors in Figure
3. O is the central vertex of D and O’ is the center of P. vi,
i=1,…,5 are the boundary vertices of D. D is said to have
radius R when  the surface distance from any vertex in D
to the central vertex O is less than, or equal to, R. For
some boundary vertices, e.g., vi

r, i=1,…,4, the surface

distance between any of them and the central vertex O is
equal to R; for other boundary vertices, e.g., v1

o, the
surface distance is less than R. The vertices in the former
case are called radius boundary vertices and the vertices
in the later case are called occluded boundary vertices.
Radius boundary vertices are determined by the size of
the surface patch, while occluded boundary vertices are
determined by occlusion (either self occlusion or
occlusion by other objects). The vector from the central
vertex O to a radius vertex vi

r is called a radius vector,
while the vector from O to an occluded boundary vertex
vj

o is called an occlusion vector.

Now let us define the angles in Figure 3. Angles ai,
i=1,…,4 are the angles between two adjacent radius

vectors Ov r
i  and Ov r

i 1+ . Angles bj, j=1, 2, are the
angles between two adjacent occlusion vectors, or one
occlusion vector and one adjacent radius vector, in an
occlusion range. An occlusion range is a consecutive
sequence of occlusion boundary vertices except for the
first and last ones. For example, (v4

r, v1
o, v1

r) is an
occlusion range. The sum of bj over an occlusion range is
the angle ai formed by the first and last radius vectors. For
example, the sum of bj over (v4

r, v1
o, v1

r) is a1.

The construction of the boundary mapping consists of two
steps. At the first step, the radius boundary vertices are
mapped onto the boundary of the unit disc P, which is a
unit circle. In Figure 3, vi

r, i=1,…,4, are mapped to vI
r’ ,

i=1,…,4, respectively. It can be seen that once the angles
θi are determined, the positions of vI

r’ are determined. θi is
computed as follows:
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At the second step, the occlusion boundary vertices in
each occlusion range are mapped onto the interior of the
unit disc P. For example, in Figure 3, v1

o, which is in the
occlusion rangle (v4

r, v1
o, v1

r), is mapped onto v1
o’. Once

the angles ψj and the radii rj are determined, the position
of v1

o is determined. ψj are computed as follows.
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in which n is the number of angles within the occlusion
range and ai is the angle corresponding to the occlusion
rangle. rj is defined to be

R

Ordist
r

j
j

),(
= (8)

in which ),( Ordist j  is the surface distance between the

occlusion boundary vertex vj
o and the central vertex O. R

is the radius of the surface patch D.



Two issues need to be mentioned regarding the above
boundary mapping. The first is that the boundary vertices
of D need to be ordered in either a clock-wise or counter-
clock-wise manner before constructing the boundary
mapping. Similarly, when mapping vertices onto the
boundary of P, either clock-wise or counter-clock-wise
order needs to be determined. The two orders must
remain consistent for all surface patches for the
convenience of matching.

The second issue is how to select the starting vertex
among the boundary vertices of D. If the starting vertex is
always mapped to the same vertex on the boundary of the
unit disc, then different starting vertices will result in
different boundary mappings. This will, in turn, result in
different interior mappings. For example, the harmonic
image shown in Figure 2(b) has the starting vertex
indicated by the black mark, while in Figure 4(a), the
harmonic image of the same surface patch is different due
to a different starting vertex.

 (a) (b) (c)
Figure 4: The harmonic image(b) and harmonic shape
image(c) of the same surface patch(a) shown in Figure
2(a) with a different a starting vertex for boundary
mapping.

In fact, the harmonic images with different starting
vertices are different by a planar rotation. The reason for
this is that neither the angles θi(in (6)) nor the angles ψi

(in (7)) will change with respect to different starting
vertices. Nor will the radius rj in (8) change. Therefore,
the starting vertex can be selected randomly. The rotation
difference will be found later by the matching process
which will be discussed in the next section.

4. Surface Matching Using Harmonic Maps
The key role that harmonic maps play in surface matching
is to help create a surface representation called harmonic
shape images. Matching 3D surfaces can then be
simplified to matching harmonic shape images. In this
section, we first discuss the generation of harmonic shape
images and then discuss how to match them.

4.1. Harmonic Shape Images
In Section 2 and Section 3, we have shown that, given a
surface patch D, its harmonic image h(D) can be created
using harmonic maps. There is one-to-one
correspondence between the vertices in D and the vertices
in h(D). Harmonic shape images, hs(D), are generated by

associating a shape attribute at each vertex of h(D). In our
current implementation, an approximation of the
curvature at each vertex is used to generate harmonic
shape images. For details about the curvature
approximation, please refer to [5].

Figure 3(c) and Figure 4(c) are examples of harmonic
shape images in which curvature values (from high to
low) are proportional to the intensity values.

Because harmonic shape images are generated based on
harmonic maps, they have the same properties as that of
harmonic maps, e.g., existence and uniqueness. The
generation process shows that harmonic shape images
preserve both the shape and the continuity of the
corresponding surface patches. It also shows that
harmonic shape images are independent of the sampling
of the surface patches. As we discussed in Section 1,
these properties are the goals we set for harmonic shape
images.

Similar to harmonic shape images, more images can be
generated by associating other properties, e.g., color, to
each vertex in harmonic images. This shows that
harmonic maps provide a general framework for storing
surface-related information.

4.2. Matching Harmonic Shape Images
In Section 3, we have already discussed the planar
rotation difference between harmonic images under
different starting boundary vertices. As a result, the
corresponding harmonic shape images have rotation
difference as well (Figure 3(c) and Figure 4(c)). This
rotation difference can be found by template matching
plus a planar rotation.

The similarity criterion proposed in [17] is used to
evaluate the matching result of two harmonic shape
images. It is defined as follows.
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in which R is the normalized correlation coefficient
between hs(D1) and hs(D2). N is the number of
corresponding vertices. λ is a weight controlling the
contribution of N to c(D1, D2) and is set to one half. More
details about this similarity coefficient can be found in
[17].

4.3. Matching Surfaces by Matching Harmonic
Shape Images
Given two 3D surfaces S1 and S2 to be matched, harmonic
shape images hs(Di(vi, R)) are generated for each surface
patch of S1. Then randomly select a surface patch Dj(vj, R)
on S2 and compute its harmonic shape image hs(Di(vj, R)).
At the third step, match hs(Di(vj, R) to hs(Di(vi, R)),
i=1,…,n, and compute the similarity criterion C(Dj(vj, R),
Di(vi, R)). The best match is identified based on the



histogram of all the similarity values using a statistical
approach[24].

5. Performance and Analysis
In this section, harmonic shape images are used in the
application of surface registration. We first present some
results on real data and then conduct some analysis on
harmonic shape images.

5.1. Surface Registration Using Harmonic Shape
Images
Two surfaces S1 and S2 shown in Figure 5(a), (b) are to be
registered. The surface patch in wireframe overlayed on
S1  is a selected surface patch Di(vi, R) on S1. Following
the procedure of surface matching discussed in Section 4,
the surface patch that best matches Di(vi, R) is found.
Figure 5(c) shows the correspondences between the two
matched surface patches. The transformation between S1

and S2 can be computed using those correspondences. The
registered surfaces are shown in Figure 5(d).

 (a) (b) (c)  (d)
Figure 5: Surface registration using harmonic shape
images. (a), (b) surfaces to be registered; (c) Some of
the correspondences between the best matched surface
patches; (d) The registered surfaces. For the surface
patches on S2 that are good matches of the surface
patch in (a), their central vertices are marked. The
center of the best matched patch is indicated by the
arrow.

Figure 6 is the histogram of the similarity values of
matching Di(vi, R) on S1 to all surface patches on S2. The
following statistical approach is used to determine the
best match.

The fourth spread fs of the histogram is defined as the
median of the largest N/2 measurements (upper fourth)
minus the median of the smallest N/2 measurements
(lower fourth). Statistical moderate outliers are 1.5fs units
above (below) the upper (lower) fourth. Extreme outliers
are 3fs units above (below) the upper (lower) fourth.

In Figure 6, good matches correspond to the extreme
outliers above the upper fourth. They are on the high end
of the horizontal axis. The good matches are also
displayed in Figure 5 with their central vertices marked in
green. The best match is marked in red. The fact that all
the good matches are in the neighborhood of the best

match shows that the harmonic shape images are an
effective and discriminating representation.

Figure 6: Histogram of the similarity values. Good
matches are on the high end of the horizontal axis.

5.2. Robustness of Harmonic Shape Images
One important issue for surface representations is their
robustness because robustness ensures the correct surface
matching in the presence of noise, different resolution and
occlusion. In this section, we first explain why harmonic
shape images are robust to occlusion and then, using real
data, demonstrate the robustness under occlusion,
different resolution and noise.

The reason for the robustness of harmonic shape images
with respect to occlusion lies in the way in which the
boundary mapping is constructed. Recall that in Section
3.2 the boundary vertices are classified into radius
boundary vertices and occluded boundary vertices. It is
the radius boundary vertices that determine the angles ai,
which then determine the overall boundary mapping. The
effect of occlusion is limited within the occlusion range;
therefore, it does not propagate much outside of the
occlusion range. This means that, as long as there are
enough radius boundary vertices present in the surface
patch, the overall harmonic image will remain
approximately the same in spite of occlusion.

The purpose of the first experiment is to demonstrate the
robustness of harmonic shape images under occlusion.
Let us use the surface patches D1 and D2 in Figure 7(1)
and (2) as an example to illustrate the experiment. D2 is
the same as D1 except for the occluded region. Their
harmonic shape images are shown in Figure 7(5) and (6),
respectively. It can be seen that the harmonic shape
images of D1 and D2 are similar in spite of the occlusion
on D2. This means that the occlusion part of D2 does not
affect much of the shape representation for the non-
occluded regions, thus making it possible to match D2 to
D1 by matching the harmonic shape images of their non-
occluded regions. The normalized correlation coefficient
of hs(D1) and hs(D2) is 0.9878, which verifies that D2 can
still be matched correctly to D1 with occlusion.

A sequence of surface patches with different occlusion
parts on D1 is matched to D1 to further test the robustness
of harmonic shape images under occlusion. Figure 7(3)
and (4) are two examples in the sequence. Their harmonic



shape images are shown in Figure 7(7) and (8),
respectively. Figure 8 shows the matching result.

 (1)  (2)  (3) (4)

(5) (6) (7) (8)
Figure 7: A surface patch and its variations with
different parts cut off to simulate occlusion.

(a)

(b)
Figure 8: Matching results under occlusion. The
original surface is shown in Figure 7(1). Some of the
surfaces with occlusion are shown in Figure 7(2)-(4).
(a) Normalized correlation coefficient; (b) Percentage
of occluded area.

It can be seen from Figure 8 that as the percentage of
occlusion boundary increases, the occluded mesh area
also increases. However, the normalized correlation
coefficient remains stable in the range of [0.8, 1.0]. Figure
7(8) shows the harmonic shape image of the surface patch
in Figure 7(4). In spite of severe occlusion, the harmonic
shape image for the non-occluded regions is still similar
to that in Figure 7(5).

The second experiment is to test the robustness of
harmonic shape images to the presence of occlusion,
different resolution and noise. In Figure 9, surface patches

(2)-(8) and the one in (1) have the same shape but
different resolution and occlusion parts. The surface
patches in (2)-(8) are matched to the one in (1) by
matching their harmonic shape images. The result in
Figure 10 shows a stable matching performance.

(1) (2) (3) (4)

(5) (6) (7) (8)
Figure 9: Surface patches with the same shape but
different resolution and occluded parts. (1) A surface
patch of high resolution; (2) A surface patch of the
same shape as (1) but with low resolution; (3)-(8)
occluded surface patches with different parts cut off
on (2).

Figure 10: Matching results for the surface patches in
Figure 9. Compared to Figure 8(a), the drop of the
normalized correlation coefficient is due to the use of a
coarse discrete curvature approximation. The effect of
this curvature approximation becomes significant in
this experiment because the two surface patches are of
different resolution and the resolution for the surface
patches (2)-(8) is low.

The above experiments are further conducted on a more
complex surface patch shown in Figure 11(1). Some of
the occluded surface patches are shown in Figure 11(2)-
(4). Their harmonic shape images are shown in Figure
11(6)-(8). The curve in Figure 12 shows that the overall
matching performance of harmonic shape images is stable
under occlusion. The fluctuation of the curve shows that
the robustness of harmonic shape images with respect to
occlusion does not only depend on the ratio of occluded
region to the entire surface patch, but also on the shape of
the occluded region.



6. Conclusion and Future Work
In this paper, the problem of surface matching is
investigated using a mathematical tool called harmonic
maps. With the application of harmonic maps, harmonic
shape images are generated to represent and match 3D
free-form surfaces. Harmonic shape images have sound
mathematical background. They preserve both the shape
and continuity of the underlying surfaces. Preliminary
results have shown that harmonic shape images are robust
to occlusion and independent of surface sampling.

There are two directions for the future work. The first one
is to further analyze the properties of harmonic shape
images both theoretically and experimentally. The second
one is to apply the proposed surface matching approach to
more applications such as object recognition and
classification.

(1) (2) (3) (4)

(5) (6) (7) (8)
Figure 11: A complex surface patch(1) with different
parts cut off to simulate occlusion(2), (3), (4). Their
harmonic shape images are shown in (5)-(8).

Figure 12: Matching results under occlusion. The
original surface is shown in Figure 11(1). Some of the
surfaces with occlusion are shown in Figure 11(2)-(4).

Reference
[1] Y. Xin, "Geometry of Harmonic Maps", Birkhauser, 1996.

[2] J. Eells and L.H, Sampson, "Harmonic mappings of Riemannian
manifords. Amer. J. Math., 86:109-160, 1964.

[3] B. O’Neill, "Elementary differential geometry", Academic Press,
Inc., 1996.

[4] Matthias Eck, Tony DeRose, Tom Duchamp, Hugues Hoppe,
Michael Lounsbery, and Werner Stuetzle, "Multi-resolution Analysis of

Arbitrary Meshes", University of Washington, Technical Report, 95-01-
02, January 1995.

[5] M. Hebert, K. Ikeuchi and H. Delingette, "A spherical representation
for recognition of free-form surfaces", IEEE Transactions on Pattern
Analysis and Machine Intelligence, 17(7): 681-689, July 1995.

[6] K. Higuchi, M. Hebert and K. Ikeuchi, "Building 3D models from
unregistered range images", CVGIP-Image Understanding, Vol. 57. No.
4. July 1995.

[7] H. Shum, M. Hebert and K. Ikeuchi, "On 3D shape similarity", Proc.
CVPR’96, pp. 526-531. June 1996.

[8] D. Zhang, M. Hebert, "Multi-scale classification of 3D objects",
Proc. CVPR’97, pp.864-869, July, 1997.

[9] D. Zhang, M. Hebert, A. Johnson and Y. Liu, "On Generating Multi-
resolution Representations of Polygonal Meshes", ICCV’98 Workshop
on Model-based 3-D Image Analysis, January 3, 1998, Bombay, India.

[10] O.D. Faugeras and M. Hebert, "The representation, recognition and
locating of 3-D objects", Int’l J. of Robotics Research, vol. 5, No. 3, pp.
27-52, Fall 1986.

[11] C. Dorai, A. Jain, "COSMOS - a representation scheme for 3D
free-form objects", IEEE Transaction Pattern on Pattern Analysis and
Machine Intelligence, 19(10): pp. 1115-1130, 1997.

[12] P.J. Besl, "Triangles as a primary representation", Object
Representation in Computer Vision, M. Hebert, J. Ponce, T. Boult and
A. Gross, eds., pp. 191-206, Berlin, Springer-Verlag, 1995.

[13] T. Joshi, J. Ponce, B. Vijayakumar and D.J. Kriegman, HOT curves
for modeling and recognition of smooth curved 3D objects, Proc. IEEE
Conf. Computer Vision and Pattern Recognition, Seattle, Wash., pp.876-
880, June, 1994.

[14] F. Stein and G. Medioni, "Structural indexing: efficient 3-D object
recognition", IEEE Transactions Pattern on Pattern Analysis and
Machine Intelligence, 14(2): pp. 125-145, 1992.

[15] D. Keren, K. Cooper and J. Subrahmonia, "Describing complicated
objects by implicit polynomials", IEEE Transactions on Pattern Analysis
and Machine Intelligence, 16(1): pp. 38-53, 1994.

[16] C.S. Chua and R. Jarvis, "3D free-form surface registration and
object recognition", Int’l J. of Computer Vision, vol. 17, pp. 77-99, 1996.

[17] A. Johnson, "Spin-images: a representation for 3-D surface
matching", CMU-RI-TR-97-47.

[18] P.J. Besl, "The free-form surface matching problem", Machine
Vision for Three-dimensional Scenes, H. Freeman, ed., pp. 25-71,
Academic Press, 1990.

[19] P.J. Besl and N.D. Mckay, "A method for registration of 3-D
shapes", IEEE Transactions on Pattern Analysis and Machine
Intelligence, 14(2): pp. 239-256, 1992.

[20] Y. Chen and G. Medioni, "Object modeling by registration of
multiple range images", Image Vision Computing, 10(3): 145-155,
1992.

[21] R. Bergevin, D. Laurendeau and D. Poussart, "Estimating the 3D
rigid transfromation between two range views of a complex object",
11th IAPR, Int’l Conf. Patt. Recog., pp. 478-482, The Hague, The
Netherlands, Aug. 30 - Sep. 3, 1992.

[22] J. Schwartz and M. Sharir, "Identification of partially obscured
objects in two and three dimensions by matching noisy characteristic
curves", The Int. J. Robotics Research, 6(2): pp. 29-44, 1987.

[23] S. Sclaroff and A. Pentland, "Object recognition and categorization
using modal matching", Proc. 2nd CAD-Based Vision Workshop, pp.
258-265. Champion, Pennsylvania, Feb. 8-11, 1994.

[24] J. Deovre, “Probability and statistics for engineering and science”,
Brooks/Cole, Belmont, CA, 1987.


