Adaptive Refinement for Mass/Spring Simulations

Dave Hutchinson, Martin Preston, Terry Hewitt
Computer Graphics Unit, Manchester Computing,
University of Manchester, Manchester, M13 9PL, United Kingdom.
Email : {Dave.Hutchinson | preston | hewitt} @mcc.ac.uk
WWW : hitp://info.mcc.ac.uk/CGU/

Abstract. Mass/Spring networks are commonly used to produce simu-
lations of deformable bodies for computer animation. However, such an
approach can produce inaccurate results if too coarse a discretisation is
employed, and so many animators use excessively large (and slow) net-
works. In order to remove the ‘guesswork’ from such an approach this
paper presents a mechanism for adaptively refining portions of such sys-
tems to a required accuracy, thereby producing more pleasing results at a
reduced computational cost. Following a discussion of the use of such an
approach in simulating a deformable sheet, we present several character-
istic examples to demonstrate its suitability.

Keywords: Computer Animation, Simulation, Deformable Bodies, Spring-
Mass Approzimations, Adaptive Refinement.

Animations: http://info.mcc.ac.uk/CGU/research/animation/defrm.html

1 Introduction

Keyframing techniques have been used for many years in the animation of de-
formable bodies [13, 3]. However, the realism of such an approach is heavily
reliant on the skills of the animator, and so several researchers have adapted
dynamic simulation to this area in the hope of reducing the burden on anima-
tors. Two fundamental solutions have been proposed, both of which discretise
the body being simulated into finite elements, but which differ in the simulation
model being employed.

The first group requires the derivation of differential elasticity equations,
which are then integrated through time. Terzopoulos, Platt, Barr & Fleischer’s
[15] technique has since been extended to allow areas of rigidity in the bodies
to be comfortably modelled [16], and for inelastic deformation to be simulated
[14]. The second group disregards physical theory and employs a simulation
method based on discretising the body into a number of masses, or particles [§],

OPublished in 7t" Eurographics Workshop on Animation & Simulation, ©Springer, This
copy for personal use only.



whose connectivity is maintained through constraint forces (usually generated
from a damped spring abstraction). Systems of this nature have been used to
simulate flesh around rigid bodies [6], the behaviour of cloth-like sheets [1, 12, 7],
decomposable solids [4], fluids [9], and even worms [10].

The second group is most commonly used for two principal reasons: it is eas-
ier for the animator to integrate this approach with simulations of rigid bodies
and it is far easier to implement. However, the strategy of approximation used
in mass/spring networks only leads to plausible results if the correct granularity
is chosen, and for practical cases this granularity is not obvious. If too coarse an
approximation is employed then an incorrect animation will be generated, but
unfortunately the animator will often have no way of knowing how ‘right’ this
solution is. Conversely, if too fine a network is employed then a more correct
answer may emerge, at the expense of increased computation. Consequently
animators are often forced to either tinker with the model, or endure inaccurate
results (thereby negating the advantages of dynamic simulation). Thingvold &
Cohen [17] attempted to address this by employing a B-spline representation
of the sheet being simulated, which could be refined in response to detected
inaccuracy. However, the tensor nature of the surface meant that it was im-
possible to concentrate effort in particular regions (entire bands of the surface
must be refined at once), so the technique has a tendency to produce excessively
complicated, and slower, simulations.

This paper addresses that problem by presenting a mechanism for adap-
tively refining the network of spring/masses to concentrate effort only where it
is needed. Using this system the animator defines an initially coarse approxima-
tion, and additionally a measure which indicates the accuracy required for this
case. The system then proceeds to simulate the body in the normal way, but
where potential inaccuracies are detected the body is refined only in the affected
region, and then simulation may proceed. Whilst such an approach could be
employed in the animation of either sheets or volumes, this paper concentrates
on an implementation of adaptively refined sheets, though the extension to the
simulation of volumes is discussed briefly in Section 7.

This approach has the advantages of:

e No longer requiring the animator to guess the discretisation required.

e Concentrating effort only where it leads to a more accurate solution, thereby
producing the result more quickly than previous refinement techniques [17].

e Retaining the advantages of spring/mass networks (ease of both implemen-
tation and integration with the simulation of other bodies).

The rest of the paper is structured as follows. Section 2 describes existing
deformable body techniques. Section 3 outlines our approach, with particular
reference to the manner in which the animator can select the required accuracy
(the refinement conditions). Following this Section 4 presents the implementa-
tion of this technique in detail. Such an adaptively refined body may be used
in the simulation of a larger virtual world, and so in Section 5 we identify the



considerations required to include collision detection and response. Section 6
presents results and timings for a number of characteristic cases, before Section
7 identifies the advantages, disadvantages and future work suggested by this
approach.

2 Related Work

As described earlier two families of solution have been proposed for deformable
body simulation, both of which rely on discretising the body into a finite number
of components. The first group, proposed by Terzopoulos et. al. [15], deforms
these finite elements using elasticity theory which works by recognising that the
force applied to an element is (in varying proportions) absorbed or passed onto
its neighbouring elements in a manner governed by its elasticity. Using a series of
equations (based on Lagrange’s ordinary differential equation) we can integrate
through time to discover the forces caused, and hence the motion. Multigrid
methods can be used to solve these sets of equations. This approach was ex-
tended to allow rigidity to be simulated (by incorporating a rigid “reference
component”) [16], and also to model inelastic deformations (so the body won’t
necessarily return to its original shape if stretched) [14]. These elaborations
improve the original model, but Gascuel and Puech [5] noted that a remaining
weakness is the difficulty of determining the spatial discretisation for non-trivial
bodies. Palazzi and Forsey [11] described a multilevel approach to surface de-
formation which enables an animator to control the flexibility of a deformable
object. External forces may have local or global effects on the surface depending
on which levels of the multi-resolution representation they are applied to.

The second family of solutions employ a form of dynamic simulation which
disregards the physics of object deformation, preferring instead to concentrate
on a method which produces plausible, rather than thoroughly accurate results.
By splitting the body into a network of masses connected by constraint forces,
which behave like damped springs, a very simple integration process can be used
to simulate the forces moving through the body, indirectly leading to visible
deformations. Such a system suffers from numerous problems: sensitivity to
integration step size, instability of solids simulated in this way (as springs operate
only in one dimension it is possible for elements to invert themselves) and high
computational cost for large networks. However, this approach is widely used
largely because it is trivial to implement.

Thingvold & Cohen [17] improved on this model by representing this network
as a B-spline surface, where particles corresponded to control points. Where
the simulation detected problems (such as excessive stress) a region was refined
[2]. However, the tensor nature of the surface meant that bands of the surface
must be refined together. In many cases, such as when modelling wrinkling
at the ends of sheets, the entire surface must be refined considerably. Whilst
this implementation approach often leads to slow simulations, the application
of dynamic refinement was shown to lead to more accurate results without the
guesswork required in conventional particle systems.



Sheet falling onto scenery

Angle exceeding split condition

Figure 1: When the springs entering a mass point become non-planar, a discon-
tinuity is detected

3 Outline of Technique

In this section we present an overview of the mechanisms used to improve the
accuracy of spring/mass networks for simulating sheets before section 4 presents
a practical implementation. In 3.1 we discuss the principal reasons for the in-
accuracy of coarse networks, and identify the metric that an animator can use
to guide refinement in our technique. In 3.2 we consider the response to any
inaccuracies, i.e., how we refine portions of the network by adding new masses
& springs without changing the properties of the sheet.

3.1 Detection of Inaccuracy

Networks of masses, connected by damped springs, attempt to approximate the
behaviour of deformable bodies using a primitive model for the transmission
of energy. The popularity of this model is primarily due to the pleasing na-
ture of the results for very simple simulations. However, the difficulty of using
measured physical properties means that significant inaccuracies appear in the
result. Unfortunately, because these simulations are used in cases where the an-
imator knows few of the true physical properties of the sheet, we cannot easily
detect where these inaccuracies are. The ‘success’ of one of these simulations is
instead related to the visual properties of the surface when rendered, and so we
must concentrate our efforts on making the result look acceptable.

When coarse approximations of sheets are simulated the most visible errors
occur when the surface creases. As the network may only bend on predefined
lines (where the springs lie) these straight lines are frequently visible. Whilst
spline surfaces can be passed through the point masses to mask the worst effects
of this [17], they cannot cater for all situations. Therefore we will use, as our
measure of inaccuracy, the presence of unsightly (and inaccurate) discontinuities.

Creases occur at mass points when opposite springs connecting neighbouring
point masses become non-planar, as shown in Figure 1. Here the neighbouring
masses have been moved out of the plane, but as the springs must operate in
straight lines, a discontinuity appears. The angle at which this crease becomes
excessive is related both to the rendering technique, and the situation, so it would
be unwise to develop an automatic tolerance algorithm. Instead our technique
relies on the animator specifying an angle which governs the accuracy he or



for(u=0; u < nU; u++)
for(v=0; v < nV; v++)
simulate_point(u,v,dt)

void simulate_point(u,v,dt) {
find forces caused \
by connecting springs and
external influences;
‘ ‘ ‘ calculate new acceleration, \
\\\ velocity and position;
Damped Springs

}

Figure 2: a. Sheets are split into a number of discrete masses connected by
damped springs in the vertical, horizontal and diagonal directions, and the sim-
ulation algorithm for this sheet is shown on the right.

‘ ‘ ‘ Mass Particle

she requires in the finished animation. Our ‘inaccuracy’ test can therefore be
termed:

Split condition : If the angle between two springs joining a mass from opposite
directions exceeds a specified tolerance S (in either direction), then we
would produce an unacceptable simulation, and so must concentrate effort
on refining this area of the model.

Our response to a split condition is to back the simulation up to a point
at which it was acceptable (normally the previous time step), introduce more
masses around the crease point, and then re-run that portion of the simulation to
see whether we are now simulating to an acceptable degree of accuracy. Before
we go on to discuss the mechanics of this (in section 3.2) we must also identify
how this ‘split tolerance’ changes with the coarseness of the simulation. If the
sheet is being approximated coarsely, then the animator will probably wish to
remove any creases. However, if the surface has been refined considerably, then
any minor discontinuities will be less obvious. To cater for this we also introduce
a delta-angle 65, which is the angle added to the tolerance with the addition of
each area of refinement. So, an initial refinement is caused when neighbouring
springs exceed S, and a further refinement will be made if the angle exceeds
S + 0S. Finally we also employ a maximum level control, which an animator
can employ to restrict the degree to which a sheet will refine in extreme cases.

3.2 Refinement

Our response to the detection of inaccuracy is the addition of masses and springs
around the area where a discontinuity has occurred. However, in order to ensure
that such a refined area continues to respond in the correct manner, we must
maintain three constraints:



1. Every particle in our network must behave in the same way. If this is
not so then the response of a particular mass to other forces may become
unpredictable.

2. A given portion of the sheet must behave as though it has constant mass,
independent of the number of particles used to simulate this area. If this
is not the case then we will produce different, rather than more accurate,
results using a refined network.

3. Forces must move across the refined portion at the same speed as the
unrefined areas, otherwise shearing will occur.

Before discussing the approach taken to meet these conditions it is helpful
to identify how they are catered for in the conventional uniform sheet. Figure 2
shows a sheet along with the simulation algorithm which is normally used. Here,
at each time step, we iterate across the sheet and for each point calculate the
forces affecting it due to connecting springs, the change in acceleration, and
finally the new positions after the time step. If a force is applied at one end
of the sheet during a simulation, it takes n time steps to reach a mass point
n springs away. The effect of collisions with the environment is determined by
calculating the mass of the portion of the sheet which is in collision. As the
conventional network has uniformly spaced, and identical, masses this can be
achieved by summing the effect of the relevant particles.

In order to refine the mass/spring network we need to add extra masses and
springs. However, if we add masses to the system we run the risk of altering the
properties of the sheet, and so we must pay special attention to ensuring the
first two properties have been maintained. Thingvold & Cohen [17] did this by
adding particles of lesser mass (thereby meeting the second constraint), but had
difficulty satisfying the first, i.e., as we deal with single particles on each time
step, the reduced mass particles would react differently to those present in the
initial sheet.

We adopt the following approach: when we add particles we always use the
same consistent mass (thereby meeting the first constraint), and we modify the
simulation process to meet the remaining two constraints, i.e., to preserve the
behaviour of the newly refined sheet.

To support this we employ a non-uniform representation of the sheet, and
a form of simulation which deals with refined regions using different time step
sizes. This new representation can be thought of as a multi-level or ‘hierarchical
sheet’, and in this section we will discuss the simulation process as though we
implement the data structure in a hierarchical fashion, before introducing the
more optimal (yet similar) structure used in our implementation in Section 4.

At the beginning of the simulation we begin with a conventional m by n
grid of points, at level 0. When we detect inaccuracies we generate mass points
and springs in the level above, where the mass of each new point is exactly
the same as those in the level below. At this new level, as shown in Figure 3,
masses are spaced twice as finely. Upon refinement we generate 8 new points,
(shown as filled circles in Figure 3), which surround the discontinuity point. For



Interpolated
points

Newly created
masses

level 1 —

Level 0 °

\

© ©""Mass where a split

condition has occured

Figure 3: The sheet is modelled as a hierarchy of mass/spring networks. Here
we show a single refinement around a point (note that the bend of the sheet is
not shown)

these masses to be able to contribute to the behaviour of the sheet we must also
connect them by springs.

Some of the points we connect these springs to exist in this new level, but
some of them do not (as they will be related to mass points which haven’t
been refined). These different points can be grouped into 2 categories: those
that correspond to mass points in the level below (shown as unfilled circles in
Figure 3), and those which have no counterpart in the previous level (shown as
unfilled squares). During the simulation of this level (which we discuss in greater
detail below) we deal with these ‘non-existent on level n’ points specially. Where
the point corresponds to a mass on level n—1, we use that point (i.e., we traverse
the data structure). Where the point doesn’t correspond we generate the point
dynamically (by examining the points adjacent to it on level n — 1, and finding
the mid-point).

For this data structure to work we also need to make some changes to the
simulation represented by the function simulate point(). The principal dif-
ferences are the addition of a level parameter to indicate which level the points
are on, and the response to a refined area. If the function detects a refined
area, i.e., the particle it is currently concerned with is present on the next level,
then it initiates another loop across the points in the next higher level, which
matches the loop executes at level 0. However, at this level the time step used
is proportionally smaller.

This system achieves our conditions in the following ways:

1. The particles have uniform mass, so respond to forces in the normal way.

2. The stiffness of a spring doubles for each level of refinement to prevent
regions of increased mass behaving differently. This increases the stability
of the model, and allows the magnitude of forces passing through different
refinement levels to be maintained. It also ensures that different refinement
levels behave in a similar manner.



e Active Points

., Unearly Interpolated
Points

o Non-active Point

These two springs treated
as one

Figure 4: We flatten the sheet, storing the mass points on a uniform grid. The
portion shown here corresponds to that shown in Figure 3.

3. The response of the body due to its mass is governed by the time in which
it is allowed to respond, and the magnitude of that mass. By employing
smaller step sizes for those points which correspond to smaller regions of
the sheet, we achieve the same effect as a proportionally smaller mass
would [17], as we employ Euler integration. We must, however, take care
to account for transfer of momentum between objects, so that they respond
in a predictable way, and this is discussed further in Section 5. The success
of these modifications is demonstrated further in section 6.

4. The smaller step size for higher levels also allows us to ensure ripples pass
across the surface at uniform speeds. The new version of simulate_point ()
achieves this by executing refined portions in the same time step as the
unrefined portions.

4 Implementation of Adaptive Refinement

The previous section described in outline form how we refine the sheet network
to cope with inaccuracies, using a hierarchical data structure which models the
network at different levels of refinement, and a recursive process which simulates
refined portions at the same speed as unrefined ones. In this section we now dis-
cuss the practical issues involved with implementing this approach, with Section
4.1 presenting the form of implementation used, and Section 4.2 discussing the
manner in which we handle refinement in this new structure.

4.1 The Flattened Data Structure

Although traversing the hierarchical data structure in a recursive manner works
well, it is by no means the most efficient method. Such a system requires repeat-
edly recursing up and down the hierarchy and redundancy is introduced when
neighbouring regions are visited several times. Consequently we have developed a



more optimal implementation method, where the simulation is performed within
one loop and the data structure is effectively flattened into one level, as shown
in Figure 4. We generate this ‘flattened’ representation by creating a new grid
whose resolution matches the finest refinement possible of the sheet, for example
if we are simulating a sheet which at level 0 is 525, but which contains only one
patch refined to 2 more levels, then the flattened sheet would consist of 17x17
points. Whilst we could generate this flattened sheet statically (using the an-
imators selected maximum refinement), we have instead chosen to begin with
a sheet of a predefined refinement (2 levels), which is regenerated if further re-
finement is required (as this reduces the amount of memory consumed for the
average case).

The simulation process works as follows. During each timestep 7' (which
corresponds to ¢ at level 0 in Section 3) of the simulation we iterate over the
flattened sheet several times (in order to achieve the same effect as the recursive
simulation), each time simulating the sheet for a ‘sub-time-step’ ¢. This smaller
step size is calculated to correspond to the finest dt used in the hierarchical
structure. So if the system has been refined only once then the small time step
will be T'/2, and for a system that has been refined to n levels then each step
will be T'/(2™).

For each t we must determine the behaviour of each mass point. As this
is an optimisation of the hierarchical structure, we must be careful to ensure
that we produce the same effects. We achieve this by storing, in the flattened
sheet, a record of which hierarchical level each point is a member of. When we
are on a sub-time-step which would correspond to moving a particular point in
the hierarchical structure, then we perform conventional simulation (and also
keep a record of the velocity calculated for this point), but where the point
would not feel a change in acceleration the point mass is moved according to its
previously calculated velocity (i.e., constant velocity, disregarding the effects of
any connecting springs).

For example, if a system has been refined in some region once then t = 7'/2.
Those points that are refined will feel forces from their neighbours on every time
step t, whereas the unrefined regions only feel a force once over the whole time
T. In general, for n-level refinements, if a point is at a time step where it doesn’t
feel a force then it is assumed to have constant velocity, the value of which will
have been calculated during the last time step in which it felt a force.

This method affects only those points that are active at some level in our
logical hierarchical structure. However, the flattened sheet is also likely to con-
tain a large number of inactive points, who are present only in case of later
refinement. These masses play no part in the simulation, but could incur a per-
formance penalty as each of them must be examined at each ¢ step. To avoid
this penalty when the maximum refinement level is high, we optimise the loop
by maintaining a binary tree of active points alongside the main structure, so
that we do not need to step through the entire structure each time step. There
is also a small overhead required for calculating which particles affect each other
depending on the level they are at. This is because a particle at level three may
have spring connections to particles at level 2,1 or 0. In our simulations this has



proved to have a negligible effect on performance.

4.2 Refining the Flattened Structure

When a region is refined, we must activate some of the masses in the flattened
structure, and velocities and positions must be assigned to them. These could
be obtained by averaging the positions and velocities of surrounding particles.
Unfortunately this does not always give good results because if a region is being
refined, then an inaccuracy has occurred, and any averages are also likely to
be misleading. Consequently, when we detect an inaccuracy around a single
particle, we perform the following process

1. Back the simulation up a single ¢ for the inaccurate particle, and all those
immediately neighbouring it which would effect it on this ¢ step. To find
this set of points we examine those springs which connect to this mass,
and follow them to those points which are active on this step.

2. Introduce the new masses by activating those points in the uniform sheet
(as shown in Figure 4) which surround the inaccurate particle.

3. Calculate the position & velocity of these points by averaging the proper-
ties of the neighbouring mass point. As we have backed the simulation up
for these particles these new averages will be accurate.

4. Re-run that t step for both the new points, and those which we have
backed-up, in order to determine the new position of the sheet.

5 Collision Response for Refined Bodies

The detection of collisions between a sheet which is composed of a large number
of polygons, and the environment, is aided by the use of adaptive refinement,
as fewer polygons will be required. However, as we are using a complicated
representation the calculation of the response caused by collisions is more com-
plicated. Because our refined sheet contains a larger number of masses, any
moving object colliding with it will experience a different effect depending on
the amount of refinement and therefore number of masses it interacts with. This
can be overcome in the following way.

We want an unrefined section of the sheet to react in the same way to collision
with a moving object as a refined section would and also that a moving object
will receive the same momentum change from a refined section as an unrefined
one. If we know what percentage of the sheet is in collision with a moving
object, then given that we also know the mass of the whole sheet (before any
refinement), it is easy to calculate the mass m, of the touching section of the
sheet (that is the mass of the unrefined sheet which is in contact with the colliding
object). The mass m,, of the points in the touching region may exceed m, (as
in our model refined masses are the same as unrefined), and so we must scale
the momentum transfer between the two objects by the ratio of the mass in the



Figure 5: a. Unrefined sheet hanging. b. Same sheet with two bands of
refinement.

touching region and the actual mass of the sheet. The effect of this is to increase
any momentum transfer to particles in the sheet by m,,/m,, and to decrease
the total momentum transfer from masses in the sheet to the moving object by
Mg /M-

This means that any object colliding with a refined portion of the sheet will
interact in the same way as a collision with an unrefined section.

6 Results & Discussion

To demonstrate the advantages of adaptively refined mass/spring networks this
section presents three representative case studies. The algorithm described in
Section 4, was implemented on a HP 9000/735 workstation, using a distributed
graphics framework (HEDGE). The force exerted by springs due to deformation
was proportional to the extension length, and damping was introduced as being
proportional to the rate of extension. The sample implementation employs the
technique discussed in section 4. At each time step an Euler integration process
is used to determine the response of each particle to the relevant forces. Collision
detection was performed using a simple and accurate, but inefficient algorithm
which enabled us to model the response of the sheet to the environment. Self-
collision was not detected, but the authors feel that Volino and Thalmann’s
technique [18] would be suitable for this technique. A primitive friction model
was employed, so none of these examples include the effect of the sheet sliding
across the scenery.

The first example, shown in Figure 5, is included to demonstrate how our
non-uniform sheet representation preserves the properties of the more conven-
tional uniform network. Two sheets were initially placed flat in the scene, one of
which consisted of 10x10 masses, and the second had two bands of high refine-
ment. One side of each sheet was clamped to a particular height, and then both
sheets were allowed to drop in response to gravity. During the simulation both
sheets retained the same dimensions, thereby demonstrating the mass preserving
property of our algorithm. Note that, in order to achieve these results, consider-
able attention was paid to numerical accuracy. The refined sheet requires more



calculation, and this runs the risk of introducing inaccuracies into the result,
and so we employ increased precision when storing each attribute of the sheet.

The second and third examples are included to demonstrate both the ability
of the adaptive refinement technique to identify areas of interest, and to consid-
erably reduce the computation required. Each sheet initially consisted of 10x10
mass points, and had the maximum refinement degree set to prevent the sheet
refining beyond 73x73. For each we set S to 25° and S to 15°. The second
animation consisted of dropping a sheet onto a polygonal model of a coffee cup.
The third animation involved dropping the sheet over 4 poles. After a number
of time steps the simulation was stopped, and the results examined. The state
of the animation after 100 time steps for the cup animation is shown in Fig-
ure 6, and after 170 steps of the pole animation the sheets position in shown
in Figure 7. The full animations are available on the accompanying web page
(http://info.mcc.ac.uk/CGU/research/animation/defrm.html). Each pic-
ture shows both the refinement map, which identifies the nature of the network,
and a shaded representation of the surface, which shows what a user of this
technique would actually see.

The simulation of the sheet falling over the cup clearly demonstrates the
ability of our adaptive refinement technique to detect where inaccuracy is caused
by edges in the scenery, and the response caused (increasing the number of mass
points in these regions). Note that, as the model of the cups’ handle is extremely
primitive, and has a square cross section, the network hasn’t had to refine a great
deal to accurately follow it.

The sheet hanging over the poles shows the detection of the scenery, but
also indicates where creases and folds have been identified by the algorithm.
This is clearly visible at the corners of the sheet, where the material falls back,
causing a fold. Our primitive friction model is also causing creasing between
the poles, as the sheet quickly reaches maximum extension in the mass/springs
directly between the poles, but the neighbouring particles have greater freedom.
A sequence of pictures taken from the animation is also shown in the colour
plate in the Appendix.

Table 1 shows the measured execution times for these two examples. With-
out adaptive refinement an animator would have to employ a very fine network,
so to compare the improvements we also performed simulations for the maxi-
mum 73x73 grid. The bulk of computation for the cup example is consumed
by the collision detection, however it is clear that the refined sheet reduces this
considerably (as there are fewer polygons in the sheet). The proportion of the
computation caused by dynamic simulation is also considerably lower, and the
extra load caused by detecting, and backing up the simulation to accommodate
refinement, makes little difference. The full 73x73 grid sheet required ~18 hours
of computation to reach this state, while the adaptive sheet needed ~1 hour.

The pole example does not suffer from such a severe collision detection cost,
but the improvement due to adaptive refinement is still considerable. With the
full case requiring 1% hours of computation, and the refined sheet needing only
~12 minutes to execute 170 time steps. Both of these examples clearly show
the advantage of using an adaptive refinement technique which concentrates



Example Cup Cup Poles Poles
73x73 | Adaptive 73x73 | Adaptive
Num. Steps 100 100 170 170
Collision Detection 64319 | 3929.2 3580 687.0
Dynamic Simulation 474 16.3 669.8 76.3
Backing up 0.0 0.78 0.0 0.29
Refinement 0.0 0.71 0.0 1.2
Total 64793 | 3947.0 4598 764.79

Table 1: Sheet Statistics (all times measured in seconds)

-

Figure 6: a. Rendered sheet over a mug b. Refinement map.

effort only where required; if the same examples were simulated using a B-spline
network (as per. [17]) the entire sheet would require refinement, and so would
require computation closer to the maximum 73x73 sheet.

7 Conclusions

We have presented a method for adaptively refining spring/mass networks, which
has the advantages of both optimising the simulation of such systems and adapt-
ing the amount of refinement required for a particular environment without prior
knowledge of it. We have shown that this system can produce the same visually

Figure 7: a. Rendered sheet over 4 poles (not shown) b. Refinement map.



pleasing result for less computational cost than a fine uniform discretisation.
Although this method shares the weakness of ordinary particle systems (princi-
pally physical inaccuracy) a mechanism of adaptive refinement goes some way
to ameliorating the worse effects of these inaccuracies.

We intend to concentrate our further work in two principal areas. Firstly we
would like to develop more optimal schemes for implementing adaptive sheets.
An unsplitting system (which detects planarity and responds by removing masses)
is currently being developed. Special attention must be made to removing masses
only where planarity is likely to be sufficient for more than a few steps (other-
wise too much time will be spent refining again). We also plan to investigate the
use of a non-rectangular grid which will then allow us to perform a discontinuity
meshing (thereby reducing the complexity required to drape sheets over non-axis
aligned edges).

We would also like to extend these techniques to the simulation of volumes.
Our initial work in this area is concerned with developing a robust hypercube
data structure for the volume, which allows us to accurately model indentations
in the solid when it comes into contact with the environment.

Acknowledgements

The authors would like to thank all the staff and students at the Computer Graphics
Unit for their help and encouragement. Dave Hutchinson would like to thank the
Engineering and Physical Sciences Research Council for their financial support during
this work.

References

1. D. E. Breen, D. H. House, and M. J. Wozny. Predicting the Drape of Woven
Cloth Using Interacting Particles. In Proceedings of SIGGRAPH 94, pages 365—
372, 1994. In Computer Graphics proceedings, Annual Conference Series.

2. E. Cohen, T. Lyche, and L. L. Schumaker. Algorithms for Degree Raising of
Splines. ACM Transactions on Graphics, pages 171-181, July 1985.

3. S. Coquillart and P. Jancéne. Animated Free-Form Deformation: An Interactive
Animation Technique. Computer Graphics, 25(4):23-26, July 1991.

4. M. Desbrun and M-P. Gascuel. Highly Deformable Material for Animation and
Collision Processing. In 5% Eurographics workshop on Animation & Simulation,
1994.

5. M-P. Gascuel and C. Puech. Dynamic Animation of Deformable Bodies. In S. Co-
quillart, W. Strafler, and P. Stucki, editors, From Object Modelling to Advanced
Visual Communication. Springer—Verlag, 1994.

6. M-P. Gascuel, A. Verroust, and C. Puech. Animation with Collisions of De-
formable Articulated Bodies. In 1% Eurographics workshop on Animation € Sim-
ulation, 1990.

7. D. Crochemore J. Louchet, X. Provot. Evolutionary Identification of Cloth Anima-
tion Models. In D. Terzopoulos and D. Thalmann, editors, Computer Animation
and Simulation 95 (Proceedings of 6" Eurographics Workshop on Animation €
Simulation), pages 30 — 43. SpringerWien, 1995.



10.

11.

12.

13.

14.

15.

16.

17.

18.

A. Luciani, S. Jimenez, J. L. Florens, C. Cadoz, and O. Raoult. Computational
Physics : A Modeler-Simulator for Animated Physical Objects. In Proceedings of
Eurographics 91, 1991.

G. Miller and A. Pearce. Globular Dynamics : A Connected Particle System for
Animating Viscous Fluids. Computer and Graphics, 13(3):305-309, 1989.

G. S. P. Miller. The Motion Dynamics of Snakes and Worms. Computer Graphics,
22(4):169-178, August 1988.

L. F. Palazzi and D. R. Forsey. A Multilevel Approach to Surface Response in
Dynamically Deformable Models. In Computer Animation ’94, 1994.

X. Provot. Deformation Constraints in a Mass-Spring Model to describe Rigid
Cloth Behaviour. In Proceedings of Graphics Interface ’95, 1995.

T. W. Sederberg and S. R. Parry. Free Form Deformation of Solid Geometric
Models. ACM SIGGRAPH Computer Graphics, 20(4):151-160, Aug 1986.

D. Terzopoulos and K. Fleischer. Modeling Inelastic Deformation: Viscoelasticity,
Plasticity, Fracture. Computer Graphics, 22(4):269-278, August 1988.

D. Terzopoulos, J. Platt, A. Barr, and K. Fleischer. Elastically Deformable Mod-
els. Computer Graphics, 21(4):205-214, July 1987.

D. Terzopoulos and A. Witkin. Physically Based Models with Rigid and De-
formable Components. IEEE Computer Graphics € Applications, pages 41-51,
November 1988.

J.A. Thingvold and E. Cohen. Physical Modeling with B-Spline Surfaces for
Interactive Design and Animation. In 1990 Symposium on Interactive Computer
Graphics, pages 129-137. ACM SIGGRAPH Computer Graphics, 1990.

P. Volino and N. M. Thalmann. Efficient Self-collision Detection on Smoothly
Discretized Surface Animations Using Geometrical Shape Regularity. Computer
Graphics Forum (Proceedings of Eurographics ’94), 13(3), 1994.



I

BB ~sasany

eFanusa

"-’lﬂ‘..‘l.

—sapnes

BEMER~saraas

ISR srasnns

SEBBRIIREES

e L

,.v'..i_lt_:-

Re—apanay

'lJ‘..I'.

Bams

YT L

Figure 8: Six images taken from the pole animation.



