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About ten years ago, the �eld of range searching, especially simplex range
searching, was wide open. At that time, neither e�cient algorithms nor nontrivial
lower bounds were known for most range-searching problems. A series of papers
by Haussler and Welzl [ ], Clarkson [ ], and Clarkson and Shor [ ]
not only marked the beginning of a new chapter in geometric searching, but also
revitalized computational geometry as a whole. Led by these and a number of sub-
sequent papers, tremendous progress has been made in geometric range searching,
both in terms of developing e�cient data structures and proving nontrivial lower
bounds. From a theoretical point of view, range searching is now almost completely
solved. The impact of general techniques developed for geometric range searching|
-nets, 1 -cuttings, partition trees, multi-level data structures, to name a few|is
evident throughout computational geometry. This volume provides an excellent
opportunity to recapitulate the current status of geometric range searching and to
summarize the recent progress in this area.

A typical range-searching problem has the following form: Pre-
process a set of points in so that the points of lying inside a query

region can be reported or counted quickly. We survey the known techniques
and data structures for range searching and describe their application to other

related searching problems.
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A ( +) is a set equipped with an associative addition operator + : .

A semigroup is if + = + for all .
Since need not have an additive identity, we may need to assign a special value to the

empty sum.

Range searching arises in a wide range of applications, including geographic in-
formation systems, computer graphics, spatial databases, and time-series databases.
Furthermore, a variety of geometric problems can be formulated as a range-searching
problem. A typical range-searching problem has the following form. Let be a
set of points in , and let be a family of subsets of ; elements of are
called . We wish to preprocess into a data structure so that for a query
range , the points in can be reported or counted e�ciently. Typical
examples of ranges include rectangles, halfspaces, simplices, and balls. If we are
only interested in answering a single query, it can be done in linear time, using
linear space, by simply checking for each point whether lies in the query
range. Most applications, however, call for querying the same point set several
times (and sometimes we also insert or delete a point periodically), in which case
we would like to answer a query faster by preprocessing into a data structure.

Range counting and range reporting are just two instances of range-searching
queries. Other examples include , where one wants to determine
whether = , and , where one wants to choose a point
with certain property ( , a point in with the largest -coordinate). In order to
encompass all di�erent types of range-searching queries, a general range-searching
problem can be de�ned as follows.

Let ( +) be a commutative semigroup. For each point , we assign a
weight ( ) . For any subset , let ( ) = ( ), where addition is

taken over the semigroup. For a query range , we wish to compute ( ).
For example, counting queries can be answered by choosing the semigroup to be
( +), where + denotes standard integer addition, and setting ( ) = 1 for every

; emptiness queries by choosing the semigroup to be ( 0 1 ) and setting
( ) = 1; reporting queries by choosing the semigroup to be (2 ) and setting
( ) = ; and optimization queries by choosing the semigroup to be ( max)

and choosing ( ) to be, for example, the -coordinate of .
We can, in fact, de�ne a more general (decomposable)

problem. Let be a set of in ( , points, hyperplanes, balls, or sim-
plices), ( +) a commutative semigroup, : a weight function, a set of
ranges, and a \spatial" relation between objects and ranges. Then for
a range , we want to compute ( ). Range searching is a special case

of this general searching problem, in which is a set of points in and = .
Another widely studied searching problem is , where if
intersects . As we will see below, range-searching data structures are useful for

many other geometric searching problems.
The performance of a data structure is measured by the time spent in answer-

ing a query, called the , by the of the data structure, and by the
time constructed in the data structure, called the . Since the
data structure is constructed only once, its query time and size are generally more
important than its preprocessing time. If a data structure supports insertion and
deletion operations, its is also relevant. We should remark that the
query time of a range-reporting query on any reasonable machine depends on the
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search time reporting time

random access machine
real RAM

output size, so the query time for a range-reporting query consists of two parts|
, which depends only on and , and , which depends on

, , and the output size. Throughout this survey paper we will use to denote
the output size.

We assume that is a small �xed constant, and that big-Oh and big-Omega
notation hides constants depending on . The dependence on of the performance
of almost all the data structures mentioned in this survey is exponential, which
makes them unsuitable in practice for large values of .

The size of any range-searching data structure is at least linear, since it has to
store each point (or its weight) at least once, and the query time in any reasonable
model of computation such as pointer machines, RAMs, or algebraic decision trees
is 
(log ) even when = 1. Therefore, we would like to develop a linear-size data
structure with logarithmic query time. Although near-linear-size data structures
are known for orthogonal range searching in any �xed dimension that can answer
a query in polylogarithmic time, no similar bounds are known for range searching
with more complex ranges such as simplices or disks. In such cases, we seek a
tradeo� between the query time and the size of the data structure|How fast can
a query be answered using ( polylog ) space, how much space is required to
answer a query in (polylog ) time, and what kind of tradeo� between the size
and the query time can be achieved?

In this paper we survey the known techniques and data structures for range-
searching problems and describe their applications to other related searching prob-
lems. As mentioned in the beginning, the quest for e�cient range-searching data
structure has led to many general, powerful techniques that have had a signi�-
cant impact on several other geometric problems. The emphasis of this survey is
on describing known results and general techniques developed for range searching,
rather than on open problems. The paper is organized as follows. We describe,
in Section 2, di�erent models of computation that have been used to prove upper
and lower bounds on the performance of data structures. Next, in Section 3, we
review data structures for orthogonal range searching and its variants. Section 4
surveys known techniques and data structures for simplex range searching, and Sec-
tion 5 discusses some variants and extensions of simplex range searching. Finally,
we review data structures for intersection searching and optimization queries in
Sections 6 and 7, respectively.

Most algorithms and data structures in computational geometry are implic-
itly described in the familiar (RAM) model, described in
[ ], or the model described by Preparata and Shamos [ ]. In the
traditional RAM model, memory cells can contain arbitrary (log )-bit integers,
which can be added, multiplied, subtracted, divided (computing ), compared,
and used as pointers to other memory cells in constant time. A few algorithms
rely on a variant of the RAM model, proposed by Fredman and Willard [ ],
that allows memory cells to contain -bit integers, for some parameter log ,
and permits both arithmetic and bitwise logical operations in constant time. In
a real RAM, we also allow memory cells to store arbitrary real numbers (such as
coordinates of points). We allow constant-time arithmetic on and comparisons be-
tween real numbers, but we do not allow conversion between integers and reals. In
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3pointer machine

working set

elementary
arithmetic

semigroup arithmetic model

informally

Several very di�erent models of computation with the name \pointer machine" have been

proposed; these are surveyed by Ben-Amram [ ], who suggests the less ambiguous term
for the model we describe.

the case of range searching over a semigroup other than the integers, we also allow
memory cells to contain arbitrary values from the semigroup, but these values can
only be added (using the semigroup's addition operator, of course).

Almost all known range-searching data structures can be described in the more
restrictive model, originally developed by Tarjan [ ]. The main
di�erence between the two models is that on a pointer machine, a memory cell can
be accessed only through a series of pointers, while in the RAM model, any memory
cell can be accessed in constant time. Tarjan's basic pointer machine model is most
suitable for studying range-reporting problems. In this model, a data structure is
a directed graph with outdegree 2. To each node in this graph, we associate a
label ( ), which is an integer between 0 and . Nonzero labels are indices of the
points in . The query algorithm, given a range , begins at a special starting
node and performs a sequence of the following operations: (1) visit a new node by
traversing an edge from a previously visited node, (2) create a new node with
( ) = 0, whose outgoing edges point to previously visited nodes, and (3) redirect
an edge leaving a previously visited node, so that it points to another previously
visited node. When the query algorithm terminates, the set of visited nodes ( ),
called the , is required to contain the indices of all points in the query
range; that is, if , then there must be a node ( ) such that ( ) = .
The working set ( ) may contain labels of points that are not in the query range.
The size of the data structure is the number of nodes in the graph, and the query
time for a range is the size of the smallest possible working set ( ). The query
time ignores the cost of other operations, including the cost of deciding which edges
to traverse. There is no notion of preprocessing or update time in this model. Note
that the model accommodates both static and self-adjusting data structures.

Chazelle [ ] de�nes several generalizations of the pointer-machine model
that are more appropriate for answering counting and semigroup queries. In Cha-
zelle's generalized pointer-machinemodels, nodes are labeled with arbitrary (log )-
bit integers. In addition to traversing edges in the graph, the query algorithm is also
allowed to perform various arithmetic operations on these integers. An
pointer machine can add and compare integers; in an pointer machine,
subtraction, multiplication, integer division, and shifting ( 2 ) are also allowed.
When the query algorithm terminates in these models, some node in the working
set is required to contain the answer. If the points have weights from an additive
semigroup other than the integers, nodes in the data structure can also be labeled
with semigroup values, but these values can only be added.

Most lower bounds, and a few upper bounds, are described in the so-called
, which was originally introduced by Fredman [ ]

and re�ned by Yao [ ]. In the semigroup arithmetic model, a data structure
can be regarded as a set of precomputed partial sums in the underlying
semigroup. The size of the data structure is the number of sums stored, and
the query time is the minimum number of semigroup operations required (on the
precomputed sums) to compute the answer to a query. The query time ignores
the cost of various auxiliary operations, including the cost of determining which
of the precomputed sums should be added to answer a query. Unlike the pointer
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More formally, ( +) is faithful if for each 0, for any sets of indices 1 so
that = , and for every sequence of positive integers ( ), there are semigroup

values such that =

machine model, the semigroup model allows immediate access, at no cost, to any
precomputed sum.

The informal model we have just described is much too powerful. For example,
in this informal model, the optimal data structure for counting queries consists
of the + 1 integers 0 1 . To answer a counting query, we simply return
the correct answer; since no additions are required, we can answer queries in zero
\time," using a \data structure" of only linear size!

Here is a more formal de�nition that avoids this problem. Let ( +) be a
commutative semigroup. A is a sum of variables over the semigroup,
where each variable can occur multiple times, or equivalently, a homogeneous linear
polynomial with positive integer coe�cients. The semigroup is if any two
identically equal linear forms have the same set of variables, although not necessarily
with the same set of coe�cients. For example, the semigroups ( +), ( min),
( gcd), and ( 0 1 ) are faithful, but the semigroup ( 0 1 + mod 2) is not
faithful.

Let = be a set of objects, a faithful semigroup, a set of
ranges, and a relation between objects and ranges. (Recall that in the standard
range-searching problem, the objects in are points, and is containment.) Let

be a set of variables over , each corresponding to a point in . A
( ) is a linear form , where the 's are non-negative

integers, not all zero. (In practice, the coe�cients are either 0 or 1.) A
for ( ) is a collection of generators with the following

property: For any query range , there is an set of indices 1 2
and a set of labeled nonnegative integers such that the linear forms

and

are identically equal. In other words, the equation

( ) = ( ( ) ( ) ( ))

holds for weight function : . (Again, in practice, = 1 for all .)
The size of the smallest such set is the query time for ; the time to actually
choose the indices is ignored. The space used by the storage scheme is measured
by the number of generators. There is no notion of preprocessing time in this model.

We emphasize that although a storage scheme can take advantage of special
properties of the set or the semigroup , it must work for assignment of
weights to . In particular, this implies that lower bounds in the semigroup model
do not apply to the problem of counting the number of points in the query range,
even though ( +) is a faithful semigroup, since a storage scheme for the counting
problem only needs to work for the particular weight function ( ) = 1 for all

. Similar arguments apply to emptiness, reporting, and optimization queries,
even though the semigroups ( 0 1 ), (2 ), and ( min) are all faithful.

The requirement that the storage scheme must work for any weight assignment
even allows us to model problems where the weights depend on the query. For
example, suppose for some set of objects with real weights, we have a storage
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1 1 2 2
1 1 1 2

2 2

1. A set of eight points and four disks, and an o�ine semigroup
arithmetic algorithm to compute the total weight of the points in each
disk.

scheme that lets us quickly determine the minimum weight of any object hit by a
query ray. In other words, we have a storage scheme for under the semigroup
( min) that supports intersection searching, where the query ranges are rays. We
can use such a storage scheme to answer ray-shooting queries, by letting the weight
of each object be its distance along the query ray from the basepoint. If we want
the �rst object hit by the query ray instead of just its distance, we can use the
faithful semigroup ( ), where

( ) ( ) =
( ) if ,

( ) otherwise,

and letting the weight of an object be ( ), where is the distance along the
query ray between the basepoint and . We reiterate, however, that lower bounds in
the semigroup model do not imply lower bounds on the complexity of ray shooting.

Although in principle, storage schemes can exploit of special properties of the
semigroup , in practice, they never do. All known upper and lower bounds in
the semigroup arithmetic model hold for all faithful semigroups. In other models
of computation where semigroup values can be manipulated, such as RAMs and
elementary pointer machines, slightly better upper bounds are known for some
problems when the semigroup is ( +) [ ].

The semigroupmodel is formulated slightly di�erently for o�ine range-searching
problems. Here we are given a set of weighted points and a �nite set of query
ranges , and we want to compute the total weight of the points in each query
range. This is equivalent to computing the product , where is the incidence
matrix of the points and ranges, and is the vector of weights. In the o�ine
semigroup model, introduced by Chazelle [ ], an algorithm can be described
as a circuit (or straight-line program) with one input for every point and one out-
put for every query range, where every gate (respectively, statement) performs a
binary semigroup addition. The running time of the algorithm is the total number
of gates (respectively, statements). For any weight function : , the output
associated with a query range is ( ). Just as in the online case, the circuit is
required to work for any assignment of weights to the points; in e�ect, the outputs
of the circuit are the linear forms . See Figure 1 for an example.

A serious weakness of the semigroup model is that it does not allow subtractions
even if the weights of the points belong to a group. Therefore, we will also consider
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group model

help gates

partition graph

root leaves

query regions
primal dual

i.e.

the , in which both additions and subtractions are allowed [
]. Chazelle [ ] considers an extension of the o�ine group model in which

circuits are allowed a limited number of , which can compute arbitrary
binary functions.

Of course it is natural to consider arithmetic circuits that also allow multi-
plication (\the ring model"), division (\the �eld model"), or even more general
functions such as square roots or exponentiation. There is a substantial body of lit-
erature on the complexity of various types of arithmetic circuits [ ],
but almost nothing is known about the complexity of geometric range searching
in these models. Perhaps the only relevant result is that any circuit with opera-
tions + requires 
(log ) time to answer any reasonable range query, or

( log ) time to solve any reasonable o�ine range searching problem, since such
a circuit can be modeled as an algebraic computation tree with no branches [ ]
or as a straight-line program on a real RAM [ ]. (Computation trees with more
general functions are considered in [ ].)

Almost all geometric range-searching data structures are constructed by subdi-
viding space into several regions with nice properties and recursively constructing a
data structure for each region. Range queries are answered with such a data struc-
ture by performing a depth-�rst search through the resulting recursive space parti-
tion. The model, recently introduced by Erickson [ ],
formalizes this divide-and-conquer approach, at least for hyperplane and halfspace
range searching data structures. The partition graph model can be used to study
the complexity of emptiness queries, unlike the semigroup arithmetic and pointer
machine models, in which such queries are trivial.

Formally, a partition graph is a directed acyclic graph with constant outdegree,
with a single source, called the , and several sinks, called . Associated with
each internal node is a cover of by a constant number of connected subsets called

, each associated with an outgoing edge. Each internal node is labeled
either or , indicating whether the query regions should be considered a
decomposition of \primal" or \dual" space. (Point-hyperplane duality is discussed
in Section 4.2.) Any partition graph de�nes a natural search structure, which is
used both to preprocess a set of points and to perform a query for a hyperplane
or halfspace. The points are preprocessed one at a time. To preprocess a single
point, we perform a depth-�rst search of the graph, starting at the root. At each
primal node, we traverse the outgoing edges corresponding to the query regions that
contain the point; at each dual node, we traverse the edges whose query regions
intersect the point's dual hyperplane. For each leaf of the partition graph, we
maintain a set containing the points that reach during the preprocessing phase.
The query algorithm for hyperplanes is an exactly symmetric depth-�rst search|at
primal nodes, we look for query regions that intersect the hyperplane, and at dual
nodes, we look for query regions that contain its dual point. The answer to a query
is determined by the sets associated with the leaves of the partition graph that
the query algorithm reaches. For example, the output of an emptiness query is
\yes" ( , the query hyperplane contains none of the points) if and only if =
for every leaf reached by the query algorithm. The size of the partition graph is
the number of edges in the graph; the complexity of the query regions and the sizes
of the sets are not considered. The preprocessing time for a single point and the
query time for a hyperplane are given by the number of edges traversed during the
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search; the time required to actually construct the partition graph and to test the
query regions is ignored.

We conclude this section by noting that most of the range-searching data struc-
tures discussed in this paper (halfspace range-reporting data structures being a no-
table exception) are based on the following general scheme. Given a point set ,
they precompute a family = ( ) of of and store the weight
( ) = ( ) of each canonical subset . For a query range , they

determine a partition = ( ) of and add the weights of the subsets
in to compute ( ). Borrowing terminology from [ ], we will refer to such
a data structure as a .

There is a close connection between decomposition schemes and storage schemes
in the semigroup arithmetic model described earlier. Each canonical subset =

, where 1 2 , corresponds to the generator .
In fact, because the points in any query range are always computed as the
union of canonical subsets, any decomposition scheme corresponds to a storage
scheme that is valid for semigroup. Conversely, lower bounds in the semigroup
model imply lower bounds on the complexity of any decomposition scheme.

How exactly the weights of canonical subsets are stored and how is computed
depends on the model of computation and on the speci�c range-searching problem.
In the semigroup (or group) arithmetic model, the query time depends only on
the number of canonical subsets in , regardless of how they are computed, so the
weights of canonical subsets can be stored in an arbitrary manner. In more realistic
models of computation, however, some additional structure must be imposed on
the decomposition scheme in order to e�ciently compute . In a
decomposition scheme, the weights are stored in a tree . Each node of is
associated with a canonical subset , and the children of are associated
with subsets of . Besides the weight of , some auxiliary information is also
stored at , which is used to determine whether for a query range .
Typically, this auxiliary information consists of some geometric object, which plays
the same role as a query region in the partition graph model.

If the weight of each canonical subset can be stored in (1) memory cells, then
the total size of the data structure is just ( ). If the underlying searching prob-
lem is a range-reporting problem, however, then the \weight" of a canonical subset
is the set itself, and thus it is not realistic to assume that each \weight" requires
only constant space. In this case, the size of the data structure is ( ) if
each subset is stored explicitly at each node of the tree. As we will see below, the
size can be reduced to ( ) by storing the subsets implicitly ( , storing points
only at leaves).

To determine the points in a query range , a query procedure performs a
depth-�rst search of the tree , starting from the root. At each node , using
the auxiliary information stored at , the procedure determines whether the query
range contains , intersects , or is disjoint from . If contains , then
is added to (rather, the weight of is added to a running counter). Otherwise,
if intersects , the query procedure identi�es a subset of children of , say

, so that the canonical subsets , for 1 , form a partition
of . Then the procedure searches each recursively. The total query time
is (log + ), provided constant time is spent at each node visited.
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In -dimensional orthogonal range searching, the ranges are -rectangles, each

of the form [ ], where . This is an abstraction of multi-key search-
ing [ ], which is a central problem in statistical and commercial databases.
For example, the points of may correspond to employees of a company, each co-
ordinate corresponding to a key such as age, salary, or experience. Queries such as
\Report all employees between the ages of 30 and 40 who earn more than $30 000
and who have worked for more than 5 years" can be formulated as orthogonal
range-reporting queries. Because of its numerous applications, orthogonal range
searching has been studied extensively for the last 25 years. A survey of earlier
results can be found in the books by Mehlhorn [ ] and Preparata and Shamos
[ ]. In this section we review more recent data structures and lower bounds.

Most of the recent orthogonal range-searching data
structures are based on , introduced by Bentley [ ]. For = 1,
the range tree of is either a minimum-height binary search tree on or an array
storing in sorted order. For 1, the range tree of is a minimum-height
binary tree with leaves, whose th leftmost leaf stores the point of with the
th smallest -coordinate. To each interior node of , we associate a canonical
subset containing the points stored at leaves in the subtree rooted at . For
each , let (resp. ) be the smallest (resp. largest) -coordinate of any point in

, and let denote the projection of onto the hyperplane = 0. The interior
node stores , , and a ( 1)-dimensional range tree constructed on . For

any �xed dimension , the size of the overall data structure is ( log ), and it

can be constructed in time ( log ). The range-reporting query for a rectangle

= [ ] can be answered as follows. If = 1, the query can be answered by
a binary search. For 1, we traverse the range tree as follows. Suppose we are at
a node . If is a leaf, then we report its corresponding point if it lies inside . If
is an interior node and the interval [ ] does not intersect [ ], there is noth-
ing to do. If [ ] [ ], we recursively search in the ( 1)-dimensional range

tree stored at , with the ( 1)-rectangle [ ]. Otherwise, we recursively

visit both children of . The query time of this procedure is (log + ), which can

be improved to (log + ) using the technique [ ].

A range tree can also answer a range-counting query in time (log ). Range
trees are an example of a multi-level data structure, which we will discuss in more
detail in Section 5.1.

The best data structures known for orthogonal range searching are by Chazelle
[ ], who used compressed range trees and other techniques to improve the
storage and query time. His results in the plane, under various models of com-
putation, are summarized in Table 1; the preprocessing time of each data struc-
ture is ( log ). If the query rectangles are \three-sided rectangles" of the form
[ ] [ ], then one can use a of size ( ) to answer a
planar range-reporting query in time (log + ) [ ].

Each of the two-dimensional results in Table 1 can be extended to queries
in at a cost of an additional log factor in the preprocessing time, stor-
age, and query-search time. For 3, Subramanian and Ramaswamy [ ]
have proposed a data structure that can answer a range-reporting query in time
(log log + ) using ( log ) space, and Bozanis [ ]
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O n n

S u u U
U

O u k O n n
O u k O n n O u u

c
c

O n k

RAM log

Counting APM log

EPM log +

log + log (2 )

RAM log log log + log log(4 )

log log +

Reporting APM log(2 )

EPM

log (2 )

log

log log
log +

Semigroup
log

log(2 )

log

Semigroup RAM log log log log log

log log

APM log

EPM log

Asymptotic upper bounds for planar orthogonal range
searching, due to Chazelle [ ], in the random access machine
(RAM), arithmetic pointer machine (APM), elementary pointer machine
(EPM), and semigroup arithmetic models.

have proposed a data structure with ( log ) size and (log + ) query
time. The query time (or the query-search time in the range-reporting case)
can be reduced to ((log log log ) ) in the RAM model by increasing the

space to ( log ). In the semigroup arithmetic model, a query can be
answered in time ((log log( )) ) using a data structure of size , for

any = 
( log ) [ ]. Willard [ ] proposed a data structure of size

( log log log ), based on fusion trees, that can answer an orthogonal range-

reporting query in time (log log log + ). Fusion trees were introduced by
Fredman and Willard [ ] for an ( log ) sorting algorithm in a RAM model
that allows bitwise logical operations.

Overmars [ ] showed that if is a subset of a grid in the plane and
the vertices of query rectangles are also a subset of , then a range-reporting query
can be answered in time ( log + ), using ( log ) storage and preprocessing,
or in (log log + ) time, using ( log ) storage and ( log ) preprocessing.
See [ ] for some other results on range-searching for points on integer grids.

Orthogonal range-searching data structures based on range trees can be ex-
tended to handle -oriented ranges in a straightforward manner. The performance
of such a data structure is the same as that of a -dimensional orthogonal range-
searching structure. If the ranges are homothets of a given triangle, or translates of a
convex polygon with constant number of edges, a two-dimensional range-reporting
query can be answered in (log + ) time using linear space [ ]. If
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3.3. Secondary memory structures.

BM, Com

average

Let be positive integers with . If
only units of storage are available, then the expected query time for a random
orthogonal range query in a random set of points in the unit hypercube is

in the semigroup arithmetic model.

i.e.

the ranges are octants in , a range-reporting query can be answered in either
(( + 1) log ) or (log + ) time using linear space [ ].

Fredman [ ] was the �rst to prove
nontrivial lower bounds on orthogonal range searching, in a version of semigroup
arithmetic model in which the points can be inserted and deleted dynamically.
He showed that a mixed sequence of insertions, deletions, and queries requires

( log ) time. These bounds were extended by Willard [ ] to the group
model, under some fairly restrictive assumptions.

Yao [ ] proved a lower bound for two-dimensional static data structures in
the semigroup arithmetic model. He showed that if only units of storage is
available, a query takes 
(log log(( ) log )) in the worst case. Vaidya [ ]
proved lower bounds for orthogonal range searching in higher dimensions, which
were later improved by Chazelle [ ]. In particular, Chazelle proved the following
strong result about the -case complexity of orthogonal range searching:

1 (Chazelle [ ])

[0 1]

((log log(2 )) )

A rather surprising result of Chazelle [ ] shows that any data structure
on a basic pointer machine that answers a -dimensional range-reporting query
in (polylog + ) time must have size 
( (log log log ) ); see also [ ].

Notice that this lower bound is greater than the ( log ) upper bound in
the RAM model (see Table 1).

These lower bounds do not hold for o�ine orthogonal range searching, where
given a set of weighted points in and a set of rectangles, one wants to compute
the weight of the points in each rectangle. Recently, Chazelle [ ] proved that
the o�ine version takes 
( (log log log ) ) time in the semigroup model, and

( log log ) time in the group model. An 
( log ) lower bound also holds in
the algebraic decision tree and algebraic computation tree models [ ].

If the input point set is rather large
and does not �t into main memory, then the data structure must be stored in
secondary memory|on disk, for example|and portions of it must moved into main
memory when needed to answer a query. In this case the bottleneck is the time
spent in transferring data between main and secondary memory. We assume that
data is stored in secondary memory in blocks of size , where is a parameter.
Each access to the secondary memory transfers one block ( , words), and we
count this as one input/output (I/O) operation. The size of a data structure is
the number of blocks required to store it, and the query (resp. preprocessing) time
is de�ned as the number of I/O operations required to answer a query (resp. to
construct the structure). To simplify our notation, let = , the number
of blocks required to hold the input, and let Log = log . Under this model,
the size of any data structure is at least , and the query time is at least Log .
I/O-e�cient orthogonal range-searching structures have received much attention
recently, but most of the results are known only for the planar case. The main idea
underlying these structures is to construct high-degree trees instead of binary trees.
For example, variants of B-trees are used to answer 1-dimensional range-searching
queries [ ]. A number of additional tricks are developed to optimize the
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2

Range Size Query Time Source

BM, Com
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N n k=B B

d N B B n k=B

N N= n n k=B B
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d
N N � n n k=B

N N � n n k=B

Asymptotic upper bounds for secondary memory structures;
here = , Log = log , and ( ) = log log Log .
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Ch6
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3.4. Practical data structures.

Sam2

Gr, G�ut, HoS, NW2, O

BM, Com

= 1 Interval Log + [ ]

Quadrant log log Log + [ ]

3-sided rectangle Log + + log [ ]

= 2 3-sided rectangle log log log Log + [ ]

Rectangle log log Log Log + + log [ ]

Rectangle [ ]

= 3
Octant log ( )Log + [ ]

Rectangle log ( )Log + [ ]

size and the query time. See [ ] for I/O e�cient data
structures that have been used for answering range searching and related queries.

Table 2 summarizes the known results on secondary-memory structures for
orthogonal range searching. The data structure by Subramanian and Ramaswamy
[ ] for 3-sided queries supports insertion/deletion of a point in time

(Log + (Log ) )

Using the argument by Chazelle [ ], they proved that any secondary-memory
data structure that answers a range-reporting query using (polyLog + ) I/O
operations requires 
( log log Log ) storage. Hellerstein [ ] have
shown that if a data structure for two-dimensional range-reporting query uses at
most ( ) disk blocks, then a query requires at least


(( ) log log log )

disk accesses; this extends an earlier lower bound by Kanellakis [ ].

None of the data structures described in
Section 3.1 are used in practice, even in two dimensions, because of the polylog-
arithmic overhead in the size and the query time. In many real applications, the
input is too large to be stored in the main memory, so the number of disk ac-
cesses is a major concern. On the other hand, the range-searching data structures
described in Section 3.3 are not simple enough to be of practical use for 2.
For a data structure to be used in real applications, its size should be at most
, where is a very small constant, the time to answer a typical query should

be small|the lower bounds proved in Section 3.2 imply that we cannot hope for
small worst-case bounds|and it should support insertions and deletions of points.
Keeping these goals in mind, a plethora of data structures have been proposed. We
will sketch the general ideas and mention some of the data structures in a little
detail. For the sake of simplicity, we will present most of the data structures in two
dimensions. The book by Samet [ ] is an excellent survey of data structures
developed in 1970s and 80s; more recent results are described in the survey papers
[ ].

The most widely used data structures for answering 1-dimensional range queries
are B-trees and their variants [ ]. Since a B-tree requires a linear order
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2. Examples of space-�lling curves used for range searching.
(i) Hilbert curve. (ii) Morton curve.

bit concatenation

bit-interleaving

N-tree zkd-tree

linear hashing dynamic -hashing
spiral hashing

quad tree

Formally speaking, a curve [0 1] is called a if it visits each point

of the unit hypercube exactly once. However, the same term often refers to approximations of
space-�lling curves that visit every point in a cubical lattice, such as the curves drawn in Figure

2. See the book by Sagan [ ] for a detailed discussion on space-�lling curves and [ ] for some

other applications of these curves.

on the input elements, one needs to de�ne such an ordering on points in higher
dimensions in order to store them into a B-tree. An obvious choice is lexico-
graphical ordering, also known as the method, but this ordering
performs rather poorly for higher dimensional range searching because a separate
disk access may be required to report each point. A better scheme for ordering
the points is the method, proposed by Morton [ ]. A point
= ( ), where the binary representations of and are =

and = , is regarded as the integer whose binary representation is
. A B-tree storing points based on the bit-interleaving order-

ing is referred to as an [ ] or a [ ] in the literature. See [ ]
for a more detailed discussion on the applications of bit interleaving in spatial data
structures. Faloutsos [ ] suggested using Gray codes to de�ne a linear order on
points. In general, space-�lling curves can be used to de�ne a linear ordering on
input points; Hilbert and Morton curves, shown in Figure 2, are the some of the
space-�lling curves commonly used for this purpose. See [ ]
for a comparison of the performance of various space-�lling curves in the context
of range searching. Since B-trees require extra space to store pointers, several
hashing schemes, including [ ], [ ] and

schemes [ ] are proposed to minimize the size of the data struc-
ture. The performance of any method that maps higher-dimensional points to a set
of points in one dimension deteriorates rapidly with the dimension because such a
mapping does not preserve neighborhoods, though there has been some recent work
on locality preserving hashing schemes [ ].

(i) (ii)

A more e�cient approach to answer range queries is to construct a recursive
partition of space, typically into rectangles, and to construct a tree induced by this
partition. The simplest example of this type of data structure is the in the
plane. A quad tree is a 4-way tree, each of whose nodes is associated with a square
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oct-trees

point quad-tree

grid �le et al.

grid directory
linear scales

. is partitioned into four equal-size squares, each of which is associated with
one of the children of . The squares are partitioned until at most one point is left
inside a square. Quad trees can be extended to higher dimensions in an obvious
way (they are called in 3-space). In -dimensions, a node has 2 children.
A range-search query can be answered by traversing the quad tree in a top-down
fashion. Because of their simplicity, quad trees are one of the most widely used
data structures for a variety of problems. For example, they were used as early as
in 1920s, by Weyl [ ] for computing the complex roots of a univariate polynomial
approximately; Greengard used them for the so-called -body problem [ ]. See
the books by Samet [ ] for a detailed discussion on quad trees and their
applications.

One disadvantage to quad trees is that arbitrarily many levels of partitioning
may be required to separate tightly clustered points. Finkel and Bentley [ ]
described a variant of the quad tree for range searching, called a ,
in which each node is associated with a rectangle and the rectangle is partitioned
into four rectangles by choosing a point in the interior and drawing horizontal and
vertical lines through that point. Typically the point is chosen so that the height
of the tree is (log ). A recent paper by Faloutsos and Gaede [ ] analyzes the
performance of quad trees using Hausdor� fractal dimension. See also [ ]
for other data structures based on quad trees.

In order to minimize the number of disk accesses, one can partition the square
into many squares (instead of four) by a drawing either a uniform or a nonuniform
grid. The , introduced by Nievergelt [ ] is based on this idea.
Since grid �les are used frequently in geographic information systems, we describe
them brie
y. A grid �le partitions the plane into a nonuniform grid by drawing
horizontal and vertical lines. The grid lines are chosen so that the points in each
cell can be stored in a single block of the disk. The grid is then partitioned into
rectangles, each rectangle being the union of a subset of grid cells, so that the
points in each rectangle can still be stored in a single block of the disk. The data
within each block can be organized in an arbitrary way. The grid �le maintains
two pieces of information: a , which stores the index of the block
that stores the points lying in each grid cell, and two arrays, called ,
which store the -coordinates (resp. -coordinates) of the vertical (resp. horizontal)
lines. It is assumed that the linear scales are small enough to be stored in main
memory. A point can be accessed by two disk accesses as follows. By searching with
the - and -coordinates of the points in the linear scales, we determine the grid
cell that contains the point. We then access that cell of the grid directory (using
one disk access) to determine the index of the block that stores , and �nally we
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access that block and retrieve the point (second disk access). A range query
is answered by locating the cells that contain the corners of the query rectangle
and thus determining all the grid cells that intersect the query rectangle. We then
access each of these cells to report all the points lying in the query rectangle. Several
heuristics are used to minimize the number of disk accesses required to answer a
query and to update the structures as points are inserted or deleted. Note that a
range query reduces to another range query on the grid directory, so one can store
the grid directory itself as a grid �le. This notion of a hierarchical grid �le was
proposed by Hinrichs [ ] and Krishnamurthy and Wang [ ]. A related data
structure, known as the , was proposed by Freestone [ ]; other variants
of grid �les are proposed in [ ].

Quad trees, grid �les, and their variants construct a grid on a rectangle con-
taining all the input points. One can instead partition the enclosing rectangle into
two rectangles by drawing a horizontal or a vertical line and partitioning each of
the two rectangles independently. This is the idea behind the so called due
to Bentley [ ]. In particular, a -tree is a binary tree, each of whose nodes
is associated with a rectangle . If does not contain any point in its interior,
is a leaf. Otherwise, is partitioned into two rectangles by drawing a horizontal

or vertical line so that each rectangle contains at most half of the points; splitting
lines are alternately horizontal and vertical. A -tree can be extended to higher
dimensions in an obvious manner.

In order to minimize the number of disk accesses, Robinson [ ] suggested
the following generalization of a -tree, which is known as a . One can
construct a B-tree instead of a binary tree on the recursive partition of the enclosing
rectangle, so all leaves of the tree are at the same level and each node has between

2 and children. The rectangles associated with the children are obtained by
splitting recursively, as in a -tree approach; see Figure 4(i). Let
be the children of . Then can be stored implicitly at by storing
them as a -tree, or the coordinates of their corners can be stored explicitly. If
points are dynamically inserted into a -B-tree, then some of the nodes may have
to be split, which is an expensive operation, because splitting a node may require
reconstructing the entire subtree rooted at that node; see Figure 4(ii). Several
variants of -B-trees have been proposed to minimize the number of splits, to
optimize the space, and to improve the query time [

]. We mention only two of the variants here:
[ ] and [ ]. A buddy tree is a combination of a quad tree and
-B-tree in the sense that rectangles are split into sub-rectangles only at some

speci�c locations, which simpli�es the split procedure; see Seeger and Kriegel [ ]
for details. If points are in degenerate position, then it may not be possible to split
them into two halves by a line. Lomen and Salzberg [ ] circumvent this problem
by introducing a new data structure, called , in which the region associated
with a node is allowed to be where and are rectangles. A more
re�ned version of this data structure, known as , is presented in [ ].

In a -tree, a rectangle is partitioned into two rectangles by drawing a hori-
zontal or vertical line. One can instead associate a convex polygon with each
node of the tree, use an arbitrary line to partition into two convex polygons,
and associate the two polygons with the children of . This idea is the same as in
binary space partition trees [ ]. Again, one can construct a B-tree on this
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3.5. The partial sum problem.

GBLP

GHRU, HAMS, HBA,

HRU, RKR, Sh

Y

(ii)(i)

4. Splitting a node of a -B-tree by a line . (i) before
the split. (ii) is split into two nodes and ; the subtrees rooted at

and are split recursively.

Here, ( ) and ( ) denote functional inverses of Ackermann's function. These functions
grow extremely slowly; for example, ( ) 4 for all 2 (2 (2 2)) = 2 2 , where for any

recursive partitioning scheme to reduce the number of disk accesses. The resulting
structure called is studied in [ ].

All the data structures described in this section construct a recursive partition
of the space. There are other data structures (of which the -tree is perhaps the
most famous example) that construct a hierarchical cover of the space. We will
discuss some of these data structures in the next subsection.

Preprocess a -dimensional array with
entries, in an additive semigroup, into a data structure, so that for a -dimensional
rectangle = [ ] [ ], the sum

( ) = [ ]

can be computed e�ciently. In the o�ine version, given and rectangles
, we wish to compute ( ) for each . Note that this is just a

special case of orthogonal range searching, where the points lie on a regular -
dimensional lattice.

Partial-sum queries are widely used for on-line analytical processing (OLAP)
of commercial databases. OLAP allows companies to analyze aggregate databases
built from their data warehouses. A popular data model for OLAP applications
is the multidimensional database, known as [ ], which represents
the data as -dimensional array. Thus, an aggregate query can be formulated
as a partial-sum query. Driven by this application, several heuristics have been
proposed to answer partial-sum queries on data cubes [

].
Yao [ ] showed that, for = 1, a partial-sum query can be answered in ( ( ))

time using ( ) space. If the additive operator is or , then a partial-sum
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3.6. Rectangle-rectangle searching.
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query can be answered in (1) time under the RAM model using a Cartesian tree,
developed by Vuillemin [ ], and the nearest-common-ancestor algorithm of Harel
and Tarjan [ ].

For 1, Chazelle and Rosenberg [ ] gave a data structure of size

( log )

that can answer a partial-sum query in time ( ( ) log ). They also showed
that the o�ine version takes 
( + ( )) time for any �xed 1. If points are
allowed to insert into , the query time is 
(log log log ) for the one-dimensional
case [ ]; the bounds were extended by Chazelle [ ] to


((log log log ) )

for any �xed dimension . All of these lower bounds hold in the semigroup arith-
metic model. Chazelle [ ] extended the data structure by Yao to the following
variant of the partial-sum problem: Let be a rooted tree with nodes, each of
whose node is associated with an element of a commutative semigroup. Preprocess
so that for a query node , the sum of the weights in the subtree rooted at

can be computed e�ciently. Chazelle showed that such a query can be answered in
( ( )) time, using ( ) space.

Preprocess a set of rectangles in
so that for a query rectangle , the rectangles of that intersect can be

reported (or counted) e�ciently. Rectangle-rectangle searching is central to many
applications because, in practice, polygonal objects are approximated by rectangles.
Chazelle [ ] has shown that the bounds mentioned in Table 1 also hold for this
problem.

In practice, two general approaches are used to answer a query. A rectangle

[ ] in can be mapped to the point ( ) in ,
and a rectangle-intersection query can be reduced to orthogonal range searching.
Many heuristic data structures based on this scheme have been proposed; see [

] for a sample of such results. The second approach is to construct a
data structure on directly in . The most popular data structure based on this
approach is the , originally introduced by Guttman [ ].

An R-tree is a multiway tree (like a B-tree), each of whose nodes stores a
set of rectangles. Each leaf stores a subset of input rectangles, and each input
rectangle is stored at exactly one leaf. For each node , let be the smallest
rectangle containing all the rectangles stored at ; is stored at the parent of
(along with the pointer to ). induces the subspace corresponding to the

subtree rooted at , in the sense that for any query rectangle intersecting , the
subtree rooted at is searched. Rectangles stored at a node are allowed to overlap.
Therefore, unlike all the data structures discussed in Section 3.4, a R-tree forms
a recursive cover of the data space, instead of a recursive partition. Although al-
lowing rectangles to overlap helps reduce the size of the data structure, answering
a query becomes more expensive. Guttman suggests some heuristics to construct
a R-tree so that the overlap is minimized. Better heuristics for minimizing the
overlap were developed by Beckmann [ ], Green [ ], and Kamal and
Faloutsos [ ]. There are many variants of R-tree, depending on the
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application: an [ ] uses more sophisticated techniques to minimize
the overlap; a [ ] de�nes a linear ordering on the rectangles, by
sorting their centers along the Hilbert space-�lling curve, and constructs a B-tree
based on this ordering of rectangles; and an avoids overlapping directory
cells by clipping rectangles [ ]. Additional variants are suggested to avoid over-
lap in higher dimensions. Berchtold [ ] de�ne the , in which the
interior nodes are allowed to be arbitrarily large; Lin [ ] project rectangles
onto a lower dimensional space and construct an R-tree (or some variant thereof)
on these projections. Leutenegger [ ] compare di�erent variants of R-
trees and discuss advantages of di�erent heuristics used to minimize the overlap of
rectangles.

We discuss some more general rectangle-intersection searching problems in Sec-
tion 6.3.

As mentioned in the introduction, simplex range searching has received consid-
erable attention during the last few years. Besides its direct applications, simplex
range-searching data structures have provided fast algorithms for numerous other
geometric problems. See the survey paper by Matou�sek [ ] for an excellent review
of techniques developed for simplex range searching.

Unlike orthogonal range searching, no simplex range-searching data structure is
known that can answer a query in polylogarithmic time using near-linear storage.
In fact, the lower bounds stated below indicate that there is very little hope of
obtaining such a data structure, since the query time of a linear-size data structure,
under the semigroup model, is roughly at least (thus saving only a factor of

over the na��ve approach). Since the size and query time of any data structure
have to be at least linear and logarithmic, respectively, we consider these two ends
of the spectrum: (i) How fast can a simplex range query be answered using a linear-
size data structure, and (ii) how large should the size of a data structure be in order
to answer a query in logarithmic time. By combining these two extreme cases, as
we describe below, we obtain a tradeo� between space and query time.

Unless stated otherwise, each of the data structures we describe in this section
can be constructed in time that is only a polylogarithmic or factor larger than
its size.
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Most of the linear-size data structures for
simplex range searching are based on so-called , originally introduced
by Willard [ ]. Roughly speaking, partition trees are based on the following
idea: Given a set of points in , partition the space into a few, say, a constant
number of, regions, each containing roughly equal number of points, so that for any
hyperplane , the number of points lying in the regions that intersect is much
less than the total number of points. Then recursively construct a similar partition
for the subset of points lying in each region.

Willard's original partition tree for a set of points in the plane is a 4-way
tree, constructed as follows. Let us assume that is of the form 4 for some integer
, and that the points of are in general position. If = 0, the tree consists
of a single node that stores the coordinates of the only point in . Otherwise,
using the ham-sandwich theorem [ ], �nd two lines so that each quadrant
, for 1 4, induced by contains exactly 4 points. The root stores

the equations of and the value of . For each quadrant, recursively construct
a partition tree for and attach it as the subtree of the root. The total
size of the data structure is linear, and it can be constructed in ( log ) time.
A halfplane range-counting query can be answered as follows. Let be a query
halfplane. Traverse the tree, starting from the root, and maintain a global count.
At each node storing nodes in its subtree, perform the following step: If the
line intersects the quadrant associated with , recursively visit the children of
. If = , do nothing. Otherwise, since , add to the global count.
The quadrants associated with the four children of any interior node are induced
by two lines, so intersects at most three of them, which implies that the query
procedure does not explore the subtree of one of the children. Hence, the query
time of this procedure is ( ), where = log 4 0 7925. A similar procedure
can answer a simplex range-counting query within the same time bound, and a
simplex range-reporting query in time ( + ). Edelsbrunner and Welzl [ ]
described a simple variant of Willard's partition tree that improves the exponent
in the query-search time to log (1 + 5) 1 0 695.

A partition tree for points in was �rst proposed by Yao [ ], which can
answer a query in time ( ). This bound was improved slightly in subsequent
papers [ ]. Using the Borsuk-Ulam theorem, Yao [ ]
showed that, given a set of points in , one can �nd three planes so that each
of the eight (open) octants determined by them contains at most 8 points of
. Avis [ ] proved that such a partition of by hyperplanes is not always

possible for 5; the problem is still open for = 4. Weaker partitioning schemes
were proposed in [ ].

After the initial improvements and extensions on Willard's partition tree, a ma-
jor breakthrough was made by Haussler and Welzl [ ]. They formulated range
searching in an abstract setting and, using elegant probabilistic methods, gave a
randomized algorithm to construct a linear-size partition tree with ( ) query
time, where = 1 + for any 0. The major contribution of their

paper is the abstract framework and the notion of -nets. A somewhat di�erent
abstract framework for randomized algorithms was proposed by Clarkson [ ]
around the same time; see also [ ]. These abstract frameworks and the gen-
eral results attained under these frameworks popularized randomized algorithms in
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random independent draws, then is an -net of with probability at least
.
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crossing number

computational geometry [ ]. We brie
y describe the framework and the main
result by Haussler and Welzl because they are most pertinent to range searching.

A is a set system � = ( ) where is a set of objects and
is a family of subsets of . The elements of are called the of �. � is
called a if the ground set is �nite. Here are a few examples of
geometric range spaces:

(i) � = ( is a halfspace in ),

(ii) � = ( is a ball in ),

(iii) Let be the set of all hyperplanes in . For a segment , let
be the set of all hyperplanes intersecting . De�ne the range space � =
( is a segment in ).

For a �nite range space � = ( ), a subset is called an if =
for every range with . That is, intersects every \large" range
of �. (The notion of -nets can be extended to in�nite range spaces as well.) A
subset can be if every subset of has the form for some

. The , or , of a range space
� is the size of the largest subset that can be shattered. For example, the VC-
dimensions of � � , and � are +1, +2, and 2 , respectively. The main result
of Haussler and Welzl is that, given a �nite range space � = ( ) and parameters
0 1, if we choose a random subset of size

max
8

log
8 4

log
2

then is an -net of � with probability at least 1 . The bound on the size of
-nets was improved by Blumer [ ] and Koml�os [ ].

2 (Koml�os [ ]) ( )
0 1

log
1
+ 2 log log

1
+ 3

( )
1

Theorem 2 and some other similar results [ ] have been used extensively
in computational geometry and learning theory; see the books by Motwani and
Raghavan [ ], Mulmuley [ ], and Anthony and Biggs [ ] and the survey
papers [ ].

The �rst linear-size data structure with near-optimal query time for simplex
range queries in the plane was developed by Welzl [ ]. His algorithm is based
on the following idea. A of a set of points is a polygonal chain
whose vertices are the points of . The of a polygonal path is
the maximum number of its edges that can be crossed by a hyperplane. Using
Theorem 2, Welzl constructs a spanning path � = �( ) of any set of points in

whose crossing number is ( log ). The bound on the crossing number
was improved by Chazelle and Welzl [ ] to ( ), which is tight in the
worst case. Let be the vertices of �. If we know the edges of �
that cross , then the weight of points lying in one of the halfspaces bounded by
can be computed by answering ( ) partial-sum queries on the sequence
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Let be a set of points in , and let
be a given parameter. Then there exists a family of pairs

such that each lies inside the simplex , ,

for all , and every hyperplane crosses at most simplices of ; here

= ( ) ( ) . Hence, by processing for partial-sumqueries, we obtain
a linear-size data structure for simplex range searching, with ( ( )) query
time, in the semigroup arithmetic model. (Recall that the time spent in �nding the
edges of � crossed by is not counted in the semigroup model.) In any realistic
model of computation such as pointer machines or RAMs, however, we also need
an e�cient linear-size data structure for computing the edges of � crossed by a
hyperplane. Chazelle and Welzl [ ] produced such a data structure for 3,
but no such structure is known for higher dimensions. Although spanning paths
were originally introduced for simplex range searching, they have been successfully
applied to solve a number of other algorithmic as well as combinatorial problems;
see, for example, [ ].

Matou�sek and Welzl [ ] gave an entirely di�erent algorithm for the half-
space range-counting problem in the plane, using a combinatorial result of Erd}os
and Szekeres [ ]. The query time of their data structure is ( log ), and it
uses ( ) space and ( ) preprocessing time. If subtractions are allowed, their
algorithm can be extended to the triangle range-counting problem. An interesting
open question is whether the preprocessing time can be improved to near linear.
In order to make this improvement, we need a near-linear time algorithm for the
following problem, which is interesting its own right: Given a sequence of in-
tegers, partition into ( ) subsequences, each of which is either monotonically
increasing or decreasing. The existence of such a partition of follows from the
result by Erd}os and Szekeres, but the best known algorithm for computing such a
partition runs in time ( ) [ ]. However, a longest monotonically increasing
subsequence of can be computed in ( log ) time. The technique by Matou�sek
and Welzl has also been applied to solve some other geometric-searching problems,
including ray shooting and intersection searching [ ].

The �rst data structure with roughly query time and near-linear space,
for 3, was obtained by Chazelle [ ]. Given a set of points in

, they construct a family = � � of triangulations of , each of size
( ). For any hyperplane , there is at least one � so that only ( ) points

lie in the simplices of � that intersect . Applying this construction recursively,
they obtain a tree structure of size ( ) that can answer a halfspace range-
counting query in time ( ). The extra factor in the size is due to the
fact that they maintain a family of partitions instead of a single partition. Another
consequence of maintaining a family of partitions is that, unlike partition trees, this
data structure cannot be used directly to answering simplex range queries. Instead,
Chazelle [ ] construct a multi-level data structure (which we describe in
Section 5.1) to answer simplex range queries.

Matou�sek [ ] developed a simpler, slightly faster data structure for simplex
range queries, by returning to the theme of constructing a single partition, as in
the earlier partition-tree papers. His algorithm is based on the following partition
theorem, which can be regarded as an extension of the result by Chazelle and Welzl.

3 (Matou�sek [ ]) 1
2

� = ( � ) ( � )

� 2 =

= �
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Note that although is being partitioned into a family of subsets, unlike the
earlier results on partition trees, it does not partition because � 's may intersect.
In fact, it is an open problem whether can be partitioned into ( ) disjoint
simplices that satisfy the above theorem.

Using Theorem 3, a partition tree can be constructed as follows. Each interior
node of is associated with a canonical subset and a simplex � contain-
ing ; if is the root of , then = and � = . Choose to be a su�ciently
large constant. If 4 , consists of a single node, and it stores all points of
. Otherwise, we construct a family of pairs � = ( � ) ( � ) using

Theorem 3. The root stores the value of . We recursively construct a partition
tree for each and attach as the th subtree of . The root of also stores
� . The total size of the data structure is linear, and it can be constructed in
time ( log ). A simplex range-counting query can be answered in the same way
as with Willard's partition tree. Since any hyperplane intersects at most
simplices of �, the query time is ( ); the log term in the exponent
can be reduced to any arbitrarily small positive constant by choosing su�ciently
large. The query time can be improved to ( polylog ) by choosing = .

In a subsequent paper Matou�sek [ ] proved a stronger version of Theorem 3,
using some additional sophisticated techniques (including Theorem 5 described be-

low), that gives a linear-size partition tree with ( ) query time.
If the points in lie on a -dimensional algebraic surface of constant degree,

the in Theorem 3 can be improved to ( ), where =
1 ( + ) 2 [ ], which implies that in this case a simplex range query can

be answered in time ( ) using linear space.
Finally, we note that better bounds can be obtained for the halfspace range-

reporting problem, using the so-called technique introduced by
Chazelle [ ]. All the data structured mentioned above answer a range-reporting
query in two stages. The �rst stage \identi�es" the points of a query output, in
time ( ) that is independent of the output size, and the second stage explicitly
reports these points in ( ) time. Chazelle observes that since 
( ) time will be
spent in reporting points, the �rst stage can compute in ( ) time a superset of
the query output of size ( ), and the second stage can \�lter" the actual points
that lie in the query range. This observation not only simpli�es the data structure
but also gives better bounds in many cases, including halfspace range reporting.
See [ ] for some applications of �ltering search.

An optimal halfspace reporting data structure in the plane was proposed by
Chazelle [ ]. They compute of , where
is the set of points lying on the boundary of the convex hull of , and
store them in a linear-size data structure, so that a query can be answered in
(log + ) time. Their technique does not extend to three dimensions. After

a few initial attempts [ ], Matou�sek developed a data structure that
answers a halfspace reporting query in in time ( polylog + ). His
structure is based on the following two observations. A hyperplane is called

if one of the halfspaces bounded by contains at most points of . If the
hyperplane bounding a query halfspace is not -shallow, for some = 
( ), then
a simplex range-reporting data structure can be used to answer a query in time
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Let be a set of points in ( ) and
let be a given parameter. Then there exists a family of pairs

such that each lies inside the simplex , ,

for all , and every -shallow hyperplane crosses simplices of
. If for some suitable constant , then can be constructed in

time.

et al.

et al.

( + ) = ( ). For shallow hyperplanes, Matou�sek proves the following
theorem, which is an analog of Theorem 3.

4 (Matou�sek [ ]) 4
1

� = ( � ) ( � )

� 2 =

= ( ) ( )
� 0 1 �
( log )

Using this theorem, a partition tree for can be constructed in the same way
as for simplex range searching, except that at each node of the tree, we also
preprocess the corresponding canonical subset for simplex range searching and
store the resulting data structure as a secondary data structure of . While an-
swering a query for a halfspace , if crosses more than ( ) simplices
of the partition � associated with a node , then it reports all points of
using the simplex range-reporting data structure stored at . Otherwise, for each
pair ( � ) � , if � , it reports all points , and if � is crossed by , it
recursively visits the corresponding child of .

If we are interested only in determining whether = , we do not have to
store simplex range-searching structure at each node of the tree. Consequently, the
query time and the size of the data structure can be improved slightly; see Table 3
for a summary of results.

Since the query time of a linear-size simplex range-searching data structure
is only a factor better than the na��ve method, researchers have developed
practical data structures that work well most of the time. For example, Arya and
Mount [ ] have developed a linear-size data structure for answering approx-
imate range-counting queries, in the sense that the points lying within distance

diam(�) to the boundary of the query simplex � may or may not be counted.
Its query time is (log + 1 ). Overmars and van der Stappen [ ] de-
veloped fast data structures for the special case in which the ranges are \fat" and
have bounded size.

In practice, the data structures described in Section 3.4 are used even for sim-
plex range searching. Agarwal [ ] have described I/O-e�cient data
structures for halfspace range-reporting queries in two and three dimensions. Re-
cently, Goldstein [ ] presented an algorithm for simplex range searching
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4.2. Data structures with logarithmic query time.

Cl HW

CF

Ch8

Ch8

A, Ch8, dBGH, Pe2

R

a ; : : : ; a x a x
a x a x b x b x b

b ; : : : ; b
p h

p h

H
k k d

H
H H

H
k =r H

n=r
H

=r H O r r
O r

=r
=r

H n r n
k r k ; : : : ;

= O

; : : : ; O nr

H n

arrangement

-cutting

Let be a set of hyperplanes and a
parameter. Set . There exist cuttings so that is a

-cutting of size , each simplex of is contained in a simplex of ,
and each simplex of contains a constant number of simplices of . Moreover,

can be computed in time .

using -trees. Although these data structures do not work well in the worst case,
they perform reasonably well in practice, for example, when the points are close to
uniformly distributed. It is an open question whether simple data structures can
be developed for simplex range searching that work well on typical data sets.

For the sake of sim-
plicity, we �rst consider the halfspace range-counting problem. We need a few
de�nitions and concepts before we describe the data structures.

The dual of a point ( ) is the hyperplane =
+ , and the dual of a hyperplane = + is the

point ( ). A nice property of duality is that it preserves the above-below
relationship: a point is above a hyperplane if and only if the dual hyperplane

is above the dual point ; see Figure 6.

The of a set of hyperplanes in is the subdivision of
into cells of dimensions , for 0 , each cell being a maximal connected
set contained in the intersection of a �xed subset of and not intersecting any
other hyperplane of . The level of a point in ( ) is the number of hyperplanes
lying strictly below the point. Let ( ) denote the (closure of the) set of points
with level at most . A (1 ) of is a set � of (relatively open) disjoint
simplices covering so that the interior of each simplex intersects at most
hyperplanes of . Clarkson [ ] and Haussler and Welzl [ ] were the �rst

to show the existence of a (1 )-cutting of of size ( log ). Chazelle and
Friedman [ ] improved the size bound to ( ), which is optimal in the worst case.
Several e�cient algorithms are developed for computing a (1 )-cutting. The best
algorithm known for computing a (1 )-cutting was discovered by Chazelle [ ];
his result is summarized in the following theorem.

5 (Chazelle [ ])
= log � � �

(1 2 ) (2 ) � �
� �

� � ( )

This theorem has been successfully applied to many geometric divide-and-
conquer algorithms; see [ ] for a few such instances.

Returning to halfspace range searching, suppose that the query halfspace always
lies below its bounding hyperplane. Then the halfspace range-counting problem
reduces via duality to the following problem: Given a set of hyperplanes in
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-cutting

Let be a collection of hyperplanes in ,
let be parameters, and let . Then there exists a -

cutting for , consisting of simplices. If for some
suitable constant , then can be computed in time.

i.e.

, determine the number of hyperplanes of that lie above a query point. Since
the same subset of hyperplanes lies above all points in a single cell of ( ), the
arrangement of , we can answer a halfspace range-counting query by locating the
cell of ( ) that contains the point dual to the hyperplane bounding the query
halfspace. Theorem 5 can be used in a straightforward manner to obtain a data
structure of size (( log ) ) with (log ) query time.

The above approach for halfspace range counting can be extended to the sim-
plex range-counting problem as well. That is, store the solution of every combina-
torially distinct simplex (two simplices are combinatorially distinct if they do not
contain the same subset of ). Since there are �( ) combinatorially distinct

simplices, such an approach will require 
( ) storage; see [ ].
Cole and Yap [ ] were the �rst to present a near-quadratic size data structure

that could answer a triangle range-counting query in the plane in (log ) time.
They present two data structures: the �rst one answers a query in time (log )
using ( ) space, and the other in time (log log log ) using ( log )
space. For = 3, their approach gives a data structure of size ( ) that
can answer a tetrahedron range-counting query in time (log ). Chazelle
[ ] describe a multi-level data structure (see Section 5.1) of size ( ) that
can answer a simplex range-counting query in time (log ). The space bound can

be reduced to ( ) by increasing the query time to (log ) [ ]. Both data
structures can answer simplex range-reporting queries by spending an additional
( ) time.
The size of a data structure can be signi�cantly improved if we want to an-

swer halfspace range-reporting queries. Using random sampling, Clarkson [ ]
showed that a halfspace-emptiness query can be answered in (log ) time using
( ) space. In order to extend his algorithm to halfspace range-reporting

queries, we need the following additional idea. Let be a set of hyperplanes in .
For a parameter 1 , we de�ne a (1 ) for ( ) to be a collection
� of (relatively open) disjoint simplices that cover ( ) and the interior of each
simplex intersects at most hyperplanes of . The following theorem by Ma-
tou�sek [ ] leads to a better data structure for answering halfspace range-reporting
queries.

6 (Matou�sek [ ])
1 = + 1 (1 )

( ) ( )
0 1 � ( log )

Using Theorem 6, a halfspace range-reporting data structure can be con-
structed as follows. Each interior node of is associated with a canonical subset

and a simplex � ; the root of is associated with and . Choose
to be a su�ciently large constant. If 4 , then is a leaf. Otherwise, set

= , compute a (1 )-cutting � of size ( ) for ( ), and create a
child for each � � . Set to be the set of hyperplanes that either intersect

or lie below � . We also store at . The size of the data structure is ( ).
Let be a query point. The goal is to report all points lying above . Follow a path
of as follows. Suppose the query procedure is visiting a node of . If is a leaf
or does not lie in any simplex of � ( , the level of is at least ), then
report all hyperplanes of lying above , by checking each hyperplane explicitly;
this step takes ( ) = ( ) = ( ) time. Otherwise, recursively visit the node
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4.3. Trading space for query time.

AS, CSW, M6

P
D P

D F F

C C � F \

C D

F
2 F

f g
\ \ \

C C C F
C � C

� D
� � d e F f 2 F j � j j g D

� �

jF j
jC \F j

F
C

D
D

w 
 O n k

O n n

d

S n S




; S 
 S
w C

T v T
C v


 Q v; 
 z ; : : : ; z
v 
 C ; : : : ; 
 C 
 C

v z v Q v; 


 


v w C
v

T 
; S

r
i n C r C < r

r � � <
i

T O r

O n=r


 O n=r




O n
O O n

if � contains . The query time is obviously (log + ). The size of the data
structure can be improved to ( polylog ) without a�ecting the asymptotic
query time.

In the previous two subsections we
surveyed data structures for simplex range searching that either use near-linear
space or answer a query in polylogarithmic time. By combining these two types
of data structures, a tradeo� between the size and the query time can be obtained
[ ]. Actually, the approach described in these papers is very gen-
eral and works for any geometric-searching data structure that can be viewed as
a decomposition scheme (described in Section 2), provided it satis�es certain as-
sumptions. We state the general result here, though one can obtain a slightly better
bounds (by a polylogarithmic factor) by exploiting special properties of the data
structures.

It will be convenient to regard range-searching data structures in the follow-
ing abstract form, previously described at the end of Section 2. Let be a -
dimensional range-searching problem and a decomposition scheme for . That
is, for a given set of points in , constructs a family (multiset) = ( )
of canonical subsets. For a query range , the query procedure implicitly computes
a sub-family = ( ) that partitions into canonical subsets, and
returns ( ).

As we mentioned in Section 2, in order to compute e�ciently, must be
stored in a hierarchical data structure. We call a decomposition scheme
if is stored in a tree . Each node of is associated with a canonical subset

and each interior node satis�es the following property.

(P1) For any query range , there exists a subset ( ) = of children
of so that partition .

For example, the linear-size partition trees described in Section 4.1 store a simplex
� at each node . In these partition trees, a child of a node is in ( ), for
any query halfspace , if � intersects the halfspace .

Property (P1) ensures that, for a node , ( ) can be computed by searching
only in the subtree rooted at . The query procedure performs a depth-�rst search
on to compute . Let = ( ) denote the canonical subsets in associated

with nodes visited by the query procedure; clearly, .
Let 2 be a parameter and let be a hierarchical decomposition scheme.

For any 0 log , let = . We say that
is if there exist constants 1 and 0 1 so that the following
three conditions hold for all .

(C1) The degree of each node in is ( ).

(C2) = ( ) .

(C3) For any query range , = ( ) .

The second and third conditions imply that the number of canonical subsets in
and the the number of subsets in , for any query range , decrease exponentially
with size.

The size of is ( ), provided the weight of each canonical subset can be
stored in (1) space, and the query time of , under the semigroup model, is ( )
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Let be a set of points in , and let be a su�ciently large
constant. Let be a range-searching problem. Let be a decomposition scheme
for of size and query time , and let be another decomposition
scheme of size and query time , for some constants and . If
either or is hierarchical, e�cient, and -convergent, then for any

, we can construct a decomposition scheme for of size and query time

if 0 and (log ) if = 0. is called if for any query range , each
can be computed in time ( ) .

7

( ) (log )
( ) ( ) 1 0

( )

+ log

Suppose is hierarchical, e�cient, and -convergent. We present a
decomposition scheme of size ( ). We �rst de�ne the canonical subsets ( )
constructed by and then de�ne ( ) for each range .

Let = ( ) be the family of canonical subsets constructed by on
and be the corresponding tree. We de�ne a parameter

= 1 +
log ( )

1

Informally, to construct , we discard all nodes in whose parents are associated
with canonical subsets of size less than . Then we replace the deleted subsets by
constructing, for for every leaf of the pruned tree, the canonical subsets ( )
using the second decomposition scheme . See Figure 7.

More formally, let = , and let be the set of canonical

subsets whose predecessors lie in . Since is -convergent,

= = =

The degree of each node in is ( ), so

= ( ) =

For each canonical subset , we compute ( ) using the second decomposi-
tion scheme . The size of each subset in is at most , so ( ) = ( ).
Set

( ) = ( )
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For any , a simplex range-counting query can be
answered in time using space.
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The total number of canonical subsets in ( ) is

+ ( ) = + ( )

= = ( )

For a query range , let = ( ) and = ( ). We now
de�ne ( ) as follows.

( ) = ( )

It can be shown that ( ) forms a partition of . Since is e�cient,
and can be computed in time (log( )) = (log( )). The size of each
canonical subset is at most ; therefore, each ( ) can be computed

in time ( ) = (( ) ). By condition (C3), = (1), so the
overall query time is

+ log

as desired.
A similar approach can be used to construct if is -convergent and e�-

cient. We omit further details.

For the -dimensional simplex range-counting problem, for example, we have
= + and = 1 1 . Thus, we immediately obtain the following space

query-time tradeo�.

8
( + log( )) ( )

We conclude this section by making a few remarks on Theorem 7.

(i) Theorem 7 can be re�ned to balance polylogarithmic factors in the sizes and
query times of and . For example, if the size of is ( polylog )
and rest of the parameters are the same as in the theorem, then the query
time of the new data structure is

polylog

Using a similar argument, Matou�sek [ ] showed that a simplex range-

counting query can be answered in time (( ) log ( )), which
improves Corollary 8 whenever = ( ).

(ii) Theorem 7 is quite general and holds for any decomposable geometric search-
ing problem as long as there exists an e�cient, -convergent decomposition
scheme for the problem. We will discuss some such results in the next two
sections.

(iii) Theorem 7 actually holds under weaker assumptions on and . For
example, even though halfspace range-reporting data structures do not �t
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Let be positive integers such that
, and let be a random set of points in . If only units of storage are

available, then with high probability, the worst-case query time for a simplex range
query in is for , or for , in the semigroup
model.

et al.

et al.

in the above framework, they nevertheless admit a tradeo�. In particular, a
halfspace reporting query in can be answered in

(( polylog ) + )

time using ( ) space.

(iv) Finally, it is not essential for or to be tree-based data structures. It
is su�cient to have an e�cient, -convergent decomposition scheme with a
partial order on the canonical subsets, where each canonical subset satis�es
a property similar to (C1).

Fredman [ ] showed that a sequence of insertions,
deletions, and halfplane queries on a set of points in the plane requires 
( ) time,
in the semigroup model. His technique, however, does not extend to static data
structures. In a series of papers, Chazelle has proved nontrivial lower bounds on the
complexity of online simplex range searching, using various elegant mathematical
techniques. The following theorem is perhaps the most interesting result on lower
bounds.

9 (Chazelle [ ])
[0 1]


( ) = 2 
( ( log )) 3

It should be pointed out that this theorem holds even if the query ranges are
wedges or strips, but not if the ranges are hyperplanes. Chazelle and Rosenberg
[ ] proved a lower bound of 
( + ) for simplex range reporting under
the pointer-machine model. These lower bounds do not hold for halfspace range
searching. A somewhat weaker lower bound for halfspace queries was proved by
Br�onnimann [ ].

As we saw earlier, faster data structures are known for halfspace emptiness
queries. A recent series of papers by Erickson established the �rst nontrivial lower
bounds for online and o�ine emptiness query problems, in the partition-graph
model of computation. His techniques were �rst applied to Hopcroft's problem|
Given a set of points and lines, does any point lie on a line?|for which he
obtained a lower bound of 
( log + + log ) [ ], almost matching

the best known upper bound ( log + 2 + log ), due
to Matou�sek [ ]. Slightly better lower bounds are known for higher-dimensional
versions of Hopcroft's problem [ ], but for the special case = , the

best known lower bound is still only 
( ), which is quite far from the best
known upper bound ( 2 ). More recently, Erickson established
lower bounds for the tradeo� between space and query time, or preprocessing and
query time, for online hyperplane emptiness queries [ ]. The space-time trade-
o�s are established by showing that a partition graph that supports hyperplane
emptiness queries also (implicitly) supports halfspace semigroup queries, and then
applying the lower bounds of Br�onnimann [ ]. For -dimensional hyper-
plane queries, 
( polylog ) preprocessing time is required to achieve polyloga-

rithmic query time, and the best possible query time is 
( polylog ) if only
( polylog ) preprocessing time is allowed. More generally, in two dimensions, if

the preprocessing time is , the query time is 
( ). Erickson's techniques also
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Ch5

Ch5

CR2

Er3
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Er3

Range Problem Model Time Source

BO

Er

Er

Er2

Ch10

BO

Er2

Ch11, Er2

Ch11

Asymptotic lower bounds for online simplex range searching
using ( ) space.

Asymptotic lower bounds for o�ine simplex range searching.

Semigroup Semigroup ( = 2) [ ]

Simplex Semigroup Semigroup ( 2)
log

[ ]

Reporting Pointer machine + [ ]

Hyperplane

Semigroup Semigroup [ ]

Emptiness Partition graph
log

1
[ ]

Halfspace

Semigroup Semigroup
log

1
[ ]

Emptiness Partition graph
log

1
, [ ]

where ( + 3) 2

Emptiness Algebraic computation tree log [ ]

Partition graph ( 4) log [ ]

Halfspace Partition graph ( 5) [ ]

Counting Partition graph [ ]

Group Group (with 2 help gates) log [ ]

Emptiness Algebraic computation tree log [ ]

Hyperplane Partition graph [ ]

Semigroup Semigroup [ ]

Simplex Semigroup Semigroup
log

[ ]

imply nontrivial lower bounds for online and o�ine halfspace emptiness searching,
but with a few exceptions, these are quite weak.

Table 4 summarizes the best known lower bounds for online simplex queries, and
Table 5 summarizes the best known lower bounds for o�ine simplex range searching.
Lower bounds for emptiness problems apply to counting and reporting problems as
well. No nontrivial lower bound was known for any o�ine range searching problem
under the group model until Chazelle's result [ ].

See the survey papers [ ] for a more detailed discussion on lower
bounds.
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5. Variants and extensions

5.1. Multi-level data structures.

EM, LW, Lu, WL, SO

DoE

AS, GOS, vK, M6, Pe
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In this section we review some extensions of range-searching data structures,
including multi-level data structures, semialgebraic range searching, and dynamiza-
tion. As in the previous section, the preprocessing time for each of the data struc-
tures we describe is at most a polylogarithmic or factor larger than its size.

A rather powerful property of data struc-
tures based on decomposition schemes (described in Section 2) is that they can be
cascaded together to answer more complex queries, at the increase of a logarithmic
factor in their performance. This property has been implicitly used for a long time;
see, for example, [ ]. The real power of the cascading prop-
erty was �rst observed by Dobkin and Edelsbrunner [ ], who used this property
to answer several complex geometric queries. Since their result, several papers
have exploited and extended this property to solve numerous geometric-searching
problems; see [ ]. In this subsection we brie
y sketch the
general cascading scheme, as described in [ ].

Let be a set of weighted objects. Recall that a geometric-searching problem
, with underlying relation , requires computing ( ) for a query range

. Let and be two geometric-searching problems with the same sets of
objects and ranges, and let and be the corresponding relations. Then we
de�ne to be the conjunction of and , whose relation is .
That is, for a query range , we want to compute ( ). Suppose we

have hierarchical decomposition schemes and for problems and . Let
= ( ) be the set of canonical subsets constructed by , and for a range ,

let = ( ) be the corresponding partition of into canonical

subsets. For each canonical subset , let ( ) be the collection of canonical
subsets of constructed by , and let ( ) be the corresponding partition
of into level-two canonical subsets. The decomposition scheme

for the problem consists of the canonical subsets = ( ).

For a query range , the query output is = ( ). Note that we can

cascade any number of decomposition schemes in this manner.
If we view and as tree data structures, then cascading the two decom-

position schemes can be regarded as constructing a two-level tree, as follows. We
�rst construct the tree induced by on . Each node of is associated with a
canonical subset . We construct a second-level tree on and store at
as its secondary structure. A query is answered by �rst identifying the nodes that
correspond to the canonical subsets and then searching the corresponding

secondary trees to compute the second-level canonical subsets ( ).
The range tree, de�ned in Section 3.1, �ts in this framework. For example,

a two dimensional range tree is obtained by cascading two one-dimensional range
trees, as follows. Let be a set of weighted points and the set of all orthogonal
rectangles in the plane. We de�ne two binary relations and , where for any
rectangle = [ ] [ ], if ( ) [ ]. Let be the searching
problem associated with , and let be the data structure corresponding to
. Then the two-dimensional orthogonal range-searching problem is the same as

. We can therefore cascade and , as described above, to answer
a two-dimensional orthogonal range-searching query. Similarly, a data structure
for -dimensional simplex range-searching can be constructed by cascading + 1
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range restriction

Let be as de�ned above, and let be a constant.
Suppose the size and query time of each decomposition scheme are at most and

, respectively. If is e�cient and -convergent, then we obtain a hierarchical
decomposition scheme for whose size and query time are
and . If is also e�cient and -convergent, then is also e�cient
and -convergent.

Tarski
cell

e.g.

-range searching.
linearization

halfspace range-searching structures, since a -simplex is an intersection of at most
+1 halfspaces. Multi-level data structures were also proposed for ,
introduced by Willard and Lueker [ ] and Scholten and Overmars [ ].

The following theorem, whose straightforward proof we omit, states a general
result for multi-level data structures.

10
( )

( )
( ( ) log )

( ( ) log )

In some cases, the added logarithmic factor in the query time or the space can
be saved. The real power of multi-level data structures stems from the fact that
there are no restrictions on the relations and . Hence, any query that can
be represented as a conjunction of a constant number of \primitive" queries, each
of which admits an e�cient, -convergent decomposition scheme, can be answered
by cascading individual decomposition schemes. We will describe a few multi-level
data structures in this and the following sections.

So far we assumed that the ranges
were bounded by hyperplanes, but many applications involve ranges bounded by
nonlinear functions. For example, a query of the form \For a given point and a real
number , �nd all points of lying within distance from " is a range-searching
problem in which ranges are balls.

As shown below, range searching with balls in can be formulated as an in-
stance of halfspace range searching in . So a ball range-reporting (resp. range-

counting) query in can be answered in time (( ) polylog + ) (resp.
(( ) log( ))), using ( ) space. (Somewhat better performance can

be obtained using a more direct approach, which we will describe shortly.) However,
relatively little is known about range-searching data structures for more general
ranges.

A natural class of more general ranges is the family of Tarski cells. A
is a real semialgebraic set de�ned by a constant number of polynomials, each

of constant degree. In fact, it su�ces to consider the ranges bounded by a single
polynomial because the ranges bounded by multiple polynomials can be handled
using multi-level data structures. We assume that the ranges are of the form

( ) = ( ) 0

where is a ( + )-variate polynomial specifying the type of range (disks, cylinders,
cones, etc.), and is a -tuple specifying a speci�c range of the given type ( ,
a speci�c disk). Let � = ( ) . We will refer to the range-searching
problem in which the ranges are from the set � as the �

One approach to answer � -range queries is to use , originally
proposed by Yao and Yao [ ]. We represent the polynomial ( ) in the form

( ) = ( ) ( ) + ( ) ( ) + + ( ) ( )

where are polynomials. A point is mapped to the
point

( ) = [ ( ) ( ) ( ) ( )]
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In some cases, Agarwal and Matou�sek's algorithm returns a dimension one higher than the
true minimum, since they consider only linearizations with ( ) = 1.
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represented in homogeneous coordinates. Then each range ( ) =
( ) 0 is mapped to a halfspace

( ) : ( ) + ( ) + + ( ) 0

where, again, [ ] are homogeneous coordinates.
The constant is called the of the linearization. The following

algorithm, based on an algorithm of Agarwal and Matou�sek [ ], computes a
linearization of smallest dimension. Write the polynomial ( ) as the sum of
monomials

( ) =

where and are �nite sets of exponent vectors, are real
coe�cients, and and are shorthand for the monomials and

, respectively. Collect the coe�cients into a matrix whose rows
are indexed by elements of ( , monomials in ) and whose columns are indexed
by elements of ( , monomials in ). The minimum dimension of linearization
is one less than the rank of this matrix. The polynomials ( ) and ( ) are easily
extracted from any basis of the vector space spanned by either the rows or columns
of the coe�cient matrix .

For example, a disk with center ( ) and radius in the plane can be
regarded as a set of the form ( ), where = ( ) and is a 5-variate
polynomial

( ; ) = ( ) ( ) +

This polynomial has the following coe�cient matrix.

1
1 0 0 0 1 1

0 2 0 0 0
0 0 2 0 0
1 0 0 0 0
1 0 0 0 0
1 0 0 0 0

This matrix has rank 4, so the linearization dimension of is 3. One possible
linearization is given by the following set of polynomials:

( ) = + ( ) = 2 ( ) = 2 ( ) = 1
( ) = 1 ( ) = ( ) = ( ) = +

In general, balls in admit a linearization of dimension + 1; cylinders
and other quadrics in admit a linearization of dimension 9. One of the most
widely used linearizations in computational geometry uses the so-called

, which map a line in to a point in ; see [ ] for
more details on Pl�ucker coordinates.

A � -range query can now be answered using a -dimensional halfspace range-
searching data structure. Thus, for counting queries, we immediately obtain a
linear-size data structure with query time ( ) [ ], or a data structure of

size ( log ) with logarithmic query time [ ]. When , the performance
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et al. Let be a set of
-variate polynomials, with , where each has maximum degree in any

variable. Then be partitioned into a set of Tarski cells
so that the sign of each remains the same for all points within each cell of .
Moreover, can be computed in time.

Let be a -variate polynomial with lin-
earization dimension . Let , and let

. For any , we can build a data structure of size that supports
-counting queries in time

of the linear-size data structures can be improved by exploiting the fact that the
points ( ) have only degrees of freedom. Using results of Aronov [ ]
on the size of the zone of an algebraic variety in a -dimensional hyperplane ar-
rangement, Agarwal and Matou�sek [ ] show that the query time for a linear-
space data structure can be reduced to ( ). It is an open problem
whether one can similarly exploit the fact that the halfspaces ( ) have only
degrees of freedom to reduce the size of data structures with logarithmic query time
when .

In cases where the linearization dimension is very large, semialgebraic queries
can also be answered using the followingmore direct approach proposed by Agarwal
and Matou�sek [ ]. Let be a set of points in . For each point , we
can de�ne a -variate polynomial ( ) ( ). Then � ( ) is the set of
points for which ( ) 0. Hence, the problem reduces to point location in
the arrangement of algebraic surfaces = 0 in . Let be the set of resulting
surfaces. The following result of Chazelle [ ] leads to a point-
location data structure.

11 (Chazelle [ ]) =
3

� 2
�

� ( log )

Improving the combinatorial upper bound in Theorem 11 is an open problem.
The best known lower bound is 
( ), and this is generally believed to be the
right bound. Any improvement would also improve the bounds for the resulting
semialgebraic range searching data structures.

Returning to the original point-location problem for 's, using this theorem
and results on -nets and cuttings, can be preprocessed into a data structure of
size ( ) if 3, or ( ) if = 2, so that for a query point , we
can compute ( ) in (log ) time.

Using Theorem 11, Agarwal and Matou�sek [ ] also extended Theorem 3
to Tarski cells and showed how to construct partition trees using this extension,
obtaining a linear-size data structure with query time ( ), where = 2 if
= 2 and = 2 3 if 3.
As in Section 4.3, the best data structures with linear space and logarithmic

query time can be combined to obtain the following tradeo� between space and
query time.

12 : ( + )
= min(2 3 ( + ) 2 ) = min(2

3 ) ( )
�

+ log

For example, if our ranges are balls in , we have = + 1, = + 1, = ,

and = +1, so we can answer queries in time (( ) +log( ))
using space ( ).
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All the data structures discussed above assumed to
be �xed, but in many applications one needs to update dynamically|insert a
new point into or delete a point from . We cannot hope to perform insert/delete
operations on a data structure in less than ( ) time, where ( ) is the prepro-
cessing time of the data structure. If we allow only insertions ( , a point cannot be
deleted from the structure), static data structures can be modi�ed using standard
techniques [ ], so that a point can be inserted in time ( ( ) log )
and a query can be answered in time ( ( ) log ), where ( ) is the query time
of the original static data structure. Roughly speaking, these techniques proceed as
follows. Choose a parameter 2 and set = log . Maintain a partition of
into subsets so that ( 1) , and preprocess each for range
searching separately. We call a subset if = ( 1) . A query is an-
swered by computing ( ) for each subset independently and then summing

them up. The total time spent in answering a query is thus ( + ( )).
Suppose we want to insert a point . We �nd the least index such that the subsets

are full. Then we add the point and to , set = for all
, and preprocess the new for range searching. The amortized insertion time

is ( ( ) ). We can convert this amortized behavior into a worst-case
performance using known techniques [ ]. In some cases the logarithmic overhead
in the query or update time can be avoided.

Although the above technique does not handle deletions, many range-searching
data structures, such as orthogonal and simplex range-searching structures, can
handle deletions at polylogarithmic or overhead in query and update time, by
exploiting the fact that a point is stored at roughly ( ) nodes [ ]. Table 6
summarizes the known results on dynamic 2D orthogonal range-searching data
structures; these results can be extended to higher dimensions at a cost of an
additional log factor in the storage, query time, and update time. Klein
[ ] have described an optimal data structure for a special case of 2D range-
reporting in which the query ranges are translates of a polygon.

Although Matou�sek's ( log )-size data structure for -dimensional halfspace
range reporting [ ] can be dynamized, the logarithmic query time data structure

is not easy to dynamize because some of the points may be stored at 
( ) nodes
of the tree. Agarwal and Matou�sek [ ] developed a rather sophisticated data

structure that can insert or delete a point in time ( ) time and can
answer a query in (log + ) time. As in [ ], at each node of the tree, this
structure computes a family of partitions (instead of a single partition), each of size
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( ) for some parameter . For every shallow hyperplane , there is at least
one partition so that intersects ( ) simplices of the partition.

Grossi and Italiano [ ], generalizing and improving earlier results of van Krev-
eld and Overmars [ ], describe dynamic -dimensional orthogonal range
searching data structures that also support and operations, de�ned as
follows. Given a point set , a point , and an integer between 1 and ,
a split operation divides into two disjoint subsets separated by the hy-
perplane normal the -axis passing through , and splits the data structure for
into data structures for and . Given two point sets and separated

by a hyperplane normal to some coordinate axis, the merge operation combines
the data structures for and into a single data structure for their union

. Grossi and Italiano's data structure, called a , requires linear
space and ( log ) preprocessing time and supports insertions and deletions in
time (log ); splits, merges, and counting queries in time ( ); and report-

ing queries in time ( + ). Their technique gives e�cient solutions to many
other order-decomposable problems involving split and merge operations, including
external-memory range searching.

Since an arbitrary sequence of deletions is di�cult to handle in general, re-
searchers have examined whether a random sequence of insertions and deletions
can be handled e�ciently; see [ ]. Mulmuley [ ] proposed a
reasonably simple data structure for halfspace range reporting that can process a
random update sequence of length in expected time ( ) and can an-
swer a query in time ( log ). If the sequence of insertions, deletions, and queries
is known in advance, the corresponding static data structures can be modi�ed to
handle such a sequence of operations by paying a logarithmic overhead in the query
time [ ]. These techniques work even if the sequence of insertions and queries is
not known in advance, but the deletion time of a point is known when it is inserted
[ ]; see also [ ]. See the survey paper by Chiang and Tamassia [ ] for a more
detailed review of dynamic geometric data structures.

A general intersection-searching problem can be formulated as follows. Given
a set of objects in , a semigroup ( +), and a weight function : ,
we wish to preprocess into a data structure so that for a query object , we can
compute the weighted sum ( ), where the sum is taken over all objects

that intersect . Range searching is a special case of intersection searching in
which is a set of points. Just as with range searching, there are several variations
on intersection searching: intersection counting (\How many objects in intersect
?"), intersection detection (\Does any object in intersect ?"), intersection
reporting (\Which objects in intersect ?"), and so on.

Intersection searching is a central problem in a variety of application areas
such as robotics, geographic information systems, VLSI, databases, and computer
graphics. For example, the problem|Given a set of obstacles
and a robot , determine whether a placement of is free|can be formulated
as a point intersection-detection query amid a set of regions. If has degrees of
freedom, then a placement of can be represented as a point in , and the set of
placements of that intersect an obstacle is a region . If and
the obstacles are semialgebraic sets, then each is also a semialgebraic set. A
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placement of is free if and only if does not intersect any of 's. See [ ] for
a survey of known results on the collision-detection problem. Another intersection
searching problem that arises quite frequently is the : Preprocess a
given set of polygons into a data structure so that all polygons intersecting a query
rectangle can be reported e�ciently.

An intersection-searching problem can be formulated as a semialgebraic range-
searching problem by mapping each object to a point ( ) in a parametric
space and every query range to a semialgebraic set ( ) so that intersects
if and only if ( ) ( ). For example, let be a set of segments in the plane

and the query ranges be also segments in the plane. Each segment with left
and right endpoints ( ) and ( ), respectively, can be mapped to a point
( ) = ( ) in and a query segment can be mapped to a semialgebraic

region ( ) so that intersects if and only if ( ) ( ). Hence, a segment
intersection query can be answered by preprocessing the set ( ) for
semialgebraic searching. A drawback of this approach is that the dimension of the
parametric space is typically much larger than , and, therefore, it does not lead
to an e�cient data structure.

The e�ciency of an intersection-searching structure can be signi�cantly im-
proved by expressing the intersection test as a conjunction of simple primitive tests
(in low dimensions) and then using a multi-level data structure to perform these
tests. For example, a segment intersects another segment if the endpoints of
lie on the opposite sides of the line containing and vice-versa. Suppose we want
to report those segments of whose left endpoints lie below the line supporting
a query segment (the other case can be handled in a similar manner). We de�ne
three searching problems , and , with relations , as follows:

The left endpoint of lies below the line supporting .

The right endpoint of lies above the line supporting .

The line supporting intersects ; equivalently, in the dual plane,
the point dual to lies in the double wedge dual to .

For 1 3, let denote a data structure for . Then (resp. ) is a
halfplane range-searching structure on the left (resp. right) endpoints of segments
in , and is (essentially) a triangle range-searching structure for points dual to
the lines supporting . By cascading , , and , we obtain a data structure
for segment-intersection queries. Therefore, by Theorem 10, a segment-intersection
query can be answered in time ( ) using ( log ) space, or in (log )
time using ( ) space; the size in the �rst data structure and the query time in
the second one can be improved to ( ) and (log ), respectively. As usual, we
can obtain a tradeo� between query time and space using Theorem 7.
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6.1. Point intersection searching.
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6.2. Segment intersection searching.

It is beyond the scope of this survey paper to cover all intersection-searching
problems. Instead, we discuss a few basic problems that have been studied ex-
tensively. All intersection-counting data structures described here can also answer
intersection-reporting queries at an additional cost that is proportional to the out-
put size. In some cases, an intersection-reporting query can be answered faster.
Moreover, using intersection-reporting data structures, intersection-detection que-
ries can be answered in time proportional to their query-search time. Finally, all
the data structures described in this section can be dynamized at an expense of
( ) factor in the storage and query time.

Preprocess a set of objects (such as
balls, halfspaces, simplices, or Tarski cells) in into a data structure so that all
the objects of containing a query point can be reported (or counted) e�ciently.
This is the inverse or dual of the usual range-searching problem. As discussed in
Section 4.2, using the duality transformation, a halfspace range-searching problem
can be reduced to a point-intersection problem for a set of halfspaces, and vice
versa. In general, as mentioned in Section 5.2, a -dimensional � -range searching
query, where is ( + )-variate polynomial, can be viewed as a -dimensional point-
intersection searching problem. Therefore, a very close relationship exists between
the data structures for range searching (including orthogonal range searching) and
for point-intersection searching. Point intersection queries can also be viewed as
locating a point in the subdivision of induced by the objects in .

Suppose the objects in are semialgebraic sets of the form ( )
0 ( ) 0 , where each is a ( + )-variate polynomial of bounded degree
that admits a linearization of dimension at most . Let = min( 2 3) and
= min(2 3 ( + ) 2 ). By constructing a multi-level data structure, point-

intersection queries for can be answered in time (log ) using ( ) space,
or in time ( ) using ( ) space. Once again, we can obtain a space-time
tradeo�, similar to Theorem 12. Table 7 gives some of the speci�c bounds that can
be attained using this general scheme. If is a set of rectangles in , then the
bounds mentioned in Table 1 hold for the point-intersection problem.

Agarwal [ ] extended the approach for dynamic halfspace range
searching to answer point-intersection queries amid the graphs of bivariate alge-
braic functions, each of bounded degree. Let be an in�nite family of bivariate
polynomials, each of bounded degree, and let �( ) denote the maximum size of the
lower envelope of a subset of of size . Their techniques maintains an -element
subset in a data structure of size (�( ) ), so that a polynomial
can be inserted into or deleted from in ( ) time and, for a query point , all
functions of whose graphs lie below can be reported in time (log + ).

Besides the motion-planning application discussed above, point location in an
arrangement of surfaces, especially determining whether a query point lies above a
given set of regions of the form ( ), has many other applications
in computational geometry; see [ ] for examples. However,
most of these applications call for an o�ine data structure because the query points
are known in advance.

Preprocess a set of objects in into
a data structure so that all the objects of intersected by a query segment can
be reported (or counted) e�ciently. We have already given an example of segment
intersection-searching in the beginning of this section. See Table 8 for some of the
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Asymptotic upper bounds for point intersection searching.

Asymptotic upper bounds for segment intersection searching,
with polylogarithmic factors omitted.

Objects Problem Size Query Time Source

AgM2

AHL

AS

K

CEGS2

AES

EKNS

AgM2

M2

CEGS2

AgM2

Objects Problem Size Query Time Source

HS

AS, CJ2

AS, CJ2

AvKO

AvKO

AgM

AgM

AgM2

AgM2

AAS

AgM

Disks Counting ( ) log( ) [ ]

Disks Reporting log log + [ ]

= 2 Triangles Counting log [ ]

Fat triangles Reporting log log + [ ]

Tarski cells Counting log [ ]

= 3
Functions Reporting log + [ ]

Fat tetrahedra Reporting + [ ]

Simplices Counting log

3

Balls Counting log [ ]

Balls Reporting polylog + [ ]

Tarski cells Counting log [ ]

log [ ]

Simple polygons Reporting ( + 1) log [ ]

Lines Reporting + [ ]

= 2 Segments Counting [ ]

Circles Counting log [ ]

Circular arcs Counting [ ]

Planes Counting [ ]

Halfplanes Reporting + [ ]

= 3 Triangles Counting [ ]

Spheres Counting [ ]

Spheres Reporting ( + 1) log [ ]

Hyperplanes Counting [ ]

known results on segment intersection searching. For the sake of clarity, we have
omitted polylogarithmic factors from the query-search time whenever it is of the
form .

If we are interested in just determining whether a query segment intersects any
of the input objects, better bounds can be achieved in some cases. For example, a
segment intersection-detection query for a set of balls in , where 3, can be
answered in (log ) time using ( ) storage [ ].

A special case of segment intersection searching, in which the objects are hori-
zontal segments in the plane and query ranges are vertical segments, has been widely
studied. In this case a query can be answered in time (log + ) using ( log )
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6.3. Rectangle intersection searching.
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6.4. Colored intersection searching.

AvK, BKMT, GJS, GJS2, GJS3, JL

GJS

AvK

space and preprocessing [ ]. If we also allow insertions and deletions, the query
and update time are respectively (log log log + ) and (log log log ) [ ],

or (log + ) and (log ) using only linear space [ ]; if we allow only inser-
tions, the query and update time become (log + ) and (log ) [ ].

A problem related to segment intersection searching is the .
Given a set of objects in , determine whether a query -
at (0 )
intersects all objects of . Such queries can also be answered e�ciently using
semialgebraic range-searching data structures. A line-stabbing query amid a set of
triangles in can be answered in (log ) time using ( ) storage [ ]. The
paper by Goodman [ ] is an excellent survey of this topic.

Given a set of polygons in the
plane, preprocess them into a data structure so that all objects intersecting a query
rectangle can be reported e�ciently. This problem, also known as the

problem, arises in a variety of applications. In many situations, the query out-
put is required to be clipped within the query rectangle. In practice, each polygon
in is approximated by its smallest enclosing rectangle and the resulting rectangles
are preprocessed for rectangle-rectangle intersection searching, as discussed in Sec-
tion 3.6. If the polygons in are large, then this scheme is not e�cient, especially if
we want to clip the query output within the query rectangle. A few data structures,
for example, strip trees [ ] and V-trees [ ], have been proposed that store each
polygon hierarchically. We can use these data structures to store each polygon and
then construct an R-tree or any other orthogonal range-searching data structure on
the smallest enclosing rectangles of the polygons. Nievergelt and Widmayer [ ]
describe another data structure, called a , which is suitable if the polygons
are fat (have bounded aspect ratio). They place a set of well-chosen points, called

, and associate a subset of polygons with each guard that either contain the
guard or lie \near" the guard. For a query rectangle , they determine the set of
guards that lie inside ; the lists of polygons associated with these guards give the
candidates that intersect .

Preprocess a given set of colored
objects in ( , each object in is assigned a color) so that the we can report
(or count) the colors of the objects that intersect the query range. This problem
arises in many contexts where one wants to answer intersection-searching queries
for input objects of non-constant size. For example, given a set =
of simple polygons, one may wish to report all the simple polygons that intersect
a query segment; the goal is to return the indices, and not the descriptions, of these
polygons. If we color the edges of by the color , the problem reduces to colored
segment intersection searching in a set of segments.

If an intersection-detection query for with respect to a range can be an-
swered in ( ) time, then a colored intersection-reporting query with can be an-
swered in time (( log( ) + 1) ( )). Thus, logarithmic query-time intersection-
searching data structures can easily be modi�ed for colored intersection reporting,
but very little is known about linear-size colored intersection-searching data struc-
tures, except in some special cases [ ].

Gupta [ ] have shown that the colored halfplane-reporting queries in

the plane can be answered in (log + ) using ( log ) space. Agarwal and
van Kreveld [ ] presented a linear-size data structure with ( + ) query
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7. Optimization queries

7.1. Ray-shooting queries.

Me

AgM

C2

A2, CJ2, GOS

CG2

CEGG

HS PV

The vertices of the are the vertices of the polygons. Besides the polygon

edges, there is an edge in the graph between two vertices of convex polygons and if

time for colored segment intersection-reporting queries amid a set of segments in
the plane, assuming that the segments of the same color form a connected planar
graph, or if they form the boundary of a simple polygon; these data structures can
also handle insertions of new segments. Gupta [ ] present segment
intersection-reporting structures for many other special cases.

The goal of an optimization query is to return an object that satis�es a certain
condition with respect to a query range. Ray-shooting queries are perhaps the
most common example of optimization queries. Other examples include segment-
dragging and linear-programming queries.

Preprocess a set of objects in into a data
structure so that the �rst object (if any) hit by a query ray can be reported e�-
ciently. This problem arises in ray tracing, hidden-surface removal, radiosity, and
other graphics problems. Recently, e�cient solutions to many other geometric
problems have also been developed using ray-shooting data structures.

A general approach to the ray-shooting problem, using segment intersection-
detection structures and Megiddo's parametric searching technique [ ], was pro-
posed by Agarwal and Matou�sek [ ]. Suppose we have a segment intersection-
detection data structure for . Let be a query ray. Their algorithm maintains a
segment such that the �rst intersection point of with is the same as
that of . If lies on an object of , it returns . Otherwise, it picks a point
and determines, using the segment intersection-detection data structure, whether
the interior of the segment intersects any object of . If the answer is yes, it
recursively �nds the �rst intersection point of with ; otherwise, it recursively
�nds the �rst intersection point of with . Using parametric searching, the
points at each stage can be chosen in such a way that the algorithm terminates
after (log ) steps. Recently, Chan [ ] described a randomized reduction that
is much simpler than parametric search and usually avoids the added logarithmic
factor in the query time. In some cases, by using a more direct approach, we can
improve the query time by a polylogarithmic factor. For example, by exploiting
some additional properties of input objects and of partition trees, we can modify a
segment intersection-searching data structure in some cases to answer ray shooting
queries [ ].

Another approach for answering ray-shooting queries is based on visibility
maps. A ray in can be represented as a point in . Given a set
of objects, we can partition the parametric space into cells so that

all points within each cell correspond to rays that hit the same object �rst; this
partition is called the of . Using this approach and some other tech-
niques, Chazelle and Guibas [ ] showed that a ray-shooting query in a simple
polygon can be answered in (log ) time using ( ) space. Simpler data struc-
tures were subsequently proposed by Chazelle [ ] and Hershberger
and Suri [ ]. Following a similar approach, Pocchiola and Vegter [ ] showed
that a ray-shooting query amid a set of disjoint convex polygons, with a to-
tal of vertices, can be answered in (log ) time, using ( + ) space, where

= ( ) is the size of the visibility graph of .
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2

Asymptotic upper bounds for ray shooting queries, with
polylogarithmic factors omitted
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Objects Size Query Time Source

HS

AS2, HS

AS2

PV

AS2

AS, CJ2

AvKO

AvKO

DK

dBO

AS3

AgM

AgM, CEGSS

AgM2

AAS

AgM

CF2, M5

AgM, MS

MS

= 2

Simple polygon log [ ]

disjoint simple polygons [ ]

disjoint simple polygons ( + ) log log log [ ]

disjoint convex polygons + log [ ]

convex polygons log log log [ ]

Segments [ ]

Circular arcs [ ]

Disjoint arcs [ ]

Convex polytope log [ ]

-oriented polytopes log [ ]

convex polytopes log [ ]

= 3 Halfplanes [ ]

Terrain [ ]

Triangles [ ]

Spheres log [ ]

3

Hyperplanes [ ]

Hyperplanes
log

log [ ]

Convex polytope [ ]

Convex polytope
log

log [ ]

the line segment does not intersect any other convex polygon and the line supporting the

segment is tangent to both and .

Table 9 gives a summary of known ray-shooting results. For the sake of clar-
ity, we have omitted polylogarithmic factors from query times of the form .
The ray-shooting structures for -dimensional convex polyhedra by Matou�sek and
Schwarzkopf [ ] assume that the source point of the query ray lies inside the poly-
tope. All the ray-shooting data structures mentioned in Table 9 can be dynamized
at a cost of polylogarithmic or factor in the query time. Goodrich and Tamassia
[ ] have developed a dynamic ray-shooting data structure for connected planar

subdivisions, with (log ) query and update time.
Like range searching, many practical data structures have been proposed that,

despite having bad worst-case performance, work well in practice. The books by
Foley [ ] and Glassner [ ] describe several practical data structures
for ray tracing that are used in computer graphics. One common approach is to
construct a subdivision of into constant-size cells so that the interior of each
cell does not intersect any object of . A ray-shooting query can be answered by
traversing the query ray through the subdivision until we �nd an object that inter-
sects the ray. The worst-case query time is proportional to the maximum number
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7.2. Nearest-neighbor queries.
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of cells intersected by a segment that does not intersect any object in ; we re-
fer to this quantity as the of the triangulation. Hershberger and
Suri [ ] showed that if is the boundary of a simple polygon, then a triangu-
lation (using Steiner points) with (log ) crossing number can be constructed in
( log ) time. See [ ] and the references

therein for other ray-shooting results using this approach. Agarwal [ ]
proved worst-case bounds for many cases on the number of cells in the subdivision
that a line can intersect. For example, they show that the crossing number for a set
of disjoint convex polyhedra in is 
( + log ), and they present an algorithm
that constructs a triangulation of size ( log ) with stabbing number ( log ).
Aronov and Fortune [ ] prove a bound on the average crossing number of set of
disjoint triangles in , and present a polynomial-time algorithm to construct a
triangulation that achieves this bound. In practice, however, very simple decom-
positions, such as oct-trees and binary space partitions [ ] are used to trace a
ray.

The problem is de-
�ned as follows: Preprocess a set of points in into a data structure so that
a point in closest to a query point can be reported quickly. This is one of
the most widely studied problems in computational geometry because it arises
in so many di�erent areas, including pattern recognition [ ], data com-
pression [ ], information retrieval [ ], CAD [ ], molecular
biology [ ], image analysis [ ], data mining [ ], machine
learning [ ], and geographic information systems [ ]. Most applica-
tions use so-called to map a complex object to a point in high di-
mensions. Examples of feature vectors include color histograms, shape descriptors,
Fourier vectors, and text descriptors.

For simplicity, we assume that the distance between points is measured in the
Euclidean metric, though a more complicated metric can be used depending on the
application. For = 2, one can construct the Voronoi diagram of and prepro-
cess it for point-location queries in ( log ) time [ ]. For higher dimensions,
Clarkson [ ] presented a data structure of size ( ) that can answer a

query in 2 log time. The query time can be improved to ( log ), using a
technique of Meiser [ ].

A nearest-neighbor query for a set of points under the Euclidean metric can
be formulated as an instance of the ray-shooting problem in a convex polyhedron
in , as follows. We map each point = ( ) to a hyperplane ^ in

, which is the graph of the function

( ) = 2 + + 2 ( + + )

Then is a closest neighbor of a point = ( ) if and only if

( ) = max ( )

That is, if and only if is the �rst hyperplane intersected by the vertical ray ( )
emanating from the point ( 0) in the negative -direction. If we de�ne
= ( ) ( ) , then is the nearest neighbor

of if and only if the intersection point of ( ) and lies on the graph of .

Thus a nearest-neighbor query can be answered in time roughly using
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7.3. Linear programming queries.
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7.4. Segment dragging queries.
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( ) space. This approach can be extended to answer farthest-neighbor and -
nearest-neighbor queries also. In general, if we have an e�cient data structure for
answering disk-emptiness queries for disks under a given metric , we can apply
parametric searching [ ] or Chan's randomized reduction [ ] to answer nearest-
neighbor queries under the -metric, provided the data structure satis�es certain
mild assumptions [ ].

Note that the query time of the above approach is exponential in , so it is
impractical even for moderate values of (say 10). This has lead to the devel-
opment of algorithms for �nding approximate nearest neighbors [

] or for special cases, such as when the distri-
bution of query points is known in advance [ ].

Because of wide applications of nearest-neighbor searching, many heuristics
have been developed, especially in higher dimensions. These algorithms use practi-
cal data structures described in Section 3, including -trees, R-trees, R -trees, and
Hilbert R-trees; see , [ ]. White
and Jain [ ] described a variant of R-tree for answering nearest-neighbor queries
in which they use spheres instead of rectangles as enclosing regions. This approach
was further extended by Katayama and Satoh [ ]. Berchtold [ ]
present a parallel algorithm for nearest-neighbor searching. For large input sets,
one desires an algorithm that minimizes the number of disk accesses. Many of the
heuristics mentioned above try to optimize the I/O e�ciency, though none of them
gives any performance guarantee. A few recent papers [ ]
analyze the e�ciency of some of the heuristics, under certain assumptions on the
input.

Let be a set of halfspaces in . We
wish to preprocess into a data structure so that for a direction vector , we can
determine the �rst point of in the direction . For 3, such a query can
be answered in (log ) time using ( ) storage, by constructing the normal dia-
gram of the convex polytope and preprocessing it for point-location queries.
For higher dimensions, Matou�sek [ ] showed that, using multidimensional para-
metric searching and a data structure for answering halfspace emptiness queries, a
linear-programming query can be answered in (( ) polylog ) with ( )
storage. Recently Chan [ ] has described a randomized procedure whose expected

query time is 2 , using linear space.

Preprocess a set of objects in the plane
so that for a query segment and a ray , the �rst position at which intersects any
object of as it is translated (dragged) along can be determined quickly. This
query can be answered in (( ) polylog ) time, with ( ) storage, using
segment intersection-searching structures and parametric searching. Chazelle [ ]
gave a linear-size, (log ) query-time data structure for the special case in which
is a set of points, is a horizontal segment, and is the vertical direction. Instead
of dragging a segment along a ray, one can ask the same question for dragging
along a more complex trajectory (along a curve and allowing both translation and
rotation). These problems arise quite often in motion planning and manufacturing.
See [ ] for a few such examples.
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8. Concluding remarks
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