
CS-1996-05

Range Searching1

Pankaj K. Agarwal2

Department of Computer Science

Duke University

Durham, North Carolina 27708{0129

September 8, 1996

1Work ion this paper has been supported by National Science Foundation Grant CCR-93{01259,

by an Army Research O�ce MURI grant DAAH04-96-1-0013, by a Sloan fellowship, by an NYI

award, and by matching funds from Xerox Corporation.
2
Department of Computer Science, Duke University, pankaj@cs.duke.edu

Range Searching 1

RANGE SEARCHING

Pankaj K. Agarwal

INTRODUCTION

Range searching is one of the central problems in computational geometry,
because it arises in many applications and a wide variety of geometric problems can
be formulated as a range-searching problem. A typical range-searching problem has
the following form. Let S be a set of n points in Rd , and letR be a family of subsets;
elements of R are called ranges . We wish to preprocess S into a data structure so
that for a query range R, the points in S\R can be reported or counted e�ciently.
Typical examples of ranges include rectangles, halfspaces, simplices, and balls. If
we are only interested in answering a single query, it can be done in linear time,
using linear space, by simply checking for each point p 2 S whether p lies in the
query range. However, most of the applications call for querying the same point
set S several times (or sometimes we also insert or delete a point periodically), in
which case we would like to answer a query faster by preprocessing S into a data
structure.

Range counting and range reporting are just two instances of range-searching
queries. Other examples include emptiness queries , where one wants to determine
whether S \ R = ;, and extremal queries , where one wants to return a point with
certain property (e.g., returning a point with the largest x1-coordinate). In order to
encompass all di�erent types of range-searching queries, a general range-searching
problem can be de�ned as follows. Let (S;+) be a semigroup. For each point
p 2 S, we assign a weight w(p) 2 S. For a query range R 2 R, we wish to
compute

P
p2S\Rw(p). For example, range-counting queries can be answered by

setting w(p) = 1 for every p 2 S and choosing the semigroup to be (Z;+), where
+ denotes the integer addition; range-emptiness queries by setting w(p) = 1 and
choosing the semigroup to be (f0; 1g;_); and range-reporting queries by setting
w(p) = fpg and choosing the semigroup to be (2S;[).

Most of the range-searching data structures construct a family of `canonical'
subsets of S, and for each canonical subset C, they store the weight w(A) =P

p2A w(p). For a query range r, the data structure searches for a small subfamily

of disjoint canonical subsets, A1; : : : ; Ak, so that
Sk
i=1Ai = r \ S, and then com-

putes
Pk

i=1 w(Ai). In order to expedite the search, the structure also stores some
auxiliary information. Typically, the canonical subsets are organized in a tree-like
data structure, each of whose node v is associated with a canonical subset A; v
stores the weight w(A) and some auxiliary information. A query is answered by
searching the tree in a top-down fashion, using the auxiliary information to guide
the search.

2 Pankaj K. Agarwal

MODEL OF COMPUTATION

The performance of a data structure is measured by the time spent in answer-
ing a query, called the query time and denoted by Q(n; d); by the size of the data
structure, denoted by S(n; d); and by the time constructed in the data structure,
called the preprocessing time and denoted by P (n; d). Since the data structure is
constructed only once, its query time and size are more important than its prepro-
cessing time. If a data structure supports insertion and deletion operations, the
update time is also relevant. We should remark that the query time of a range-
reporting query on any reasonable machine depends on the output size, so the
query time for a range-reporting query consists of two parts | search time, which
depends only on n and d, and reporting time, which depends on n; d, and the output
size. Throughout this survey paper we will use k to denote the output size.

We assume that d is a small �xed constant, and that the big-Oh notation hides
constants depending on d. The dependence on d of the performance of all the data
structures mentioned here is exponential, which makes them unsuitable for large
values of d. We assume that each memory cell can store logn bits. The upper
bounds will be given on pointer-machine or RAM models, which are described
in [15, 107]. The main di�erence between the two models is that on the pointer
machine a memory cell can be accessed only through a series of pointers while in
the RAM model any memory cell can be accessed in constant time. Most of the
lower bounds will be given in the so-called semigroup model , which was originally
introduced by Fredman [61] and which is much weaker than the pointer machine
or the RAM model. In the arithmetic model, a data structure is regarded as a set
of precomputed sums in the underlying semigroup. The size of the data structure
is the number of sums stored, and the query time is the number of semigroup
operations performed (on the precomputed sums) to answer a query; the query
time ignores the cost of various auxiliary operations, e.g., the cost of determining
which of the precomputed sums should be added to answer a query. A weakness
of the semigroup model is that it does not allow subtractions even if the weights
of points belong to a group. Therefore, we will also consider the group model , in
which both additions and subtractions are allowed.

The size of any range-searching data structure is at least linear, for it has to
store each point (or its weight) at least once, and the query time on any reasonable
model of computation (e.g., pointer machine, RAM) is
(logn) even for d = 1.
Therefore, one would like to develop a linear-size data structure with logarithmic
query time. Although near-linear-size data structures are known for orthogonal
range searching in any �xed dimension that can answer a query in polylogarithmic
time, no similar bounds are known for range searching with more complex ranges
(e.g., simplex, disks). In such cases, one seeks for a tradeo� between the query
time and the size of the data structure | how fast can a query be answered using
n logO(1) n space, how much space is required to answer a query in logO(1) n time,
or what kind of tradeo� between the size and the query time can be achieved?

The chapter is organized as follows. In Section 32.1 we review the orthogo-
nal range-searching data structures, and in Section 32.2 we review simplex range-
searching data structures. Section 32.3 surveys other variants and extensions of
range searching. We study intersection-searching problems in Section 32.4, which

Range Searching 3

can be regarded as a generalization of range searching. Finally, Section 32.5 deals
with various optimization queries.

1 ORTHOGONAL RANGE SEARCHING

In the d-dimensional orthogonal range searching, the ranges are d-rectangles,
each of the form

Qd
i=1[ai; bi], where ai; bi 2 R. This is an abstraction of the `multi-

key' searching; see [21, 115]. For example, the points of S may correspond to
employees of a company, each coordinate corresponding to a key such as age, salary,
experience, etc. The queries of the form | report all employees between the ages
of 30 and 40 who earn more than $30; 000 and who have worked for more than 5
years | can be formulated as an orthogonal range-reporting query. Because of its
numerous applications, orthogonal range searching has been studied extensively for
the last 25 years. A survey of earlier results can be found in the books by Mehlhorn
[88] and Preparata and Shamos [99]. In this section we review the more recent data
structures and the lower bounds.

GLOSSARY

EPM A pointer machine with + operation.

APM A pointer machine with basic arithmetic and shift operations.

Faithful semigroup A semigroup (S;+) is called faithful if for each n > 0, for
any T1; T2 � f1; : : : ; ng so that T1 6= T2, and for every sequence of integers
�i; �j > 0 (i 2 T1; j 2 T2), there are s1; s2; : : : ; sn 2 S such that

X
i2T1

�isi 6=
X
j2T2

�jsj :

Notice that (R;+) is a faithful semigroup, but (f0; 1g;�) is not a faithful semi-
group.

UPPER BOUNDS

Most of the recent orthogonal range-searching data structures are based on
range trees , introduced by Bentley [20]. For d = 1, the range tree of S is an
array storing S in a nondecreasing order. For d > 1, let S1 be the sequence of
x-coordinates of points in S sorted in a nondecreasing order. The range tree of
S is a minimum-height binary tree with n leaves, whose i-th leftmost leaf stores
the point of S with the i-th smallest x1-coordinate. For an interior node v of T ,
let S(v) denote the set of points stored at leaves in the subtree rooted at v, let av
(resp. bv) be the smallest (resp. largest) x1-coordinate of points in S(v), and let
S�(v) denote the projection of S(v) onto the hyperplane x1 = 0. The interior node
v stores av , bv, and a (d� 1)-dimensional range tree constructed on S�(v). For any
�xed dimension d, the size of T is O(n logd�1 n), and it can be constructed in time

4 Pankaj K. Agarwal

O(n logd�1 n). The range-reporting query for a rectangle q =
Qd

i=1[ai; bi] can be
answered as follows. If d = 1, the query can be answered by a binary search. For
d > 1, we traverse the range tree as follows. Suppose we are at a node v. If v is
a leaf, then we report the point if it lies inside q. If v is an interior node and the
interval [av; bv] does not intersect [a1; b1], there is nothing to do. If [av; bv] � [a1; b1],
we recursively search in the (d � 1)-dimensional range tree stored at v, with the

rectangle
Qd

i=2[ai; bi]. Otherwise, we recursively visit both children of v. The query

time of this procedure is O(logd n+ k), which can be improved to O(logd�1 n+ k),
using the fractional-cascading technique [40, 77]. A range tree can also answer a
range- counting query in time O(logd�1 n).

The best-known data structures for orthogonal range searching are by Chazelle
[25, 27], who used compressed range trees and other techniques (such as �ltering
search) to improve the storage and query time. His results in the plane, under
various models of computation, are summarized in Table 1; the preprocessing time
of each data structure is O(n logn).

TABLE 1 Summary of planar orthogonal range-searching

results

Problem Model S(n) Q(n)

RAM n log n
Counting APM n log n

EPM n log2 n

n log n+ k log"(2n=k)

RAM n log log n log n+ k log log(4n=k)
n log" n log n+ k

Reporting APM n k log(2n=k)

EPM n k log2(2n=k)

n log n

log log n
log n+ k

Arithmetic m
n log n

log 2m=n
n log2+" n

Semigroup RAM n log log n log2 n log log n
n log" n log2 n

APM n log3 n

EPM n log4 n

All the results mentioned in Table 1 can be extended to higher dimensions
at a cost of logd�2 n factor in the preprocessing time, storage, and query-search
time. Table 2 summarizes a few additional results on higher-dimensional orthogonal
range-searching results.

Overmars [96] showed that if S is a subset of a u�u grid U in the plane and the

Range Searching 5

TABLE 2 Higher-dimensional orthogonal range reporting

S(n) Q(n) Source Notes

n logd�1+" n

�
log n

log log n

�d�1

+ k [88] Pointer machine

m

�
log n

log 2m=n

�d�1

[30] Semigroup model

n logd�1 n

log log n

logd�1 n

log log n
+ k [114] Fusion trees

n logd�1 n logd�2 n log� n+ k [101] P �-trees

vertices of query rectangles are also a subset of U , then a range-reporting query can
be answered in time O(

p
logu+k), using O(n logn) storage and preprocessing; or in

O(log logu+ k) time, using O(n log n) storage and O(u3 logu) preprocessing. The
range-tree-based data structures for orthogonal range searching can be extended to
handle c-oriented ranges. The performance of such a data structure is the same as
that of a c-dimensional orthogonal range-searching structure. If the ranges are ho-
mothets of a given triangle, or translates of a convex polygon with constant number
of edges, a two-dimensional range-reporting query can be answered in O(logn+ k)
time using linear space [35, 36]. If the ranges are octants in R3 , a range-reporting
query can be answered in either O((k +1) logn) or O(log2 n+ k) time using linear
space [36].

LOWER BOUNDS

Fredman [59, 60, 61] was the �rst to prove nontrivial lower bounds on orthogonal
range searching, but he considered the framework in which the points were allowed
to insert and delete dynamically. He showed that a mixed sequence of n insertions,
deletions, and queries takes
(n logd n) time. These bounds were extended by
Willard to a group model, under some fairly restrictive assumptions.

Yao [117] proved a lower bound for the 2D static orthogonal range searching
data structures. He showed that if only m units of storage is available, a query,
under the semigroup model, takes
(logn= log((m=n) logn)) in the worst case. See
also [108]. Later Chazelle extended the lower bound to higher dimensions and
improved it slightly [30]. In particular he showed that

Theorem 1 (Chazelle [30]) Let (S;�) be a faithful semigroup. Then for any �xed

dimension d and parameters n;m, there exists a set S of n weighted points in Rd ,

with weights from S, such that the worst-case query time, under the semigroup

model, for an orthogonal range-searching data structure, using m units of storage,

is
((log n= log(2m=n))d�1).

In fact, Chazelle's lower bound holds even for the average-case complexity. A
rather surprising result of Chazelle [29] shows that the size of any data structure on a

6 Pankaj K. Agarwal

pointer machine that answers a d-dimensional range-reporting query in O(logc n+k)
time, for any constant c, is
(n(logn= log logn)d�1); see also [16]. Notice that
this lower bound is greater than the known upper bound on the RAM model (see
Table 1).

These lower bounds do not hold for o�-line orthogonal range searching, where
given a set of n weighted points in Rd and a set of n rectangles, one wants to
compute the weight of points in each rectangle. Recently, Chazelle [34] proved that
the o�-line version takes
(n(logn= log logn)d�1) time in the semigroup model, and

(n log logn) time in the group model.

RELATED PROBLEMS

� Partial-sum problem: Preprocess a d-dimensional array A with n entries in an
additive semigroup into a data structure so that for a d-dimensional rectangle
q = [a1; b1]� � � � � [ad; bd], the sum �(A; q) =

P
(k1; ::: ;kd)2q

A[k1; : : : ; kq] can
be computed e�ciently. In the o�-line version, given A and m rectangles
q1; : : : ; qm, we wish to compute �(A; qi) for every i � m. Yao [116] showed
that, for d = 1, a partial-sum query can be answered in O(�(n)) time using
O(n) space. For d > 1, Chazelle and Rosenberg [42] gave a data structure of
size O(n logd�1 n) that can answer a query in time O(�(n) logd�2 n). They
also showed that the o�-line version takes
(n+m�(m;n)) time for any �xed
d � 1; here �(m;n) is the inverse Ackerman function. If points are allowed to
insert into S, the query time is
(logn= log logn) [117] for the one-dimensional
case; the bounds were extended by Chazelle [30] to
((logn= log logn)d), for
any �xed dimension d.

� Rectangle-rectangle searching: Preprocess a set S of n rectangles in Rd so that
for a query rectangle q, the rectangles of S that intersect q can be reported
(or counted) e�ciently. Chazelle [27] has shown that the bounds mentioned
in Table 1 hold for this problem also.

OPEN PROBLEMS

1. No nontrivial lower bounds are known for answering emptiness queries.

2. Chazelle's lower bound for range-reporting on the pointer-machine model does
not hold if the query time is allowed to be of the form O((k + 1) logc n).

3. Better lower bounds under the group model.

4. Better lower bounds on the partial-sum problem for d > 1.

2 SIMPLEX RANGE SEARCHING

Range Searching 7

In the last few years, simplex range searching has received considerable atten-
tion because, apart from its direct applications, the simplex range-searching data
structures have provided fast algorithms for numerous other geometric problems.
See the survey paper by Matou�sek [86] for an excellent review of the techniques
developed for the simplex range searching.

Unlike orthogonal range searching, no simplex range-searching data structure is
known that can answer a query in polylogarithmic time using near-linear storage.
In fact, the lower bounds stated below indicate that there is very little hope of
obtaining such a data structure, for the query time of a linear-size data structure,
under the semigroup model, is roughly at least n1�1=d (thus only saving a factor of
n1=d over the naive approach). Since the size and query time of any data structure
have to be at least linear and logarithmic, respectively, we consider these two ends
of the spectrum: (i) How fast can a simplex range query be answered using a linear-
size data structure, and (ii) how large should the size of a data structure be in order
to answer a query in logarithmic time. By combining these two extreme cases, as
mentioned below, one can obtain a space/query-time tradeo�.

GLOSSARY

Range space A range space is a set system � = (X;R) where X is a set of
objects and R is a family of subsets of X . The elements of R are called ranges
of �. � is called a �nite range space if X is �nite.

"-net A subset N � X is called an "-net of a �nite range space � if N \ r 6= ; for
every r 2 R with jrj � "jX j.

VC-dimension The VC-dimension of a range space � = (X;R) is d if there is
no subset A � X of size d+ 1 such that fA \ r j r 2 Rg = 2A.

Spanning tree A spanning tree of a point S in Rd is a tree T whose vertices
are the points of S and the edges are line segments connecting their endpoints.
The stabbing number of T is the maximum number of its edges crossed by a
hyperplane.

Arrangements The arrangement of a set H of hyperplanes in Rd is the subdi-
vision of Rd into cells of dimensions k, for 0 � k � d, each cell being a maximal
connected set contained in the intersection of a �xed subset of H and not inter-
secting any other hyperplane of H .

1=r-cutting Let H be a set of n hyperplanes in R
d and let 1 � r � n be a

parameter. A (1=r)-cutting of H is a set of (relatively open) disjoint simplices
covering Rd so that each simplex intersects at most n=r hyperplanes of H .

Duality The dual of a point (a1; : : : ; ad) 2 R
d is the hyperplane xd = a1x1 +

� � � + ad�1xd�1 + ad, and the dual of a hyperplane xd = b1x1 + � � � + bd is the
point (b1; : : : ; bd�1;�bd).

LOWER BOUNDS

In a series of papers, Chazelle has proved nontrivial lower bounds on the simplex
range searching, using various elegant mathematical techniques; see Table 3. The
following theorem is perhaps the most interesting result on lower bounds.

8 Pankaj K. Agarwal

TABLE 3 Lower bounds for simplex range searching.

Range Model S(n) Q(n) Source
Semigroup
(d = 2)

m
np
m

[28]

Semigroup
(d > 2)

m
n

m1=d log n
[28]

Simplex Group n log n log n [33]

Pointer
(Reporting)

m
n1�"

m1=d
+ k [43]

Halfspace Semigroup m

�
n

log n

� d2+1

d2+d

� 1

m1=d
[23]

Theorem 2 (Chazelle [28]) Let (S;�) be a faithful semigroup. For any given pa-

rameters n;m, there exists a set S of n weighted points in Rd , with weights from S,
such that the worst-case query time of any simplex range-searching data structure,

under the semigroup model, using m units of storage, is
(n=
p
m) for d = 2, and

(n=(m1=d log n)) for d � 3.

It should be pointed out that this theorem holds even for the average-case
complexity and even if the query ranges are wedges or strips. Theorem 2 gives
a lower bound for the simplex range-counting queries because (Z;+) is a faithful
group, but not for emptiness queries. As we will see below, faster data structures
are known for the halfspace-emptiness queries.

The lower bound under the pointer-machine model is by Chazelle and Rosen-
berg [43], and it holds only for range-reporting queries. No nontrivial lower bound
was known under the group model until Chazelle's recent result [33].

LINEAR-SIZE DATA STRUCTURES

Most of the linear-size data structures for simplex range searching are based on
the so-called partition trees , originally introduced by Willard [113]. His partition
tree is a 4-way tree, constructed as follows. Let us assume that n is of the form
4k for some integer k, and that the points of S are in general position. If k = 0,
the tree consists of a single node that stores the coordinates of the only point in
S. Otherwise, using the ham-sandwich theorem, we �nd two lines `1; `2 so that
each quadrant Qi, for 1 � i � 4, induced by `1; `2 contains exactly n=4 points.
The root stores the equations of `1; `2 and the value of n. For each quadrant, we
recursively construct a partition tree for S \Qi and attach it as the ith subtree of
the root. The total size of the data structure is linear, and it can be constructed
in O(n log n) time. A halfplane range-counting query can be answered as follows.
Let h be a query halfplane. We traverse T , starting from the root, and maintain a
global count. At each node v storing nv nodes in its subtree, the algorithm performs

Range Searching 9

the following step: If the line @h intersects the quadrant Qv associated with v, we
recursively visit the children of v. If Qv \ h = ;, we do nothing. Otherwise, we
add nv to the global count. The quadrants associated with the four children of
an interior node of T are induced by two lines, so @h intersects at most three of
them, which implies that the query procedure does not explore the subtree of one
of the children. Hence, the query time of this procedure is O(nlog4 3) = O(n:792).
A similar procedure can answer a simplex range-counting query within the same
time bound, and a simplex range-reporting query in time O(n:792 + k).

After a few initial improvements and extensions on Willard's data structure
[55, 56, 49], a major breakthrough in simplex range searching was made by Haussler
and Welzl [68]. They formulated the range searching in an abstract setting and,
using elegant probabilistic methods, gave a randomized algorithm to construct a
linear-size partition tree with O(n�) query time, where � = 1 � 1

d(d�1)+1 + " for

any " > 0. The constant of proportionality hidden in the big-O notation depends
on the value of ". The major contribution of their paper is the abstract framework
and the notion of "-nets. The following theorem gives a slightly stronger version of
their main result.

Theorem 3 (Haussler-Welzl [68], Koml�os et al. [75]) For any �nite range space (X;R)
of VC-dimension d and for 0 < "; � < 1, if N is a subset of X obtained by

d

"

�
log

1

"
+ 2 log log

1

"
+ 3

�

random independent draws, then N is an "-net of (X;R) with probability at least

1� e�d.

Theorem 3 implies that any �nite range space of VC-dimension d has an "-net
of size (1 + o(1))(d=") log 1=". The "-nets have turned out to be a powerful tool
in developing divide-and-conquer algorithms for several geometric problems and in
learning theory; see the books by Mulmuley [94] and Anthony and Biggs [17].

Building on the theory developed by Haussler and Welzl, Welzl [111] proved
that one can construct a spanning path of S of O(n1�1=d logn) stabbing number;
the bound was improved by Chazelle and Welzl [45] to �(n1�1=d). Preprocessing
the sequence of weights of points along the path, using Yao's data structure for
the partial-sum problem, one can obtain a linear-size data structure for simplex
range searching, with O(n1�1=d�(n)) query time, under the semigroup model. But
this technique does not give a linear-size data structure with O(n1�1=d logn) query
time, for d � 3, under any reasonable model of computation (e.g., pointer machine,
RAM), See [1, 82, 112] for other applications of spanning trees with low stabbing
number.

Matou�sek and Welzl [81] gave an entirely di�erent algorithm for the halfspace
range-counting problem in the plane, using a combinatorial result of Erd}os and
Szekeres [57]. The query time of their data structure is O(

p
n logn), and it uses

O(n) space and O(n3=2) preprocessing time. If subtractions are allowed, their
algorithm can be extended to the triangle range-counting problem. This technique
has also been applied to solve a number of related problems, including ray shooting
and intersection searching [19].

The best-known linear-size data structure for simplex range searching, which

10 Pankaj K. Agarwal

almost matches the lower bounds mentioned above, is by Matou�sek [85]. He showed
that a simplex range-counting (resp. range-reporting) query in Rd can be answered
in time O(n1�1=d) (resp. O(n1�1=d + k)). His algorithm is based on the following
theorem.

Theorem 4 (Matou�sek [83]) Let S be a set of n points in Rd , and let 1 < r � n=2
be a given parameter. Then there exists a family of pairs

� = f(S1;�1); : : : ; (Sm;�m)g
such that Si � S lies inside the simplex �i, n=r � jSij � 2n=r, Si \ Sj = ; for

i 6= j, and every hyperplane crosses at most cr1�1=d simplices of �; here c is a

constant. For constant values of r, � can be constructed in O(n log r) time.

Using this theorem, a partition tree T can be constructed as follows. Each
interior node v of T is associated with a subset Sv � S and a simplex �v containing
Sv; the root of T is associated with S and Rd . Choose r to be a su�ciently large
constant. If jSj � 4r, T consists of a single node, and it stores all points of S.
Otherwise, we construct a family of pairs � = f(S1;�1); : : : ; (Sm;�m)g using
Theorem 4. The root u stores the value of n. We recursively construct a partition
tree Ti for each Si and attach Ti as the i-th subtree of u. The root of Ti also stores
�i. The total size of the data structure is linear, and it can be constructed in time
O(n log n). A simplex range-counting query can be answered in the same way as for
Willard's partition tree. Since any hyperplane intersects at most cr1�1=d simplices
of �, the query time is O(n1�1=d � nlogr c); the logr c factor can be reduced to any
arbitrarily small positive constant " by choosing r su�ciently large. Although the
query time can be improved to O(n1�1=d logc n) by choosing r to be n", a stronger
version of Theorem 4, which was proved in [85], and some other sophisticated
techniques are needed to obtain O(n1�1=d) query time.

If the points in S lie on a k-dimensional algebraic surface of constant degree, a
simplex range-counting query can be answered in time O(n1�
) using linear space,
where
 = 1= b(d+ k)=2c [6].

Since the query time of a linear-size simplex range-searching data structure is
only n1=d factor faster than the naive method, researchers have developed practical
data structures that work well most of the time. For example, Arya and Mount
[18] have developed a linear-size data structure for answering approximate range-
counting queries, in the sense that the points lying within distance � � diam(�)
distance of the boundary of the query simplex � may or may not be counted. Its
query time is O(log n+1=�d�1). Overmars and van der Stappen [97] developed fast
data structures for the special case in which the ranges are `fat' and have bounded
size. See [62, 70] for some other `heuristic based' data structures.

We conclude this subsection by noting that better bounds can be obtained
for the halfspace range-reporting problem, using the so-called �ltering search; see
Table 4.

DATA STRUCTURES WITH LOGARITHMIC QUERY TIME

For the sake of simplicity, we �rst consider the halfspace range-counting prob-
lem. Using a standard duality transform, this problem can be reduced to the

Range Searching 11

TABLE 4 Halfspace range-searching.

d S(n) Q(n) Source Notes

d = 2 n log n+ k [41] Reporting

d = 3 n log n log n+ k [14] Reporting

d = 3 n log n [52] Emptiness

d > 3 n log log n n1�1=bd=2c logc n [79] Reporting

d > 3 n n1�1=d2O(log� n) [79] Emptiness

following problem: Given a set H of n hyperplanes, determine the number of hy-
perplanes of H lying above a query point. Since the same subset of hyperplanes
lies above all points in a single cell of A(H), the arrangement of H , we can answer
a halfspace range-counting query by locating the cell of A(H) that contains the
point dual to the hyperplane bounding the query halfspace. The following theorem
by Chazelle [31] yields an O((n= log n)d) size data structure, with O(log n) query
time, for halfspace range counting.

Theorem 5 (Chazelle [31]) Given a set H of n hyperplanes and a parameter r �
n, a (1=r)-cutting of H of size O(rd) can be computed in O(nrd�1) time.

The above approach can be extended to the simplex range-counting problem
as well. That is, store the solution of every combinatorially distinct simplex (two
simplices are combinatorially distinct if they do not contain the same subset of S).
Since there are �(nd(d+1)) combinatorially distinct simplices, such an approach will
require
(nd(d+1)) storage. Chazelle et al. [44] showed that the size can be reduced
to O(nd+"), for any " > 0, using a multi-level data structure. The space bound can
be reduced to O(nd) by increasing the query time to O(logd+1 n) [85] . Halfspace
range-reporting queries can be answered in O(log n + k) time, using O(nbd=2c+")
space.

A space/query-time tradeo� can be attained by combining the linear-size and
logarithmic query-time data structures, as described in [44, 85]. The results are
summarized in Table 5.

OPEN PROBLEMS

1. Bridge the gap between upper and lower bounds in the group model.

2. Can the lower bound on the query time in Theorem 2 be improved to n=m1=d?

3. Can a simplex range-counting query be answered in O(log n) time using O(nd)
space?

4. Can a halfspace range-reporting query be answered in O(n1�1=bd=2c+k) time
using linear space?

12 Pankaj K. Agarwal

TABLE 5 Space/query-time tradeo�.

Range Mode Q(m;n)

Simplex Reporting
n

m1=d
logd+1 m

n
+ k

Counting
n

m1=d
logd+1 m

n

Reporting
n

m1=bd=2c
logc n+ k

Halfspace Emptiness
n

m1=bd=2c
logc n

Counting
n

m1=d
log

m

n

3 VARIANTS AND EXTENSIONS

In this section we review some extensions of range-searching data structures,
including semialgebraic range searching, dynamization, and external memory data
structures.

GLOSSARY

Semialgebraic set A subset of Rd is called a real semialgebraic if it is obtained
as a �nite Boolean combination of sets of the form ff � 0g, where f is a d-variate
polynomial.

Tarski cells A real semialgebraic set is called a Tarski cell if it is de�ned by a
constant number of polynomials, each of constant degree.

SEMIALGEBRAIC RANGE SEARCHING

So far we assumed that the ranges were bounded by hyperplanes, but in many
applications one has to deal with ranges bounded by nonlinear functions. For
example, a query of the form | for a given point p and a real number r, �nd all
points of S lying within distance r from p | is a range-searching problem in which
ranges are balls.

As shown below, the ball range searching in Rd can be formulated as an instance
of the halfspace range searching in Rd+1 . So a ball range-reporting (resp. range-
counting) query in R

d can be answered in time O(n=m1=dd=2e logc n + k) (resp.
O(n=m1=(d+1) log(m=n))), using O(m) space; a somewhat better performance can
be obtained using a more direct approach; see Table 6. But relatively little is known
about range-searching data structures for more general ranges.

A natural class of more general ranges is the family of Tarski cells. It su�ces to
consider the ranges bounded by a single polynomial because the ranges bounded by

Range Searching 13

multiple polynomials can be handled using multi-level data structures. We assume
that the ranges are of the form

�f (a) = fx 2 Rd j f(x; a) � 0g;

where f is a (d+p)-variate polynomial specifying the type of ranges (disks, cylinders,
cones, etc.), and a is a p-tuple specifying a speci�c range of the given type (e.g., a
speci�c disk). We will refer to the range-searching problem in which the ranges are
from the set �f as the �f -range searching.

TABLE 6 Semialgebraic range counting

d Range S(n) Q(n) Source Notes

d = 2 Disk n log n
p
n log n [45]

Tarski cell n n1=2+" [6] Partition tree

d � 3 Tarski cell n n1�
1

2d�3
+" [6] Partition tree

Tarski cell n n1�
1
�
+" [6] Linearization

One approach to answer �f -range queries is to use linearization, originally
proposed by Yao and Yao [118]. We represent the polynomial f(x; a) in the form

f(x; a) = 0(a) + 1(a)'1(x) + � � �+ k(a)'k(x)

where '1; : : : ; 'k; 0; : : : ; k are real functions. A point x 2 Rd is mapped to the
point

'(x) = ('1(x); '2(x); : : : ; 'k(x)) 2 Rk :
Then a range
f (a) = fx 2 Rd j f(x; a) � 0g is mapped to a halfspace

'#(a) : fy 2 Rk j 0(a) + 1(a)y1 + � � �+ k(a)yk � 0g;

k is called the dimension of linearization. Agarwal and Matou�sek [6] have described
an algorithm for computing a linearization of smallest dimension. A �f -range
query can now be answered using a k-dimensional halfspace range-searching data
structure.

For example, a circle with center (a1; a2) and radius a3 in the plane can be
regarded as a set of the form
f (a), where a = (a1; a2; a3) and f is a 5-variate
polynomial that can be written as

f(x1; x2; a1; a2; a3) = [a23 � a21 � a22] + [2a1x1] + [2a2x2]� [x21 + x22]:

Thus, setting

 0(a) = a23 � a21 � a22; 1(a) = 2a1; 2(a) = 2a2; 3(a) = �1
'1(x) = x1; '2(x) = x2; '3(x) = x21 + x22;

14 Pankaj K. Agarwal

we get a linearization of dimension 3. In general, balls in Rd admit a linearization
of dimension d+1; cylinders in R3 admit a linearization of dimension 9. One of the
most widely used linearization in computational geometry is the so-called Pl�ucker

coordinates , which map a line in R3 to a point in R5 ; see [39, 105] for more details
on Pl�ucker coordinates.

Agarwal and Matou�sek [6] have also proposed another approach to answer �f -
range queries by extending Theorem 4 to Tarski cells and by constructing partition
trees using this extension.

Table 6 summarizes the known results on �f range-counting queries; here � is
the dimension of linearization.

DYNAMIZATION

All the data structures discussed above assumed S to be �xed, but in many
applications one needs to update S dynamically | insert a new point into S or
delete a point from S. One cannot hope to perform insert/delete operations on
a data structure in less than P (n)=n time, where P (n) is the preprocessing time
of the data structure. If we allow only insertions (i.e., a point cannot be deleted
from the structure), the static data structure can be modi�ed, using the standard
techniques [22, 95], so that a point can be inserted in time O(P (n) log n=n) and
a query can be answered in time O(Q(n) logn), where Q(n) is the query time of
the original static data structure; in some cases the logarithmic overheard in the
query or update time can be avoided. Although these techniques do not extend to
deletions, many range-searching data structures, such as orthogonal and simplex
range-searching structures, can handle deletions at polylogarithmic or n" overhead
in query and update time, by exploiting the fact that a point is stored at roughly
S(n)=n nodes [8]. Table 7 summarizes the known results on dynamic 2D orthogonal
range-searching data structures; these results can be extended to higher dimensions
at a cost of logd�2 n factor in the storage, in the query time, and in the update
time. Klein et al. [74] have described an optimal data structure for a special case
of 2D range-reporting where the query ranges are translates of a polygon.

TABLE 7 Dynamic 2D orthogonal range-searching

Mode S(n) Q(n) U(n) Source

Counting n log2 n log2 n [27]

n k log2(2n=k) log2 n [27]

n n" + k log2 n [104]

Reporting n log n log n log log n+ k log n log log n [89]

n log n

log log n

log2+" n

log log n
+ k

log2 n

log log n
[104]

Semigroup n log4 n log4 n [27]

Range Searching 15

Since an arbitrary sequence of deletions is di�cult to handle in general, re-
searchers have examined whether a random sequence of insertions and deletions
can be handled e�ciently; see [92, 93, 102]. Mulmuley [92] has shown that there
exists a dynamic halfspace range-reporting data structure that can process a ran-
dom update sequence of length m in expected time O(mbd=2c+") and can answer
a halfspace range-reporting query in time O(k logn). Agarwal and Matou�sek [7]
developed a dynamic data structure for halfspace range-reporting that can process
an arbitrary update sequence e�ciently; its update time is O(nbd=2c�1+"), and it
can answer a query in time O(logn+k). If we allow only O(n logn) space, then the
query and update time become O(n1�1=bd=2c+" + k) and O(log n), respectively.

SECONDARY MEMORY STRUCTURES

If the input point set is rather large and does not �t into the main memory,
then the data structure is stored in the secondary memory, and portions of it are
moved to the main memory, as required. In this case the bottleneck is the time
spent in transferring the data between main and secondary memory. We assume
that the data is stored in the secondary memory in blocks of size B, where B is
a parameter. Each access to the secondary memory transfers one block (i.e., B
words), and we count this as one I/O operation. The size of a data structure is
the number of blocks required to store it, and the query (resp. preprocessing) time
is de�ned as the number of I/O operations required to answer a query (resp. to
construct the structure). I/O-e�cient orthogonal range-searching structures have
received much attention recently, but most of the results are known only for the
planar case.

Table 8 summarizes the known results on secondary-memory structures for
orthogonal range searching; here �(n) = log log logB n. The data structure by Sub-
ramanian and Ramaswamy [106] for 3-sided queries supports insertion/deletion of
a point in time O(logB n + (logB n)

2=B). Extending the lower-bound proof by
Chazelle [43], they also proved that any secondary-memory data structure that an-
swers a range-reporting query in time O(logcB n+k=B) requires
((n=B) log(n=B)= log logB n)
storage.

TABLE 8 Secondary memory structures

d Range Q(n) S(n) Source

d = 1 Interval logB n+ k=B n=B

Quadrant logB n+ k=B (n=B) log logB [100]

d = 2 3-sided rect. logB n+ k=B + log�B n=B [106]

3-sided rect. logB n+ k=B (n=B) logB log logB [100]

Rectangle logB n+ k=B + log�B (n=B) log(n=B)= log logB n [106]

d = 3 Octant �(n; B) logB n+ k=B (n=B) log(n=B) [110]

Rectangle �(n; B) logB n+ k=B (n=B) log4(n=B) [110]

16 Pankaj K. Agarwal

OPEN PROBLEMS

1. Can a ball range-counting query be answered in O(log n) time using O(n2)
space?

2. Can a �f range-counting query be answered in time O(n1�1=d+") using near-
linear space?

3. A solution to the following problem, which is interesting in its own right, will
result in a better semialgebraic range-searching data structure: Given a set �
of n algebraic surfaces in Rd , each of constant maximum degree, decompose
the cells of the arrangement into O(nd) Tarski cells.

4. If the hyperplanes bounding the query halfspaces satisfy some property, e.g.,
all of them are tangent to a given sphere, can a halfspace range-counting
query be answered more e�ciently?

5. Simple dynamic data structure for halfspace range reporting.

6. E�cient secondary-memory structures for higher dimensional orthogonal range
searching and for simplex range searching.

4 INTERSECTION SEARCHING

A general intersection-searching problem can be formulated as follows: given
a set S of objects in Rd , a semigroup (S;+), and a weight function w : S ! S;
we wish to preprocess S into a data structure so that for a query object
, we can
compute the weighted sum

P
w(p), where the sum is taken over all objects of S

that intersect
. Range searching is a special case of intersection-searching in which
S is a set of points.

An intersection-searching problem can be formulated as a semialgebraic range-
searching problem by mapping each object p 2 S to a point '(p) in a parametric
space Rk and every query range
 to a semialgebraic set (
) so that p intersects

 if and only if '(p) 2 (
). For example, let S be a set of segments in the plane
and the query ranges be also segments in the plane. Each segment e 2 S with left
and right endpoints (px; py) and (qx; qy), respectively, can be mapped to a point
'(e) = (px; py; qx; qy) in R

4 and a query segment
 can be mapped to a semialgebraic
region (
) so that
 intersects e if and only if (
) 2 '(e). A shortcoming of this
approach is that k, the dimension of the parametric space, is typically much larger
than d, and therefore, it does not leads to an e�cient data structure. The e�ciency
can be signi�cantly improved by expressing the intersection test as a conjunction
of simple primitive tests (in low dimensions) and then using a multi-level data
structure to perform these tests. For example, a segment
 intersects another
segment e if the endpoints of e lie on the opposite sides of the line containing
 and
vice-versa. We can construct a two-level data structure | the �rst level sifts the

Range Searching 17

subset S1 � S of all the segments whose endpoints lie on the opposite side of the
line supporting the query segment, and the second level reports those segments of
S1 whose supporting lines separate the endpoints of
. Each level of this structure
can be implemented using a two-dimensional simplex range-searching searching
structure, and hence a reporting query can be answered in O(n=

p
m logc n + k)

time using O(m) space.
It is beyond the scope of this survey paper to cover all intersection-searching

problems. Instead, we discuss a few basic ones, which have been studied extensively.
All intersection-counting data structures described here can answer intersection-
reporting queries, at an additional cost that is proportional to the output size.
In some cases, an intersection-reporting query can be answered faster. Moreover,
using intersection-reporting data structures, intersection-detection queries can be
answered in time proportional to their query-search time. Finally, all the data
structures described in this section can be dynamized at an expense of O(n") factor
in the storage and query time.

POINT INTERSECTION SEARCHING

Preprocess a set S of objects (e.g., balls, halfspaces, simplices, Tarski cells) in
R
d into a data structure so that all the objects of S containing a query point can be

reported (or counted) e�ciently. This is the inverse of the range-searching problem.
Moreover, it can also be viewed as locating a point in the subdivision induced by
the objects in S. Table 9 gives some of the known results.

TABLE 9 Point intersection searching

d Objects S(n) Q(n) Source Notes

Disks m (n4=3=m2=3) log(m=n) Counting

Disks n log n log n+ k [14] Reporting

d = 2 Triangles m
np
m

log3 n [8] Counting

Fat triangles n log2 n log3 n+ k [73] Reporting

Tarski cells n2+" log n [37] Counting

d = 3 Functions n1+" log n+ k [4] Reporting

Simplices m n

m1=d log
d+1 n Counting

d � 3 Balls nd+" log n [6] Counting

Balls m n

m1=dd=2e log
c n+ k [79] Reporting

Tarski cells n2d�3+" log n [37] Counting

Point location in arrangement of surfaces, especially determining whether a
query point lies above a given set of regions of the form xd+1 � f(x1; : : : ; xd), has
found many applications in computational geometry. For example, the collision-

18 Pankaj K. Agarwal

detection problem | given a set O of obstacles and a robot B, determine whether
a placement p of B is free | can be formulated as a point intersection-detection
query amid a set of regions. If B has k degrees of freedom, then a placement of B
can be represented as a point in Rk , and the set of placements of B that intersect
an obstacle Oi 2 m is a region Ki � R

k . If B and the obstacles are semialgebraic
sets, then each Ki is also a semialgebraic set. A placement p of B is free if and
only if p does not intersect any of Ki's. See [76] for a survey of known results on
the collision-detection problem and [11, 37, 38] for a few other applications of point
intersection-searching structures.

SEGMENT INTERSECTION SEARCHING

Preprocess a set of objects in Rd into a data structure so that all the objects of S
intersected by a query segment can be reported (or counted) e�ciently. See Table 10
for some of the known results on segment intersection searching. For the sake of
clarity, we have omitted polylogarithmic terms from the query-search time whenever
it is of the form n=m�.

TABLE 10 Segment intersection searching

d Objects S(n) Q(n) Source Notes

Simple polygon n (k + 1) log n [69] Reporting

d = 2 Segments m n=
p
m [8, 47] Counting

Circles n2+" log n [13] Counting

Circular arcs m n=m1=3 [13] Counting

Planes m n=m1=3 [5] Counting

d = 3 Triangles m n=m1=4 [6] Counting

Spheres m n=m1=4 [6] Counting

Spheres n3+" (k + 1) log2 n [2] Reporting

A special case of segment intersection searching, in which the objects are hor-
izontal segments in the plane and query ranges are vertical segments, has been
widely studied. In this case a query can be answered in time O(logn + k) using
O(n log n) space and preprocessing [109]. If we also allow insertions and deletions,
the query and update time are O(logn log logn+ k) and O(logn log logn) [89], or
O(log2 n+ k) and O(logn) using only linear space [46]; if we allow only insertions,
the query and update time become O(logn+ k) and O(log n) [71].

A problem related to segment intersection searching is the stabbing problem.
Given a set S of objects in Rd , determine whether a query k-
at (0 < k < d)
intersects all objects of S. Such queries can also be answered e�ciently using
semialgebraic range-searching data structures. A line-stabbing query amid a set of
triangles in R3 can be answered in O(logn) time using O(n2+") storage [98]. The

Range Searching 19

paper by Goodman et al. [63] is an excellent survey of this topic.

COLORED INTERSECTION SEARCHING

Preprocess a given set S of colored objects in R
d (i.e., each object in S is

assigned a color) so that the we can report (or count) the colors of the objects
that intersect the query range. This problem arises in many contexts where one
wants to answer intersection-searching queries for nonconstant-size input objects.
For example, given a set P = fP1; : : : ; Pmg of m simple polygons, one may wish to
report all the simple polygons that intersect a query segment; the goal is to return
the index, and not the description, of these polygons. If we color the edges of Pi
by the color i, the problem reduces to colored segment intersection searching in a
set of segments.

If an intersection-detection query for S with respect to a range
 can be an-
swered in Q(n) time, then the colored intersection-reporting query with
 can
be answered in time O((1 + k log(n=k))Q(n)). Therefore logarithmic query-time
intersection-searching data structures can easily be modi�ed for colored intersection-
reporting, but very little is known about linear-size colored intersection-searching
data structures, except in some special cases [12, 65, 66, 67, 72].

Gupta et al. [65] have shown that the colored halfplane-reporting queries in
the plane can be answered in O(log2 n + k) using O(n logn) space. Agarwal and
van Kreveld [12] presented a linear-size data structure with O(n1=2+k + k) query
time for colored segment intersection-reporting queries amid a set of segments in
the plane, assuming that the segments of the same color form a connected planar
graph, or if they form the boundary of a simple polygon; these data structures
can also handle insertions of new segments. Gupta et al. [65, 67] present segment
intersection-reporting structures for many other special cases.

OPEN PROBLEMS

1. Faster algorithms for point intersection searching in Tarski cells.

2. An O(log n+k) query-time and linear-size segment intersection-reporting data
structure for a simple polygon.

3. Faster segment intersection-detection structures for (possibly intersecting)
Jordan arcs in the plane, and for triangles and spheres in R3 .

4. Linear-size, O(
p
n logc n+ k) query-time data structures for colored triangle

range reporting.

5 OPTIMIZATION QUERIES

In the optimization queries, we want to return an object that satis�es certain

20 Pankaj K. Agarwal

condition with respect to the query range. The most common example of opti-
mization queries is, perhaps, the ray-shooting queries. Other examples include
segment-dragging and linear-programming queries.

RAY-SHOOTING QUERIES

Preprocess a set S of objects in Rd into a data structure so that the �rst object
intersected by a query ray (if there exists one) can be reported e�ciently. This
problem arises in ray tracing, hidden-surface removal, radiosity, and other graphics
problems. Recently, e�cient solutions to many other geometric problems have also
been developed using ray-shooting data structures.

A general approach to the ray-shooting problem, using segment intersection-
detection structures and Megiddo's parametric searching technique [87], was pro-
posed by Agarwal and Matou�sek [5]. The basic idea of their approach is as follows.
Suppose we have a segment intersection-detection data structure for S, based on
partition trees. Let � be a query ray. Their algorithm maintains a segment ~ab � �
such that the �rst intersection point of ~ab with S is the same as that of �. If a lies
on an object of S, it returns a. Otherwise, it picks a point c 2 ab and determines,
using the segment intersection-detection data structure, whether the interior of the
segment ac intersects any object of S. If the answer is yes, it recursively �nds the
�rst intersection point of ~ac with S; otherwise, it recursively �nds the �rst intersec-
tion point of ~cb with S. Using the parametric searching, the points c at each stage
can be chosen in such a way that the algorithm terminates after O(logn) steps.

In some cases, the query time can be improved by a polylogarithmic factor,
using a more direct approach.

Table 11 gives a summary of known ray-shooting results. For the sake of clarity,
we have ignored the polylogarithmic factors from the query time whenever it is of
the form n=m�. The ray-shooting structures for d-dimensional convex polyhedra
assume that the source point of the query ray lies inside the polytope. All the
ray-shooting data structures mentioned in Table 11 can be dynamized at a cost of
polylogarithmic or n" factor in the query time. Goodrich and Tamassia [64] have
developed a dynamic ray-shooting data structure for connected planar subdivisions,
with O(log2 n) query and update time.

Like simplex range searching, many practical data structures have been pro-
posed that, despite having bad worst-case performance, work well in practice. One
common approach is to construct a subdivision of Rd into constant-size cells so that
the interior of each cell does not intersect any object of S. A ray-shooting query
can be answered by traversing the query ray through the subdivision until we �nd
an object that intersects the ray. The worst-case query time is proportional to
the maximum number of cells intersected by a segment that does not intersect any
object in S. Hershberger and Suri [69] showed that a triangulation with O(log n)
query time can be constructed when S is the boundary of a simple polygon in the
plane. See [3, 91, 54, 78] and the references therein for other ray-shooting results
using this approach. Agarwal et al. [3] proved worst-case bounds for many cases
on the number of cells in the subdivision that a line can intersect.

The nearest-neighbor query problem is de�ned as follows: preprocess a set S of
points in Rd into a data structure so that a point in S closest to a query point �

Range Searching 21

TABLE 11 Ray shooting

d Objects S(n) Q(n) Source

Simple polygon n log n [69]

s disjoint simple
polygons

n
(s2 + n) log s

p
s

log s log n
[9, 69]

s convex polygons sn log s log s log n [9]

d = 2 Segments m n=
p
m [8, 47]

Circlular arcs n n=m1=3 [13]

Disjoint arcs n
p
n [13]

convex polytope n log n [53]

c-oriented
polytopes

n log n [51]

s convex polytopes s2n2+" log2 n [10]

d = 3 Halfplanes m n=
p
m [5]

Terrain m n=
p
m [5, 39]

Triangles m n=m1=4 [6]

Spheres n3+" log2 n [2]

Hyperplanes m n=m1=d [5]

d > 3 Hyperplanes
nd

logd�" n
log n [5]

Convex polytope m n=m1=bd=2c [5, 80]

Convex polytope
nbd=2c

logbd=2c�" n
log n [80]

can be reported quickly. This query can be formulated as an instance of the ray-
shooting problem in a convex polyhedron in Rd+1 , as follows. We map each point
p = (p1; : : : ; pd) in S to a hyperplane in Rd+1 , which is the graph of the function

fp(x1; : : : ; xn) = 2p1x1 + � � �+ 2pdxd � (p21 + � � �+ p2d):

Then p is a closest neighbor of a point � = (�1; : : : ; �d) if and only if

fp(�1; : : : ; �d) = max
q2S

fq(�1; : : : ; �d):

That is, if and only if fp is the �rst hyperplane intersected by the vertical ray
�(�) emanating from the point (�1; : : : ; �d; 0) in the (�xd+1)-direction. If we de�ne
P =

Tfxd+1 � fp(x1; : : : ; xd) j p 2 Sg, then p is the nearest neighbor of � if
and only if the intersection point of �(�) and @P lies on the graph of fp. Thus a
nearest-neighbor query can be answered in time roughly n=m1=bd=2c using O(m)
space. This approach can be extended to answer farthest-neighbor and k-nearest-
neighbor queries also.

22 Pankaj K. Agarwal

LINEAR-PROGRAMMING QUERIES

Let S be a set of n halfspaces in Rd . We wish to preprocess S into a data
structure so that for a direction vector ~v, we can determine the �rst point of

T
h2S h

in the direction ~v. For d � 3, such a query can be answered in O(log n) time
using O(n) storage, by constructing the normal diagram of the convex polytopeT
h2S h and preprocessing it for point-location queries. For higher dimensions,

Matou�sek [84] showed that, using multidimensional parametric searching and the
data structure for answering halfspace emptiness queries, a linear-programming
query can be answered in O((n=m1=bd=2c) logc n) with O(m) storage. Recently
Chan [24] has described a randomized procedure whose expected query time is
slightly faster.

SEGMENT DRAGGING QUERIES

Preprocess a set S of objects in the plane so that for a query segment e and a ray
�, the �rst position at which e intersects any object of S as it is translated (dragged)
along � can be determined quickly. This query can be answered in O((n=

p
m) logc n)

time, with O(m) storage, using segment intersection-searching structures and the
parametric-search technique. Chazelle [26] gave a linear-size, O(log n) query-time
data structure for the special case in which S is a set of points, e is a horizontal
segment, and � is the vertical direction. Instead of dragging a segment along a ray,
one can ask the same question for dragging along a more complex trajectory (along
a curve and allowing both translation and rotation). These problems arise quite
often in motion planning and manufacturing. See [90, 101] for a few such examples.

OPEN PROBLEMS

1. Ray shooting amid a set of intersecting arcs in the plane.

2. Ray shooting amid triangles in R3 in n=m1=3.

3. Can a ray-shooting query in a nonconvex polytope in R3 be answered any
faster than a ray-shooting query amid triangles?

4. No nontrivial lower bounds are known for the ray-shooting problem.

6 SOURCES AND RELATED MATERIAL

BOOKS AND MONOGRAPHS

� Mehlhorn [88]: A text book on computational geometry. The �rst part of the
book covers multidimensional searching.

Range Searching 23

� Mulmuley [94]: A text book on randomized techniques in computational ge-
ometry. Chapters 6 and 8 cover range-searching, intersection-searching, and
ray-shooting data structures.

� Preparata and Shamos [99]: A text book on basic topics in computational
geometry. Chapters 2 includes earlier results on orthogonal range searching.

� Foley et al. [58]: A text book on graphics. Discusses practical data structures
for ray tracing and intersection searching.

� de Berg [50]: A monograph on ray shooting and related problems.

� Schwarzkopf [103]: This PhD thesis includes many results on randomized
dynamic data structures.

SURVEY PAPERS

� Bentley and Friedman [21]: A survey of earlier results on orthogonal range
searching.

� Chazelle [32]: A general survey of recent developments in computational ge-
ometry. It contains most of the references on simplex and semialgebraic range
searching.

� Chiang and Tamassia [48]: A survey of dynamic data structures.

� Goodman et al. [63]: A survey of stabbing problems and related topics.

� Matou�sek [86]: A comprehensive survey of simplex range searching and re-
lated topics.

References

[1] P. K. Agarwal, Ray shooting and other applications of spanning trees with low stab-
bing number, SIAM J. Comput., 21 (1992), 540{570.

[2] P. K. Agarwal, B. Aronov, and M. Sharir, Computing envelopes in four dimensions
with applications, Proc. 10th Annu. ACM Sympos. Comput. Geom., 1994, pp. 348{
358.

[3] P. K. Agarwal, B. Aronov, and S. Suri, Line stabbing bounds in three dimensions,
Proc. 11th Annu. ACM Sympos. Comput. Geom., 1995, pp. 267{276.

[4] P. K. Agarwal, A. Efrat, and M. Sharir, Vertical decomposition of shallow levels in
3-dimensional arrangements and its applications, Proc. 11th Annu. ACM Sympos.

Comput. Geom., 1995, pp. 39{50.

[5] P. K. Agarwal and J. Matou�sek, Ray shooting and parametric search, SIAM J. Com-

put., 22 (1993), 794{806.

24 Pankaj K. Agarwal

[6] P. K. Agarwal and J. Matou�sek, On range searching with semialgebraic sets, Discrete
Comput. Geom., 11 (1994), 393{418.

[7] P. K. Agarwal and J. Matou�sek, Dynamic half-space range reporting and its applica-
tions, Algorithmica, 14 (1995), 325{345.

[8] P. K. Agarwal and M. Sharir, Applications of a new partition scheme, Discrete Com-

put. Geom., 9 (1993), 11{38.

[9] P. K. Agarwal and M. Sharir, Ray shooting amidst convex polygons in 2D, J. Algo-
rithms, XX (1996), to appear.

[10] P. K. Agarwal and M. Sharir, Ray shooting amidst convex polytopes in three dimen-
sions, SIAM J. Comput., 25 (1996), 100{116.

[11] P. K. Agarwal, M. Sharir, and S. Toledo, Applications of parametric searching in
geometric optimization, J. Algorithms, 17 (1994), 292{318.

[12] P. K. Agarwal and M. van Kreveld, Connected component and simple polygon in-
tersection searching, Proc. 3rd Workshop Algorithms Data Struct., Lecture Notes in

Computer Science, Vol. 709, Springer-Verlag, 1993, pp. 36{47.

[13] P. K. Agarwal, M. van Kreveld, and M. Overmars, Intersection queries in curved
objects, J. Algorithms, 15 (1993), 229{266.

[14] A. Aggarwal, M. Hansen, and T. Leighton, Solving query-retrieval problems by com-
pacting Voronoi diagrams, Proc. 22nd Annu. ACM Sympos. Theory Comput., 1990,
pp. 331{340.

[15] A. V. Aho, J. E. Hopcroft, and J. D. Ullman, The Design and Analysis of Computer

Algorithms, Addison-Wesley, Reading, MA, 1974.

[16] A. Andersson and K. Swanson, On the di�culty of range searching, Proc. 4th Work-

shop Algorithms Data Struct., Lecture Notes in Computer Science, Vol. 955, Springer-
Verlag, 1995, pp. 473{481.

[17] M. Anthony and N. Biggs, Computational Learning Theory, Cambridge University
Press, Cambridge, 1992.

[18] S. Arya and D. Mount, Approximate range searching, Proc. 11th Annu. ACM Sympos.

Comput. Geom., 1995, pp. 172{181.

[19] R. Bar-Yehuda and S. Fogel, Variations on ray shooting, Algorithmica, 11 (1994),
133{145.

[20] J. L. Bentley, Multidimensional divide-and-conquer, Commun. ACM, 23 (1980), 214{
229.

[21] J. L. Bentley and J. H. Friedman, Data structures for range searching, ACM Comput.

Surv., 11 (1979), 397{409.

[22] J. L. Bentley and J. B. Saxe, Decomposable searching problems I: static-to-dynamic
transformation, J. Algorithms, 1 (1980), 301{358.

[23] H. Br�onnimann, B. Chazelle, and J. Pach, How hard is halfspace range searching,
Discrete Comput. Geom., 10 (1993), 143{155.

Range Searching 25

[24] T. Chan, Fixed-dimensional linear programming queries made easy, Proc. 12th ACM

Symp. Comput. Geom., 1996, p. to appear.

[25] B. Chazelle, Filtering search: a new approach to query-answering, SIAM J. Comput.,
15 (1986), 703{724.

[26] B. Chazelle, An algorithm for segment-dragging and its implementation, Algorithmica,
3 (1988), 205{221.

[27] B. Chazelle, A functional approach to data structures and its use in multidimensional
searching, SIAM J. Comput., 17 (1988), 427{462.

[28] B. Chazelle, Lower bounds on the complexity of polytope range searching, J. Amer.

Math. Soc., 2 (1989), 637{666.

[29] B. Chazelle, Lower bounds for orthogonal range searching, I: the reporting case, J.
ACM, 37 (1990), 200{212.

[30] B. Chazelle, Lower bounds for orthogonal range searching, II: the arithmetic model,
J. ACM, 37 (1990), 439{463.

[31] B. Chazelle, Cutting hyperplanes for divide-and-conquer, Discrete Comput. Geom.,
9 (1993), 145{158.

[32] B. Chazelle, Computational geometry: A retrospective, Proc. 26th Annu. ACM Sym-

pos. Theory Comput., 1994, pp. 75{94.

[33] B. Chazelle, A spectral approach to lower bounds, Proc. 35th Annu. IEEE Sympos.

Found. Comput. Sci., 1994, pp. 674{682.

[34] B. Chazelle, Lower bounds for o�-line range searching, Proc. 27th Annu. ACM Sym-

pos. Theory Comput., 1995, pp. 733{740.

[35] B. Chazelle and H. Edelsbrunner, Optimal solutions for a class of point retrieval
problems, J. Symbolic Comput., 1 (1985), 47{56.

[36] B. Chazelle and H. Edelsbrunner, Linear space data structures for two types of range
search, Discrete Comput. Geom., 2 (1987), 113{126.

[37] B. Chazelle, H. Edelsbrunner, L. Guibas, and M. Sharir, A singly-exponential strati�-
cation scheme for real semi-algebraic varieties and its applications, Theoret. Comput.

Sci., 84 (1991), 77{105.

[38] B. Chazelle, H. Edelsbrunner, L. Guibas, and M. Sharir, Diameter, width, closest line
pair and parametric searching, Discrete Comput. Geom., 10 (1993), 183{196.

[39] B. Chazelle, H. Edelsbrunner, L. J. Guibas, and M. Sharir, Lines in space: combina-
torics, algorithms, and applications, Proc. 21st Annu. ACM Sympos. Theory Comput.,
1989, pp. 382{393.

[40] B. Chazelle and L. J. Guibas, Fractional cascading: I. A data structuring technique,
Algorithmica, 1 (1986), 133{162.

[41] B. Chazelle, L. J. Guibas, and D. T. Lee, The power of geometric duality, BIT,
25 (1985), 76{90.

26 Pankaj K. Agarwal

[42] B. Chazelle and B. Rosenberg, Computing partial sums in multidimensional arrays,
Proc. 5th Annu. ACM Sympos. Comput. Geom., 1989, pp. 131{139.

[43] B. Chazelle and B. Rosenberg, Lower bounds on the complexity of simplex range
reporting on a pointer machine, in: Proc. 19th International Colloquium on Automata,

Languages, and Programming, Lecture Notes in Computer Science, Vol. 623, Springer-
Verlag, 1992, pp. 439{449. Also to appear in Comput. Geom. Theory Appl.

[44] B. Chazelle, M. Sharir, and E. Welzl, Quasi-optimal upper bounds for simplex range
searching and new zone theorems, Algorithmica, 8 (1992), 407{429.

[45] B. Chazelle and E. Welzl, Quasi-optimal range searching in spaces of �nite VC-
dimension, Discrete Comput. Geom., 4 (1989), 467{489.

[46] S. W. Cheng and R. Janardan, E�cient dynamic algorithms for some geometric in-
tersection problems, Inform. Process. Lett., 36 (1990), 251{258.

[47] S. W. Cheng and R. Janardan, Algorithms for ray-shooting and intersection searching,
J. Algorithms, 13 (1992), 670{692.

[48] Y.-J. Chiang and R. Tamassia, Dynamic algorithms in computational geometry, Proc.
IEEE, 80 (1992), 1412{1434.

[49] R. Cole, Partitioning point sets in 4 dimensions, Proc. 12th Internat. Colloq. Automata

Lang. Program., Lecture Notes in Computer Science, Vol. 194, Springer-Verlag, 1985,
pp. 111{119.

[50] M. de Berg, Ray Shooting, Depth Orders and Hidden Surface Removal, Springer-
Verlag, Berlin, 1993.

[51] M. de Berg and M. Overmars, Hidden surface removal for c-oriented polyhedra, Com-

put. Geom. Theory Appl., 1 (1992), 247{268.

[52] D. Dobkin, J. Hershberger, D. Kirkpatrick, and S. Suri, Implicitly searching con-
volutions and computing depth of collision, Proc. 1st Annu. SIGAL Internat. Sym-

pos. Algorithms, Lecture Notes in Computer Science, Vol. 450, Springer-Verlag, 1990,
pp. 165{180.

[53] D. P. Dobkin and D. G. Kirkpatrick, A linear algorithm for determining the separation
of convex polyhedra, J. Algorithms, 6 (1985), 381{392.

[54] D. P. Dobkin and D. G. Kirkpatrick, Determining the separation of preprocessed poly-
hedra { a uni�ed approach, Proc. 17th Internat. Colloq. Automata Lang. Program.,
Lecture Notes in Computer Science, Vol. 443, Springer-Verlag, 1990, pp. 400{413.

[55] D. P. Dobkin, F. F. Yao, H. Edelsbrunner, and M. S. Paterson, Partitioning space for
range queries, SIAM J. Comput., 18 (1989), 371{384.

[56] H. Edelsbrunner and E. Welzl, Halfplanar range search in linear space and O(n0:695)
query time, Inform. Process. Lett., 23 (1986), 289{293.

[57] P. Erd}os and G. Szekeres, A combinatorial problem in geometry, Compositio Math.,
2 (1935), 463{470.

[58] J. D. Foley, A. van Dam, S. K. Feiner, and J. F. Hughes, Computer Graphics: Prin-

ciples and Practice, Addison-Wesley, Reading, MA, 1990.

Range Searching 27

[59] M. L. Fredman, Inherent complexity of range query problems, Proc. 17th Allerton

Conf. Commun. Control Comput., 1979, pp. 231{240.

[60] M. L. Fredman, The inherent complexity of dynamic data structures which accom-
modate range queries, Proc. 21st Annu. IEEE Sympos. Found. Comput. Sci., 1980,
pp. 191{199.

[61] M. L. Fredman, A lower bound on the complexity of orthogonal range queries, J.
ACM, 28 (1981), 696{705.

[62] J. H. Friedman, J. L. Bentley, and R. A. Finkel, An algorithm for �nding best matches
in logarithmic expected time, ACM Trans. Math. Softw., 3 (1977), 209{226.

[63] J. E. Goodman, R. Pollack, and R. Wenger, Geometric transversal theory, in: New

Trends in Discrete and Computational Geometry (J. Pach, ed.), Springer-Verlag,
Heidelberg{New York{Berlin, 1993, pp. 163{198.

[64] M. T. Goodrich and R. Tamassia, Dynamic ray shooting and shortest paths via bal-
anced geodesic triangulations, Proc. 9th Annu. ACM Sympos. Comput. Geom., 1993,
pp. 318{327.

[65] P. Gupta, R. Janardan, and M. Smid, E�cient algorithms for generalized intersec-
tion searching on non-iso-oriented objects, Proc. 10th Annu. ACM Sympos. Comput.

Geom., 1994, pp. 369{378.

[66] P. Gupta, R. Janardan, and M. Smid, On intersection searching problems involv-
ing curved objects, Proc. 4th Scand. Workshop Algorithm Theory, Lecture Notes in

Computer Science, Vol. 824, Springer-Verlag, 1994, pp. 183{194.

[67] P. Gupta, R. Janardan, and M. Smid, Further results on generalized intersection
searching problems: counting, reporting and dynamization, J. Algorithms, 19 (1995),
282{317.

[68] D. Haussler and E. Welzl, Epsilon-nets and simplex range queries, Discrete Comput.

Geom., 2 (1987), 127{151.

[69] J. Hershberger and S. Suri, A pedestrian approach to ray shooting: Shoot a ray, take
a walk, Proc. 4th ACM-SIAM Sympos. Discrete Algorithms, 1993, pp. 54{63.

[70] P. Houthuys, Box sort, a multidimensional binary sorting method for rectangular
boxes, used for quick range searching, Visual Comput., 3 (1987), 236{249.

[71] H. Imai and T. Asano, Dynamic orthogonal segment intersection search, J. Algo-
rithms, 8 (1987), 1{18.

[72] R. Janardan and M. Lopez, Generalized intersection searching problems, Internat. J.
Comput. Geom. Appl., 3 (1993), 39{69.

[73] M. J. Katz, 3-D vertical ray shooting and 2-D point enclosure, range searching, and
arc shooting amidst convex fat objects, Unpublished manuscript, 1995.

[74] R. Klein, O. Nurmi, T. Ottmann, and D. Wood, A dynamic �xed windowing problem,
Algorithmica, 4 (1989), 535{550.

[75] J. Koml�os, J. Pach, and G. Woeginger, Almost tight bounds for �-nets, Discrete
Comput. Geom., 7 (1992), 163{173.

28 Pankaj K. Agarwal

[76] J.-C. Latombe, Robot Motion Planning, Kluwer Academic Publishers, Boston, 1991.

[77] G. S. Lueker, A data structure for orthogonal range queries, Proc. 19th Annu. IEEE

Sympos. Found. Comput. Sci., 1978, pp. 28{34.

[78] J. MacDanold and K. Booth, Heuristics for ray tracing using space subdivision, The
Visual Computer, 6 (1990), 153{166.

[79] J. Matou�sek, Reporting points in halfspaces, Comput. Geom. Theory Appl., 2 (1992),
169{186.

[80] J. Matou�sek and O. Schwarzkopf, On ray shooting in convex polytopes, Discrete
Comput. Geom., 10 (1993), 215{232.

[81] J. Matou�sek and E. Welzl, Good splitters for counting points in triangles, J. Algo-
rithms, 13 (1992), 307{319.

[82] J. Matou�sek, E. Welzl, and L. Wernisch, Discrepancy and "-approximations for
bounded VC-dimension, Combinatorica, 13 (1993), 455{466.

[83] J. Matou�sek, E�cient partition trees, Discrete Comput. Geom., 8 (1992), 315{334.

[84] J. Matou�sek, Linear optimization queries, J. Algorithms, 14 (1993), 432{448. The
results combined with results of O. Schwarzkopf also appear in Proc. 8th ACM Sympos.

Comput. Geom., 1992, pages 16{25.

[85] J. Matou�sek, Range searching with e�cient hierarchical cuttings, Discrete Comput.

Geom., 10 (1993), 157{182.

[86] J. Matou�sek, Geometric range searching, ACM Comput. Surv., 26 (1994), 421{461.

[87] N. Megiddo, Applying parallel computation algorithms in the design of serial algo-
rithms, J. ACM, 30 (1983), 852{865.

[88] K. Mehlhorn, Multi-dimensional Searching and Computational Geometry, Springer-
Verlag, Heidelberg, West Germany, 1984.

[89] K. Mehlhorn and S. N�aher, Dynamic fractional cascading, Algorithmica, 5 (1990),
215{241.

[90] J. S. B. Mitchell, Shortest paths among obstacles in the plane, Proc. 9th Annu. ACM

Sympos. Comput. Geom., 1993, pp. 308{317.

[91] J. S. B. Mitchell, D. M. Mount, and S. Suri, Query-sensitive ray shooting, Proc. 10th
Annu. ACM Sympos. Comput. Geom., 1994, pp. 359{368.

[92] K. Mulmuley, Randomized multidimensional search trees: dynamic sampling, Proc.
7th Annu. ACM Sympos. Comput. Geom., 1991, pp. 121{131.

[93] K. Mulmuley, Randomized multidimensional search trees: further results in dynamic
sampling, Proc. 32nd Annu. IEEE Sympos. Found. Comput. Sci., 1991, pp. 216{227.

[94] K. Mulmuley, Computational Geometry: An Introduction Through Randomized Algo-

rithms, Prentice Hall, Englewood Cli�s, NJ, 1993.

[95] M. H. Overmars, The design of dynamic data structures, Springer-Verlag, 1983.

Range Searching 29

[96] M. H. Overmars, E�cient data structures for range searching on a grid, J. Algorithms,
9 (1988), 254{275.

[97] M. H. Overmars and A. F. van der Stappen, Range searching and point location among
fat objects, Algorithms { ESA'94 (J. van Leeuwen, ed.), LNCS 855, September 1994,
pp. 240{253.

[98] M. Pellegrini and P. Shor, Finding stabbing lines in 3-space, Discrete Comput. Geom.,
8 (1992), 191{208.

[99] F. P. Preparata and M. I. Shamos, Computational Geometry: An Introduction,
Springer-Verlag, New York, 1985.

[100] S. Ramaswamy and S. Subramanian, Path caching: A technique for optimal external
searching, Proc. 13th ACM Symp. on Principles of Database Systems, 1994, pp. 25{35.

[101] E. Sch�omer and C. Thiel, E�cient collision detection for moving polyhedra, Proc.
11th Annu. ACM Sympos. Comput. Geom., 1995, pp. 51{60.

[102] O. Schwarzkopf, Dynamic maintenance of geometric structures made easy, Proc. 32nd
Annu. IEEE Sympos. Found. Comput. Sci., 1991, pp. 197{206.

[103] O. Schwarzkopf, Dynamic Maintenance of Convex Polytopes and Related Structures,
Ph.D. Thesis, Fachbereich Mathematik, Freie Universit�at Berlin, Berlin, Germany,
June 1992.

[104] M. Smid, Maintaining the minimal distance of a point set in less than linear time,
Algorithms Rev., 2 (1991), 33{44.

[105] D. M. H. Sommerville, Analytical Geometry in Three Dimensions, Cambridge Uni-
versity Press, Cambridge, 1951.

[106] S. Subramanian and S. Ramaswamy, The p-range tree: A new data structure for range
searching in secondary memory, Proc. 6th ACM-SIAM Symp. on Discrete Algorithms,
1995, pp. 378{387.

[107] R. E. Tarjan, Data Structures and Network Algorithms, Society for Industrial and
Applied Mathematics, Philadelphia, PA, 1987.

[108] P. M. Vaidya, Space-time tradeo�s for orthogonal range queries, SIAM J. Comput.,
18 (1989), 748{758.

[109] V. K. Vaishnavi and D. Wood, Rectilinear line segment intersection, layered segment
trees and dynamization, J. Algorithms, 3 (1982), 160{176.

[110] J. Vitter and D. Vengro�, E�cient 3-d range searching in external memory, Proc.
28th ACM Symp. Theory of Computing, 1996, p. to appear.

[111] E. Welzl, Partition trees for triangle counting and other range searching problems,
Proc. 4th Annu. ACM Sympos. Comput. Geom., 1988, pp. 23{33.

[112] E. Welzl, On spanning trees with low crossing numbers, in: ??, Lecture Notes in

Computer Science, Vol. 594, Springer-Verlag, 1992, pp. 233{249.

[113] D. E. Willard, Polygon retrieval, SIAM J. Comput., 11 (1982), 149{165.

30 Pankaj K. Agarwal

[114] D. E. Willard, Applications of the fusion tree method to computational geometry and
searching, Proc. 3rd ACM-SIAM Sympos. Discrete Algorithms, 1992, pp. 286{296.

[115] D. E. Willard, Applications of range query theory to relational data base join and
selection operations, J. Comput. Sys. Sci., 52 (1996), 157{169.

[116] A. C. Yao, Space-time trade-o� for answering range queries, Proc. 14th Annu. ACM

Sympos. Theory Comput., 1982, pp. 128{136.

[117] A. C. Yao, On the complexity of maintaining partial sums, SIAM J. Comput.,
14 (1985), 277{288.

[118] A. C. Yao and F. F. Yao, A general approach to D-dimensional geometric queries,
Proc. 17th Annu. ACM Sympos. Theory Comput., 1985, pp. 163{168.

